
CMPT	431	
	

Transactions	



2

Transactions	

•  A	transaction	is	a	collection	of	actions	logically	belonging	
together	

•  To	the	outside	world,	a	transaction	must	appear	as	a	
single	indivisible	operation	



3

Use	of	Transactions	In	Distributed	
Systems	

•  Correct	concurrent	operations	
–  Example:	updating	the	bank	account	

	[1]	Read	the	current	balance	in	the	account	
	[2]	Compute	the	new	balance	
	[3]	Update	the	database	to	record	the	new	balance	

–  On	concurrent	access,	operations	done	by	multiple	threads	may	
interleave	

–  This	leads	to	incorrect	operation	
–  Transactions	ensure	proper	operation	

•  Masking	failures	
–  In	a	replicated	bank	database	–	the	account	is	updated	at	two	sites	
–  One	site	is	updated,	the	other	one	crashes	before	the	update	is	complete	
–  The	system’s	state	is	inconsistent	
–  Transactions	ensure	proper	recovery	



4

ACID	Properties	of	Transactions	

•  Atomicity	–	transaction	is	indivisible	–	it	completes	
entirely	or	not	at	all,	despite	failures	

•  Consistency	–system	rules	(invariants)	are	maintained	
despite	crashes	or	concurrent	access	

•  Isolation	–	transactions	appear	indivisible	to	each	other	
despite	concurrent	access	
–  If	multiple	threads	execute	transactions	the	effect	is	the	same	as	if	

transactions	were	executed	sequentially	in	some	order		

•  Durability	–	effects	of	committed	transactions	survive	
subsequent	failures	



5

Maintaining	ACID	Properties	

•  To	maintain	ACID	properties,	transaction	processing	
systems	must	implement:	
–  Concurrency	control	(Isolation,	Consistency)	
–  Failure	Recovery	(Atomicity,	Durability)	



6

Concurrency	Control	

•  Implemented	using	locks	(or	other	synchronization	
primitives)	

•  A	naïve	approach:	one	global	lock	–	no	transactions	can	
proceed	simultaneously.	Bad	performance	

•  A	better	approach:	associate	a	lock	with	each	data	item	
(or	group	of	items)	

•  Acquire	locks	on	items	used	in	transactions	
•  Turns	out	how	you	acquire	locks	is	very	important	



7

Concurrency	Control	

•  Transaction	1	
	lock(x)	
	update	(x)	
	unlock	(x)	
	…	
		
		
	abort	

•  Transaction	2	
	 	…	
		
		
	lock(x)	
	read(x)	
	unlock	(x)	
	commit	

saw	
inconsistent	

data!	



8

Strict	Two-Phase	Locking	

•  Phase	1:	A	transaction	can	acquire	locks,	but	cannot	
release	locks	

•  Phase	2:	A	transaction	releases	locks	at	the	end	–	when	it	
aborts	or	commits	



9

Non-Strict	Two-Phase	Locking	

•  Allows	releasing	locks	before	the	end	of	the	transaction,	
but	after	the	transaction	acquired	all	the	locks	it	needed	

•  Often	impractical,	because:	
–  We	do	not	know	when	the	transaction	has	acquired	all	
its	locks	–	lock	acquisition	is	data	dependent	

–  Cascading	aborts:	early	lock	release	requires	aborting	
all	transactions	that	saw	inconsistent	data	“If	I	tell	you	
this,	I’ll	have	to	kill	you”	



10

Deadlock	
•  When	we	acquire	more	than	one	lock	at	once	we	are	prone	to	

deadlocks	
•  Techniques	against	deadlocks:	

–  Prevention	
–  Avoidance	
–  Detection	

•  Prevention:	lock	ordering.	Downside:	may	limit	concurrency.	Locks	
are	held	longer	than	necessary	

•  Avoidance:	if	a	transaction	has	waited	for	a	lock	for	too	long,	abort	
the	transaction.	Downside:	transactions	are	aborted	unnecessarily	

•  Detection:	wait-for	graph	(WFG)	–	who	waits	for	whom.	If	there	is	a	
cycle,	abort	a	transaction	in	a	cycle.	Downside:	constructing	WFGs	is	
expensive	in	distributed	systems.	



