
02/23/2007 CS267 DLA2 2

Outline
• Motivation, overview for Dense Linear Algebra
• Review Gaussian Elimination (GE) for solving Ax=b
• Optimizing GE for caches on sequential machines

- using matrix-matrix multiplication (BLAS)

• LAPACK library overview and performance
• Data layouts on parallel machines
• Parallel Gaussian Elimination
• ScaLAPACK library overview
• Eigenvalue problems
• Current Research

02/23/2007 CS267 DLA2 5

Motivation (1)
3 Basic Linear Algebra Problems

1. Linear Equations: Solve Ax=b for x

2. Least Squares: Find x that minimizes ||r||2 { �6 ri2where r=Ax-b
• Statistics: Fitting data with simple functions

3a. Eigenvalues: Find O and x where Ax = O x
• Vibration analysis, e.g., earthquakes, circuits

3b. Singular Value Decomposition: ATAx=V2x
• Data fitting, Information retrieval

Lots of variations depending on structure of A
• A symmetric, positive definite, banded, …

02/23/2007 CS267 DLA2 6

Motivation (2)
• Why dense A, as opposed to sparse A?

- Many large matrices are sparse, but …
- Dense algorithms easier to understand
- Some applications yields large dense
matrices

- LINPACK Benchmark (www.top500.org)
• “How fast is your computer?” =

“How fast can you solve dense Ax=b?”
- Large sparse matrix algorithms often yield
smaller (but still large) dense problems

02/23/2007 CS267 DLA2 8

Gaussian Elimination (GE) for solving Ax=b
• Add multiples of each row to later rows to make A upper

triangular
• Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
tmp = A(j,i);
for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
.
.
.
0

0
...
0

0
.
0 0

0
0

0
.
.
.
0

0
...
0

0
.
0

0
.
.
.
0

0
...
0

0
.
.
.
0

After i=1 After i=2 After i=3 After i=n-1

…

02/23/2007 CS267 DLA2 9

Refine GE Algorithm (1)
• Initial Version

• Remove computation of constant tmp/A(i,i) from
inner loop.

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
tmp = A(j,i);
for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)
m

02/23/2007 CS267 DLA2 10

Refine GE Algorithm (2)
• Last version

• Don’t compute what we already know:
zeros below diagonal in column i

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m

02/23/2007 CS267 DLA2 11

Refine GE Algorithm (3)
• Last version

• Store multipliers m below diagonal in zeroed entries
for later use

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store m here

m

02/23/2007 CS267 DLA2 12

Refine GE Algorithm (4)
• Last version

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Split Loop

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for j = i+1 to n

for k = i+1 to n
A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m’s here before updating
rest of matrix

02/23/2007 CS267 DLA2 13

Refine GE Algorithm (5)
• Last version

• Express using matrix operations (BLAS)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
A(i+1:n,i+1:n) = A(i+1:n , i+1:n)

- A(i+1:n , i) * A(i , i+1:n)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for j = i+1 to n

for k = i+1 to n
A(j,k) = A(j,k) - A(j,i) * A(i,k)

02/23/2007 CS267 DLA2 14

What GE really computes

• Call the strictly lower triangular matrix of multipliers
M, and let L = I+M

• Call the upper triangle of the final matrix U
• Lemma (LU Factorization): If the above algorithm

terminates (does not divide by zero) then A = L*U
• Solving A*x=b using GE

- Factorize A = L*U using GE (cost = 2/3 n3 flops)
- Solve L*y = b for y, using substitution (cost = n2 flops)
- Solve U*x = y for x, using substitution (cost = n2 flops)

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

02/23/2007 CS267 DLA2 15

Problems with basic GE algorithm
• What if some A(i,i) is zero? Or very small?

- Result may not exist, or be “unstable”, so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that
BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1

02/23/2007 CS267 DLA2 16

Pivoting in Gaussian Elimination
• A = [0 1] fails completely because can’t divide by A(1,1)=0

[1 0]

• But solving Ax=b should be easy!

• When diagonal A(i,i) is tiny (not just zero), algorithm may
terminate but get completely wrong answer

• Numerical instability
• Roundoff error is cause

• Cure: Pivot (swap rows of A) so A(i,i) large

02/23/2007 CS267 DLA2 17

Gaussian Elimination with Partial Pivoting (GEPP)
• Partial Pivoting: swap rows so that A(i,i) is largest in column

for i = 1 to n-1
find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k != i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i) … each quotient lies in [-1,1]
A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

• Lemma: This algorithm computes A = P*L*U, where P is a
permutation matrix.

