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Outline
• Motivation, overview for Dense Linear Algebra
• Review Gaussian Elimination (GE) for solving Ax=b
• Optimizing GE for caches on sequential machines

- using matrix-matrix multiplication (BLAS)

• LAPACK library overview and performance
• Data layouts on parallel machines
• Parallel Gaussian Elimination
• ScaLAPACK library overview
• Eigenvalue problems
• Current Research
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Motivation  (1)
3 Basic Linear Algebra Problems

1. Linear Equations: Solve Ax=b for x

2. Least Squares: Find x that minimizes ||r||2 { �6 ri2where r=Ax-b
• Statistics: Fitting data with simple functions

3a. Eigenvalues: Find O and x where Ax = O x
• Vibration analysis, e.g., earthquakes, circuits

3b. Singular Value Decomposition: ATAx=V2x
• Data fitting, Information retrieval

Lots of variations depending on structure of A
• A symmetric, positive definite, banded, …
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Motivation (2) 
• Why dense A, as opposed to sparse A?

- Many large matrices are sparse, but …
- Dense algorithms easier to understand 
- Some applications yields large dense 
matrices

- LINPACK Benchmark (www.top500.org)
• “How fast is your computer?” =                                

“How fast can you solve dense Ax=b?”
- Large sparse matrix algorithms often yield 
smaller (but still large) dense problems
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Gaussian Elimination (GE) for solving Ax=b
• Add multiples of each row to later rows to make A upper 

triangular
• Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
tmp = A(j,i);
for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
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Refine GE Algorithm (1)
• Initial Version

• Remove computation of constant tmp/A(i,i) from 
inner loop. 

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1

… for each row j below row i
for j = i+1 to n

… add a multiple of row i to row j
tmp = A(j,i);
for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)
m
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Refine GE Algorithm (2)
• Last version

• Don’t compute what we already know:                    
zeros below diagonal in column i

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i to n

A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m
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Refine GE Algorithm (3)
• Last version

• Store multipliers m below diagonal in zeroed entries 
for later use

for i = 1 to n-1
for j = i+1 to n

m = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store m here

m
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Refine GE Algorithm (4)
• Last version

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Split Loop

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for j = i+1 to n

for k = i+1 to n
A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m’s here before updating 
rest of matrix
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Refine GE Algorithm (5)
• Last version

• Express using matrix operations (BLAS)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) * ( 1 / A(i,i) )
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) 

- A(i+1:n , i) * A(i , i+1:n)

for i = 1 to n-1
for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)
for j = i+1 to n

for k = i+1 to n
A(j,k) = A(j,k) - A(j,i) * A(i,k)
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What GE really computes

• Call the strictly lower triangular matrix of multipliers 
M, and let L = I+M

• Call the upper triangle of the final matrix U
• Lemma (LU Factorization): If the above algorithm 

terminates (does not divide by zero) then A = L*U
• Solving A*x=b using GE

- Factorize A = L*U using GE                   (cost = 2/3 n3 flops)
- Solve L*y = b for y, using substitution (cost = n2 flops)
- Solve U*x = y for x, using substitution (cost = n2 flops)

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)
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Problems with basic GE algorithm
• What if some A(i,i) is zero? Or very small?

- Result may not exist, or be “unstable”, so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that 
BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1
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Pivoting in Gaussian Elimination
• A =  [ 0  1 ]   fails completely because can’t divide by A(1,1)=0

[ 1  0 ]

• But solving Ax=b should be easy!

• When diagonal A(i,i) is tiny (not just zero), algorithm may 
terminate but get completely wrong answer 

• Numerical instability
• Roundoff error is cause

• Cure: Pivot (swap rows of A) so A(i,i) large
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Gaussian Elimination with Partial Pivoting (GEPP)
• Partial Pivoting: swap rows so that A(i,i) is largest in column

for i = 1 to n-1
find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k != i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i)        … each quotient lies in [-1,1]
A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)

• Lemma: This algorithm computes A = P*L*U, where P is a 
permutation matrix.

