
CMPT 880/479
Multicore Programming 

and Architecture

1



CMPT 880/479
Multicore Programming 

and Architecture

Unit 1: Performance Tuning 

1



CMPT 880/479
Multicore Programming 

and Architecture

Unit 1: Performance Tuning 

1



Today’s Agenda

2



Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

2



Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

2



Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

• Lecture on sequential performance tuning
• Overview, much of it should be review
• Help you tune code
• Help you understand odd performance effects

2



The Process of Performance Tuning

3



Goals of Performance Tuning

4



Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time



Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage



Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage

• Or, energy consumption
• Same computation, less energy
• Why? battery life, power & cooling costs, fan noise
• Run fast and sleep   --or--  run slowly just to meet deadlines



Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage

• Or, energy consumption
• Same computation, less energy
• Why? battery life, power & cooling costs, fan noise
• Run fast and sleep   --or--  run slowly just to meet deadlines

• Either way: software tuning basically the same
• In fact, processors dynamically trade energy and performance

• Dynamic voltage/frequency scaling, Core i7 “turbo mode”
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• Starting point: always some pile of existing code

• Refactoring: No change to visible external behavior

• Add new functionality
• Change behavior

• Performance optimization: empirical & experimental
• 1. wait
• 2. benchmark and profile, identify bottleneck
• 3. Modify code, test functionality, measure perf., revert if not beneficial
• Ongoing performance regression testing

• “We should forget about small efficiencies, say about 97% of 
the time: premature optimization is the root of all evil”  
               - Donald Knuth
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Identifying Performance Bottlenecks

• Where is the code spending its time?
• Need representative input (full sized, long running)
• Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
• Look beyond code profile (collect by object, algorithm change, etc.)

• What is the cause of the slow performance?
• Might not always be what you think

• Hardware performance counters
• Various profiling tools collect statistics from the hardware
• Examples: stall cycles, cache miss rates, branch mispredictions, etc.
• Can even associate them with specific instructions
• Using sampling, can be done with low overhead (a few percent)

• Focused experiments (example: large v. small data set)
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• Fast parallel code is fast sequential code running in parallel

• Runtime = # of inst. * cycles per inst. * clock period
• Want to minimize all three

• When tuning code, consider:
• “Dynamic” instruction count
• Micro-architectural impacts

• Instruction level parallelism of code, branch mispredictions
• Memory hierarchy

• Cache misses, etc.
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Reducing Instruction Count

• Dynamic instruction count is first-order performance metric
• “Dynamic” means at runtime

• First order model: runtime is ~ to instruction count
• Assumes all instruction take a single cycle
• Con: ignores all micro-architectural and memory effects
• Pro: architecture independent, easier to reason about, 

captures most important metric 

• Reducing instruction count
• Better algorithm or approach to problem
• Avoid software bloat in terms of too much layering, too general
• Write code the compiler can easily optimize (and turn on -O3)

• Compilers are really smart, but lack higher level context
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Cost of Function Calls

• Function calls add overhead
• Obvious overhead: “Call” and “Return” instruction overheads

• Less obvious
• Putting parameters/arguments into right registers

• Or on in-memory stack
• Calling into a dynamically linked library can be a bit more expensive
• Virtual functions (C++ and Java): adds a table lookup on call path 

• Worse yet, breaks compiler optimization boundaries
• Compilers today typically don’t look at code in other C files
• After a call, compiler doesn’t know what has changed or not
• Compilers can inline functions, especially in C header files

• Aside: “extern inline” function in .h file is a fast as a macro
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Operation & Instruction Latencies

• Instruction latencies
• One cycle: integer adds, subtract, compare, shift, etc.
• Few cycles: loads/stores (best case), int multiply, floating point
• Dozens of cycles: integer divide (89 cycles for 64-bit on Core i7)

• Non-instructions (on most machines)
• Sqrt, exponentiation, sine/cosine, modulo (%), etc.
• Trend toward more hardware support for these operations

• Compilers can by help
• Selects cheapest instructions (strength reduction)

• Replace multiply by constant power-of-two with shift:
“x * 2” with “x << 1”