• This algorithm is numerically stable in practice
• For details see LAPACK code at

http://www.netlib.org/lapack/single/sgetf2.f

02/23/2007 CS267 DLA2 23

Parallelizing Gaussian Elimination
• Parallelization steps

- Decomposition: identify enough parallel work, but not too much
- Assignment: load balance work among threads
- Orchestrate: communication and synchronization
- Mapping: which processors execute which threads

• Decomposition
- In BLAS 2 algorithm nearly each flop in inner loop can be done in

parallel, so with n2 processors, need 3n parallel steps

- This is too fine-grained, prefer calls to local matmuls instead
- Need to use parallel matrix multiplication

• Assignment
- Which processors are responsible for which submatrices?

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

02/23/2007 CS267 DLA2 24

Different Data Layouts for Parallel GE

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but
can’t easily use
BLAS2 or BLAS3

Can trade load balance
and BLAS2/3
performance by
choosing b, but
factorization of block
column is a bottleneck

Complicated
addressing

012301230123 3210

0 1 2 3 0 1 2 3

0321
1032
2103
3210

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

The winner!

32323232
10101010
32323232
10101010
32323232
10101010
32323232

0 1 0 1 0 1 0 1

6) 2D Row and Column
Block Cyclic Layout

0 1 2 3

Bad load balance:
P0-P2 idle after
first n/2 steps 32

0 1

5) 2D Row and Column Blocked Layout

b

02/23/2007 CS267 DLA2 25

Review: BLAS 3 (Blocked) GEPP
for ib = 1 to n-1 step b … Process matrix b columns at a time

end = ib + b-1 … Point to end of block of b columns
apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
… let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

- A(end+1:n , ib:end) * A(ib:end , end+1:n)
… apply delayed updates with single matrix-multiply
… with inner dimension b

BLAS 3

02/23/2007 CS267 DLA2 26

Row and Column Block Cyclic Layout

• processors and matrix blocks are
distributed in a 2d array

•prow-by-pcol array of processors
•brow-by-bcol matrix blocks

• pcol-fold parallelism in any column,
and calls to the BLAS2 and BLAS3 on
matrices of size brow-by-bcol

• serial bottleneck is eased

• prow z pcol possible, even desirable
• brow z bcol more complicated

32323232

10101010

32323232

10101010

32323232

10101010

32323232

0 1 0 1 0 1 0 1

bcol

brow

02/23/2007 CS267 DLA2 27

Distributed GE with a 2D Block Cyclic Layout

• block sizes b = bcol = brow in the algorithm and in
the layout are all equal

• shaded regions indicate processors busy with
computation or communication.

• unnecessary to have a barrier between each step of
the algorithm, e.g. steps 9, 10, and 11 can be
pipelined

02/23/2007 CS267 DLA2 36

Extra Slides

02/23/2007 CS267 DLA2 37

Recursive Algorithms
• Still uses delayed updates, but organized differently

- (formulas on board)

• Can exploit recursive data layouts
- 3x speedups on least squares for tall, thin matrices

• Theoretically optimal memory hierarchy performance
• See references at

- “Recursive Block Algorithms and Hybrid Data Structures,”
Elmroth, Gustavson, Jonsson, Kagstrom, SIAM Review, 2004

- http://www.cs.umu.se/research/parallel/recursion/

02/23/2007 CS267 DLA2 38

LU Algorithm:
1: Split matrix into two rectangles (m x n/2)

if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part

3: Apply transformations to right part
(triangular solve A12 = L-1A12 and
matrix multiplication A22=A22 -A21*A12)

4: Apply LU Algorithm to right part

Gaussian Elimination via a Recursive Algorithm

L A12

A21 A22

F. Gustavson and S. Toledo

Most of the work in the matrix multiply
Matrices of size n/2, n/4, n/8, …

Source: Jack Dongarra

02/23/2007 CS267 DLA2 39

Recursive Factorizations
• Just as accurate as conventional method
• Same number of operations
• Automatic variable-size blocking

- Level 1 and 3 BLAS only !
• Simplicity of expression
• Potential for efficiency while being “cache oblivious”

- But shouldn’t recur down to single columns!

• The recursive formulation is just a rearrangement of the point-
wise LINPACK algorithm

• The standard error analysis applies (assuming the matrix
operations are computed the “conventional” way).