• This algorithm is numerically stable in practice
• For details see LAPACK code at    

http://www.netlib.org/lapack/single/sgetf2.f
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Parallelizing Gaussian Elimination
• Parallelization steps 

- Decomposition: identify enough parallel work, but not too much
- Assignment: load balance work among threads
- Orchestrate: communication and synchronization
- Mapping: which processors execute which threads

• Decomposition
- In BLAS 2 algorithm nearly each flop in inner loop can be done in 

parallel, so with n2 processors, need 3n parallel steps

- This is too fine-grained, prefer calls to local matmuls instead
- Need to use parallel matrix multiplication

• Assignment
- Which processors are responsible for which submatrices? 

for i = 1 to n-1
A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)
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Different Data Layouts for Parallel GE

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but 
can’t easily use 
BLAS2 or BLAS3

Can trade load balance
and BLAS2/3 
performance by 
choosing b, but
factorization of block
column is a bottleneck

Complicated 
addressing

012301230123 3210

0 1 2 3 0 1 2 3

0321
1032
2103
3210

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

The winner!

32323232
10101010
32323232
10101010
32323232
10101010
32323232

0 1 0 1 0 1 0 1

6) 2D Row and Column 
Block Cyclic Layout

0 1 2 3

Bad load balance:
P0-P2 idle after 
first n/2 steps 32

0 1

5) 2D Row and Column Blocked Layout

b
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Review: BLAS 3 (Blocked) GEPP
for   ib = 1 to n-1 step b     … Process matrix b columns at a time

end = ib + b-1                … Point to end of block of b columns 
apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’
… let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
A(end+1:n , end+1:n ) = A(end+1:n , end+1:n )

- A(end+1:n , ib:end) * A(ib:end , end+1:n)
… apply delayed updates with single matrix-multiply
… with inner dimension b

BLAS 3
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Row and Column Block Cyclic Layout

• processors and matrix blocks are 
distributed in a 2d array

•prow-by-pcol array of processors
•brow-by-bcol matrix blocks

• pcol-fold parallelism in any column, 
and calls to the BLAS2 and BLAS3 on 
matrices of  size brow-by-bcol

• serial bottleneck is eased

• prow z pcol possible, even desirable
• brow z bcol more complicated

32323232

10101010

32323232

10101010

32323232

10101010

32323232

0 1 0 1 0 1 0 1

bcol

brow
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Distributed GE with a 2D Block Cyclic Layout

• block sizes b = bcol = brow in the algorithm and in 
the layout are all equal

• shaded regions indicate processors busy with 
computation or  communication.

• unnecessary to have a barrier between each step of 
the algorithm, e.g. steps 9, 10, and 11 can be 
pipelined



02/23/2007 CS267 DLA2 36

Extra Slides
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Recursive Algorithms
• Still uses delayed updates, but organized differently

- (formulas on board)

• Can exploit recursive data layouts
- 3x speedups on least squares for tall, thin matrices

• Theoretically optimal memory hierarchy performance
• See references at

- “Recursive Block Algorithms and Hybrid Data Structures,”
Elmroth, Gustavson, Jonsson, Kagstrom, SIAM Review, 2004

- http://www.cs.umu.se/research/parallel/recursion/
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LU Algorithm:
1: Split matrix into two rectangles (m x n/2)

if only 1 column, scale by reciprocal of pivot & return

2: Apply LU Algorithm to the left part

3: Apply transformations to right part 
(triangular solve A12 = L-1A12 and                
matrix multiplication A22=A22 -A21*A12 )

4: Apply LU Algorithm to right part

Gaussian Elimination via a Recursive Algorithm

L A12

A21 A22

F. Gustavson and S. Toledo

Most of the work in the matrix multiply 
Matrices of size n/2, n/4, n/8, …

Source: Jack Dongarra
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Recursive Factorizations
• Just as accurate as conventional method
• Same number of operations
• Automatic variable-size blocking

- Level 1 and 3 BLAS only !
• Simplicity of expression
• Potential for efficiency while being “cache oblivious”

- But shouldn’t recur down to single columns!