11

Maintaining	ACID	Properties	

•  To	maintain	ACID	properties,	transaction	processing	
systems	must	implement:	
–  Concurrency	control	(Isolation,	Consistency)	
–  Failure	Recovery	(Atomicity,	Durability)	



12

Types	of	Failures	

•  Transaction	abort	–	to	resolve	deadlock	or	as	requested	
by	the	client	

•  Crash	–	loss	of	system	memory	state.	Disk	(or	other	non-
volatile	storage)	is	kept	intact	

•  Disk	failure		
•  Catastrophic	failure	–	memory,	disk	and	backup	copies	all	

disappear	

We	will	discuss	these	in	
detail	



13

Abort	Recovery	

•  Accomplished	using	transactional	log	
•  Log	is	used	to	“remember”	the	state	of	the	system	in	case	

recovery	is	needed	
•  How	log	is	used	depends	on	update	semantics:	

–  In-place	updates	(right	away)	
–  Deferred	updates	(at	the	end	of	transaction)	



14

Transactions	With	In-Place	Updates	

•  Update:	record	an	undo	record	(e.g.,	the	old	value	of	the	
item	being	updated)	in	an	undo	log,	and	update	the	
database	

•  Read:	simply	read	the	data	from	the	database	
•  Commit:	flush	database	changes	to	disk,	then	discard	

undo	records	
•  Abort:	Use	the	undo	records	in	the	log	to	back	out	the	

updates	



15

Transactions	with	Deferred	Updates	

•  Update:	Record	a	redo	record	(e.g.,	the	new	value	of	the	
item	being	updated)	in	a	redo	log	

•  Read:	combine	the	redo	log	and	the	database	to	
determine	the	desired	data	

•  Commit:	Update	the	database	by	applying	the	redo	log	in	
order,	flush	the	log	to	disk,	then	report	successful	commit	
	Here	commit	needs	not	flush	the	database	to	disk,	just	
the	log	

•  Abort:	do	nothing	
	



16

Crash	Recovery	

•  A	crash	may	leave	the	database	inconsistent	
–  The	database	may	contain	data	from	uncommitted	or	
aborted	transactions	

–  The	database	may	lack	updates	from	committed	
transactions	

•  After	the	crash	we	would	like	
–  Remove	data	from	uncommitted	or	aborted	
transactions	

–  Re-apply	updates	from	committed	transactions	



17

Recovery	With	Undo	Logging	

•  All	committed	transactions	would	have	been	flushed	to	
disk,	so	no	need	to	redo	them	

•  Use	undo	records	to	remove	data	from	uncommitted	or	
aborted	transactions	

•  What	if	an	update	was	written	to	database	before	the	
undo	record	was	written	to	log?			

•  Write-ahead	log	rule:	A	undo	record	must	be	flushed	to	disk	
before	the	corresponding	update	is	reflected	in	the	database	



18

Recovery	with	Redo	Logging	

•  No	uncommitted	or	aborted	transactions	would	have	
been	in	the	database,	so	no	need	to	undo	them.	

•  Redo	all	updates	for	committed	transactions	(use	redo	
records).		

•  Redo	records	must	be	idempotent,	in	case	we	crash	
during	recovery	

•  What	if	the	client	committed	transaction,	but	the	system	
crashed	before	“commit”	log	record	made	it	to	disk?	

•  Redo	rule:	We	must	flush	the	commit	record	to	disk	before	
telling	the	client	that	transaction	is	committed		



19

Performance	Considerations:	Disk	
Access	

•  Each	transaction	necessarily	involves	disk	access	
(expensive)	

•  To	reduce	performance	costs,	log	is	kept	on	a	separate	
disk	than	database	

•  Log	is	written	sequentially	under	normal	operation	
•  Sequential	writes	are	fast	
•  That	is	why	redo	logging	is	better	for	performance,	since	

you		don’t	have	to	flush	the	database	to	disk	on	commit	
•  Database	is	updated	asynchronously,	pages	are	eventually	

flushed	to	disk,	so	it’s	not	a	performance	bottleneck	



20

Performance	Considerations:	Log	Size	

•  Log	will	keep	on	growing	forever…	
•  To	prevent	this,	we	use	checkpoints	
•  If	the	data	has	been	flushed	to	the	database	disk,	discard	

corresponding	commit	records	
•  For	each	transaction,	keep	a	log	sequence	number	(LSN)	
•  In	the	checkpoint	record,	record	the	smallest	LSN	of	all	

active	transactions	
•  Discard	undo	records	with	LSN	below	the	current	smallest	

LSN	



21

Summary	

•  Transactions	are	used	for	concurrent	operations	and	for	
masking	failures	

•  ACID	properties:		
–  Atomicity	
–  Consistency	
–  Isolation	
–  Durability	

•  To	maintain	these	properties,	databases	implement:	
–  Concurrency	control	(two-phase	locking,	deadlock	resolution)	
–  Failure	recovery	(logging,	redo/undo)	