02/23/2007 CS267 DLA2 40

DGEMM ATLAS & DGETRF Recursive
AMD Athlon 1GHz (~$1100 system)

0

100

200

300

400

500 1000 1500 2000 2500 3000

Order

M
Fl

op
/s

Pentium III 550 MHz Dual Processor
LU Factorization

0

200

400

600

800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Order

M
flo

p/
s

LAPACK

Recursive LU

Recursive LU

LAPACK

Dual-processor

Uniprocessor

Source: Jack Dongarra

02/23/2007 CS267 DLA2 41

Recursive Algorithms – Limits
• Two kinds of dense matrix compositions
• One Sided

- Sequence of simple operations applied on left of matrix
- Gaussian Elimination: A = L*U or A = P*L*U

• Symmetric Gaussian Elimination: A = L*D*LT

• Cholesky: A = L*LT

- QR Decomposition for Least Squares: A = Q*R
- Can be nearly 100% BLAS 3
- Susceptible to recursive algorithms

• Two Sided
- Sequence of simple operations applied on both sides,

alternating
- Eigenvalue algorithms, SVD
- At least ~25% BLAS 2
- Seem impervious to recursive approach?
- Some recent progress on SVD (25% vs 50% BLAS2)

02/23/2007 CS267 DLA2 42

Out-of-core means
matrix lives on disk;
too big for main memory

Much harder to hide
latency of disk

QR much easier than LU
because no pivoting
needed for QR

Out of “Core” Algorithms

Source: Jack Dongarra

02/23/2007 CS267 DLA2 43

Some contributors (incomplete list)

02/23/2007 CS267 DLA2 44

Upcoming related talks
• SIAM Conference on Parallel Processing in Scientific

Computing
- San Francisco, Feb 22-24
- http://www.siam.org/meetings/pp06/index.htm
- Applications, Algorithms, Software, Hardware
- 3 Minisymposia on Dense Linear Algebra on Friday 2/24

• MS41, MS47(*), MS56

• Scientific Computing Seminar,
- “An O(n log n) tridiagonal eigensolver”, Jonathan Moussa
- Wednesday, Feb 15, 11-12, 380 Soda

• Special Seminar
- Towards Combinatorial Preconditioners for Finite-

Elements Problems”, Prof. Sivan Toledo, Technion
- Tuesday, Feb 21, 1-2pm, 373 Soda

02/23/2007 CS267 DLA2 45

Scales well,
nearly full machine speed

QR (Least Squares)

02/23/2007 CS267 DLA2 46

Current algorithm:
Faster than initial algorithm
Occasional numerical instability
New, faster and more stable

algorithm planned

Initial algorithm:
Numerically stable
Easily parallelized
Slow: will abandon

02/23/2007 CS267 DLA2 47

The “Holy Grail” (Parlett, Dhillon, Marques)
Perfect Output complexity (O(n * #vectors)), Embarrassingly parallel, Accurate

To be propagated throughout LAPACK and ScaLAPACK

Scalable Symmetric Eigensolver and SVD

02/23/2007 CS267 DLA2 48

Have good ideas to speedup
Project available!

Hardest of all to parallelize

02/23/2007 CS267 DLA2 49

Scalable Nonsymmetric Eigensolver

• Axi = Oi xi , Schur form A = QTQT

• Parallel HQR
- Henry, Watkins, Dongarra, Van de Geijn
- Now in ScaLAPACK
- Not as scalable as LU: N times as many messages
- Block-Hankel data layout better in theory, but not in ScaLAPACK

• Sign Function
- Beavers, Denman, Lin, Zmijewski, Bai, Demmel, Gu, Godunov,

Bulgakov, Malyshev
- Ai+1 = (Ai + Ai

-1)/2 o shifted projector onto Re O > 0
- Repeat on transformed A to divide-and-conquer spectrum
- Only uses inversion, so scalable
- Inverse free version exists (uses QRD)
- Very high flop count compared to HQR, less stable

02/23/2007 CS267 DLA2 50

Assignment of parallel work in GE
• Think of assigning submatrices to threads, where

each thread responsible for updating submatrix it
owns

- “owner computes” rule natural because of locality

• What should submatrices look like to achieve load
balance?