• The recursive formulation is just a rearrangement of the point-
wise LINPACK algorithm

• The standard error analysis applies (assuming the matrix 
operations are computed the “conventional” way).
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DGEMM ATLAS & DGETRF Recursive 
AMD Athlon 1GHz (~$1100 system)

0
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400

500 1000 1500 2000 2500 3000

Order

M
Fl

op
/s

Pentium III 550 MHz Dual Processor 
LU Factorization

0

200

400

600

800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Order

M
flo

p/
s

LAPACK

Recursive LU

Recursive LU

LAPACK

Dual-processor

Uniprocessor

Source: Jack Dongarra
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Recursive Algorithms – Limits
• Two kinds of dense matrix compositions
• One Sided 

- Sequence of simple operations applied on left of matrix
- Gaussian Elimination: A = L*U or A = P*L*U

• Symmetric Gaussian Elimination: A = L*D*LT

• Cholesky: A = L*LT

- QR Decomposition for Least Squares: A = Q*R
- Can be nearly 100% BLAS 3
- Susceptible to recursive algorithms

• Two Sided
- Sequence of simple operations applied on both sides, 

alternating
- Eigenvalue algorithms, SVD
- At least ~25% BLAS 2
- Seem impervious to recursive approach?
- Some recent progress on SVD (25% vs 50% BLAS2) 
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Out-of-core means
matrix lives on disk;
too big for main memory

Much harder to hide
latency of disk

QR much easier than LU
because no pivoting
needed for QR

Out of “Core” Algorithms

Source: Jack Dongarra
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Some contributors (incomplete list)
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Upcoming related talks
• SIAM Conference on Parallel Processing in Scientific 

Computing
- San Francisco, Feb 22-24
- http://www.siam.org/meetings/pp06/index.htm
- Applications, Algorithms, Software, Hardware
- 3 Minisymposia on Dense Linear Algebra on Friday 2/24

• MS41, MS47(*), MS56

• Scientific Computing Seminar, 
- “An O(n log n) tridiagonal eigensolver”, Jonathan Moussa
- Wednesday, Feb 15, 11-12, 380 Soda 

• Special Seminar
- Towards Combinatorial Preconditioners for Finite-

Elements Problems”, Prof. Sivan Toledo, Technion
- Tuesday, Feb 21, 1-2pm, 373 Soda
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Scales well, 
nearly full machine speed

QR (Least Squares)
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Current algorithm:
Faster than initial algorithm
Occasional numerical instability
New, faster and more stable

algorithm planned

Initial algorithm:
Numerically stable
Easily parallelized
Slow: will abandon
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The “Holy Grail” (Parlett, Dhillon, Marques)
Perfect Output complexity (O(n * #vectors)), Embarrassingly parallel, Accurate

To be propagated throughout LAPACK and ScaLAPACK

Scalable Symmetric Eigensolver and SVD
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Have good ideas to speedup
Project available!

Hardest of all to parallelize
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Scalable Nonsymmetric Eigensolver

• Axi = Oi xi , Schur form A = QTQT

• Parallel HQR 
- Henry, Watkins, Dongarra, Van de Geijn
- Now in ScaLAPACK
- Not as scalable as LU:    N times as many messages
- Block-Hankel data layout better in theory, but not in ScaLAPACK

• Sign Function  
- Beavers, Denman, Lin, Zmijewski, Bai, Demmel, Gu, Godunov, 

Bulgakov, Malyshev
- Ai+1 = (Ai + Ai

-1)/2 o shifted projector onto Re O > 0
- Repeat on transformed A to divide-and-conquer spectrum
- Only uses inversion, so scalable
- Inverse free version exists (uses QRD)
- Very high flop count compared to HQR, less stable
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Assignment of parallel work in GE
• Think of assigning submatrices to  threads, where 

each thread responsible for updating submatrix it 
owns

- “owner computes” rule natural because of locality

• What should submatrices look like to achieve load 
balance?
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The main steps in the solution process are

• Fill:             computing the matrix elements of A

• Factor:       factoring the dense matrix A

• Solve:        solving for one or more excitations b

• Field Calc: computing the fields scattered from the 
object

Computational Electromagnetics (MOM)
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Analysis of MOM for Parallel Implementation

Task            Work             Parallelism           Parallel Speed

Fill                O(n**2)        embarrassing                 low

Factor          O(n**3)       moderately diff.           very high

Solve           O(n**2)        moderately diff.                 high

Field Calc.    O(n)            embarrassing                     high
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BLAS2 version of GE with Partial Pivoting (GEPP)

for i = 1 to n-1
find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k != i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i)        