02/23/2007 CS267 DLA2 51

The main steps in the solution process are

• Fill: computing the matrix elements of A

• Factor: factoring the dense matrix A

• Solve: solving for one or more excitations b

• Field Calc: computing the fields scattered from the
object

Computational Electromagnetics (MOM)

02/23/2007 CS267 DLA2 52

Analysis of MOM for Parallel Implementation

Task Work Parallelism Parallel Speed

Fill O(n**2) embarrassing low

Factor O(n**3) moderately diff. very high

Solve O(n**2) moderately diff. high

Field Calc. O(n) embarrassing high

02/23/2007 CS267 DLA2 53

BLAS2 version of GE with Partial Pivoting (GEPP)

for i = 1 to n-1
find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k != i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i)

… each quotient lies in [-1,1]
… BLAS 1

A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)
… BLAS 2, most work in this line

02/23/2007 CS267 DLA2 54

Computational Electromagnetics – Solve Ax=b

•Developed during 1980s, driven by defense applications

•Determine the RCS (radar cross section) of airplane

•Reduce signature of plane (stealth technology)

•Other applications are antenna design, medical equipment

•Two fundamental numerical approaches:

•MOM methods of moments (frequency domain)

•Large dense matrices

•Finite differences (time domain)
•Even larger sparse matrices

02/23/2007 CS267 DLA2 55

Computational Electromagnetics

image: NW Univ. Comp. Electromagnetics Laboratory http://nueml.ece.nwu.edu/

- Discretize surface into triangular facets using
standard modeling tools

- Amplitude of currents on surface are
unknowns

- Integral equation is discretized into a set of linear
equations

02/23/2007 CS267 DLA2 56

Computational Electromagnetics (MOM)

After discretization the integral equation has the form

A x = b
where

A is the (dense) impedance matrix,

x is the unknown vector of amplitudes, and

b is the excitation vector.

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone Delta,
IEEE Supercomputing ‘92, pp 538 - 542)

02/23/2007 CS267 DLA2 57

Results for Parallel Implementation on Intel Delta
Task Time (hours)

Fill (compute n2 matrix entries) 9.20

(embarrassingly parallel but slow)

Factor (Gaussian Elimination, O(n3)) 8.25

(good parallelism with right algorithm)

Solve (O(n2)) 2 .17

(reasonable parallelism with right algorithm)

Field Calc. (O(n)) 0.12

(embarrassingly parallel and fast)

The problem solved was for a matrix of size 48,672.
2.6 Gflops for Factor - The world record in 1991.

02/23/2007 CS267 DLA2 58

Computational Chemistry – Ax = O x
• Seek energy levels of a molecule, crystal, etc.

- Solve Schroedinger’s Equation for energy levels = eigenvalues
- Discretize to get Ax = OBx, solve for eigenvalues O and eigenvectors x
- A and B large Hermitian matrices (B positive definite)

• MP-Quest (Sandia NL)
- Si and sapphire crystals of up to 3072 atoms
- A and B up to n=40000, complex Hermitian
- Need all eigenvalues and eigenvectors
- Need to iterate up to 20 times (for self-consistency)

• Implemented on Intel ASCI Red
- 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP)
- Overall application ran at 605 Gflops (out of 1800 Gflops peak),
- Eigensolver ran at 684 Gflops
- www.cs.berkeley.edu/~stanley/gbell/index.html
- Runner-up for Gordon Bell Prize at Supercomputing 98

02/23/2007 CS267 DLA2 59

02/23/2007 CS267 DLA2 60

Parallelism in ScaLAPACK

• Level 3 BLAS block
operations

- All the reduction routines

• Pipelining
- QR Iteration, Triangular

Solvers, classic
factorizations

• Redundant computations
- Condition estimators

• Static work assignment
- Bisection

• Task parallelism
- Sign function eigenvalue

computations

• Divide and Conquer
- Tridiagonal and band

solvers, symmetric
eigenvalue problem and
Sign function

• Cyclic reduction
- Reduced system in the

band solver

02/23/2007 CS267 DLA2 61

Winner of TOPS 500 (LINPACK Benchmark)
NNum

Procs
Peak

Tflops
Factor
faster

TflopsMachineYear

.13M6768.31.28Intel Paragon XP/S
MP

1995

.10M2048.61.3.37Hitachi CP-PACS1996

.24M91521.83.61.3ASCI Red,
Intel Ppro, 200 MHz

1997

.43M58083.91.62.1ASCI Blue,
IBM SP 604E

1998

.36M 96323.21.12.4ASCI Red,
Intel PII Xeon

1999

.43M742411.12.14.9ASCI White,
IBM SP Power 3

2000

.52M742411.11.57.2ASCI White,
IBM SP Power 3

2001

1.04M510440.84.935.6Earth System
Computer, NEC

2002
2003

.93M3276891.82.070.7Blue Gene / L, IBM2004

Source: Jack Dongarra (UTK)

02/23/2007 CS267 DLA2 62

Performance of LAPACK (n=1000)

Performance
of Eigen-
values, SVD,
etc.

02/23/2007 CS267 DLA2 63

Performance of LAPACK (n=100)

Efficiency is
much lower
for a smaller
matrix.