… each quotient lies in [-1,1]
… BLAS 1

A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)
… BLAS 2, most work in this line
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Computational Electromagnetics – Solve Ax=b

•Developed during 1980s, driven by defense applications

•Determine the RCS (radar cross section) of airplane

•Reduce signature of plane (stealth technology)

•Other applications are antenna design, medical equipment

•Two fundamental numerical approaches: 

•MOM methods of moments ( frequency domain)

•Large dense matrices

•Finite differences (time domain)
•Even larger sparse matrices
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Computational Electromagnetics

image: NW Univ. Comp. Electromagnetics Laboratory  http://nueml.ece.nwu.edu/

- Discretize surface into triangular facets using   
standard modeling tools

- Amplitude of currents on surface are 
unknowns 

- Integral equation is discretized into a set of linear 
equations
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Computational Electromagnetics (MOM)

After discretization the integral equation has the form

A x = b
where

A is the (dense) impedance matrix,  

x is the unknown vector of amplitudes, and 

b is the excitation vector.

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone Delta, 
IEEE Supercomputing ‘92, pp 538 - 542)
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Results for Parallel Implementation on Intel Delta
Task                                                            Time (hours)

Fill  (compute n2 matrix entries)              9.20 

(embarrassingly parallel but slow)

Factor  (Gaussian Elimination, O(n3) )    8.25

(good parallelism with right algorithm)

Solve  (O(n2))                                             2 .17 

(reasonable parallelism with right algorithm)

Field Calc. (O(n))                                        0.12

(embarrassingly parallel and fast)

The problem solved was for a matrix of size 48,672.  
2.6 Gflops for Factor  - The world  record in 1991.
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Computational Chemistry – Ax = O x
• Seek energy levels of a molecule, crystal, etc.

- Solve Schroedinger’s Equation for energy levels = eigenvalues
- Discretize to get Ax = OBx, solve for eigenvalues O and eigenvectors x
- A and B large Hermitian matrices (B positive definite)

• MP-Quest (Sandia NL)
- Si and sapphire crystals of up to 3072 atoms
- A and B up to n=40000, complex Hermitian
- Need all eigenvalues and eigenvectors
- Need to iterate up to 20 times (for self-consistency)

• Implemented on Intel ASCI Red
- 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP)
- Overall application ran at 605 Gflops (out of 1800 Gflops peak), 
- Eigensolver ran at 684 Gflops
- www.cs.berkeley.edu/~stanley/gbell/index.html
- Runner-up for Gordon Bell Prize at Supercomputing 98
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Parallelism in ScaLAPACK

• Level 3 BLAS block 
operations

- All the reduction routines

• Pipelining
- QR Iteration, Triangular 

Solvers, classic 
factorizations

• Redundant computations
- Condition estimators 

• Static work assignment
- Bisection

• Task parallelism
- Sign function eigenvalue 

computations

• Divide and Conquer
- Tridiagonal and band 

solvers, symmetric 
eigenvalue problem and 
Sign function 

• Cyclic reduction
- Reduced system in the 

band solver
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Winner of TOPS 500 (LINPACK Benchmark)
NNum

Procs
Peak

Tflops
Factor 
faster

TflopsMachineYear

.13M6768.31.28Intel Paragon XP/S 
MP

1995

.10M2048.61.3.37Hitachi  CP-PACS1996

.24M91521.83.61.3ASCI Red,          
Intel Ppro, 200 MHz

1997

.43M58083.91.62.1ASCI Blue,          
IBM SP 604E

1998

.36M 96323.21.12.4ASCI Red,          
Intel PII Xeon

1999

.43M742411.12.14.9ASCI White,         
IBM SP Power 3  

2000

.52M742411.11.57.2ASCI White,        
IBM SP Power 3

2001

1.04M510440.84.935.6Earth System 
Computer, NEC

2002
2003

.93M3276891.82.070.7Blue Gene / L, IBM2004

Source: Jack Dongarra (UTK)
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Performance of LAPACK (n=1000)

Performance 
of  Eigen-
values, SVD, 
etc.
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Performance of LAPACK (n=100)

Efficiency is 
much lower 
for a smaller 
matrix.