• Tries to eliminate redundant computation
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Tuning for Micro-Architectural Impacts 

• Superscalar execution: three or four insn per cycle max
• Restrictions on instruction mix (different function unit types)
• Loads/stores are most limited (just one or maybe two per cycle)
• Compiler reorganizes and schedules code with this in mind

• Out-of-order (dynamic scheduling)
• Code runs faster, but makes performance difficult to understand

• Branching
• “Taken” branches disrupt fetch  
• Branch mis-predictions flush pipeline, throws away work

• Cost hard to quantify, but often dozens of cycles
• Try to avoid unpredictable branches

• Loop accelerators (if loop body is <N insn, goes faster)
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gcc -m32 -O3
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   ret
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   movl   8(%ebp), %ecx
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   movl   %ecx, %eax
   movl   %edx, %ebx
   subl   %edx, %eax
   subl   %ecx, %ebx
   cmpl   %edx, %ecx
   cmovle %ebx, %eax
   popl   %ebx
   leave
   ret

gcc -m32 -march=core2 -O3

int distance(int a, int b) 
{ 
  return (a > b) ? a-b : b-a; 
}
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Code Example I
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distance:
   pushl %ebp
   movl  %esp, %ebp
   movl  8(%ebp), %edx
   movl  12(%ebp), %eax
   cmpl  %eax, %edx
   jg    .L6
   subl  %edx, %eax
   popl  %ebp
   ret
.L6:
   subl  %eax, %edx
   movl  %edx, %eax
   popl  %ebp
   ret

gcc -m32 -O3
distance:
   pushl  %ebp
   movl   %esp, %ebp
   pushl  %ebx
   movl   8(%ebp), %ecx
   movl   12(%ebp), %edx
   movl   %ecx, %eax
   movl   %edx, %ebx
   subl   %edx, %eax
   subl   %ecx, %ebx
   cmpl   %edx, %ecx
   cmovle %ebx, %eax
   popl   %ebx
   leave
   ret

gcc -m32 -march=core2 -O3
distance:
   movl  %edi, %eax
   movl  %esi, %edx
   subl  %esi, %eax
   subl  %edi, %edx
   cmpl  %esi, %edi
   cmovle %edx, %eax
   ret

gcc -m64 -O3

int distance(int a, int b) 
{ 
  return (a > b) ? a-b : b-a; 
}

• Note: only works (on x86) for non-memory operations
• Why?  Must ensure the memory operation won’t seg fault
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int func(int a, int b, int* array) 
{ 
  return (a > 0) ? b : array[b];
}
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func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array) 
{ 
  return (a > 0) ? b : array[b];
}

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies 

• Memory access is indicated by “( ... )”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit) 
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func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array) 
{ 
  return (a > 0) ? b : array[b];
}

int func2(int a, int b, int* array) 
{ 
  int temp = array[b];
  return (a > 0) ? b : temp;
}

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies 

• Memory access is indicated by “( ... )”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit) 
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func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array) 
{ 
  return (a > 0) ? b : array[b];
}

int func2(int a, int b, int* array) 
{ 
  int temp = array[b];
  return (a > 0) ? b : temp;
}

func2:
 movslq %esi,%rax
 testl %edi, %edi
 cmovle (%rdx,%rax,4), %esi
 movl %esi, %eax
 ret

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies 

• Memory access is indicated by “( ... )”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit) 
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void loop(int64 n, int64* array1, int64* array2, int64* ptr)
{ 
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        array1[i] += array2[j];
      }
    }
  }
}
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void loop(int64 n, int64* array1, int64* array2, int64* ptr)
{ 
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        array1[i] += array2[j];
      }
    }
  }
}

• How might you rewrite the code to help?
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void loop(int64 n, int64* array1, 
          int64* array2, int64* ptr)
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      }
    }
  }
}
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void loop(int64 n, int64* array1, 
          int64* array2, int64* ptr)
{ 
  for (int64 i = 0; i < n; i++) {
    for (int64 j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        array1[i] += array2[j];
      }
    }
  }
}

void loop2(int64 n, int64* array1, 
           int64* array2, int64* ptr)
{ 
  for (int64 i = 0; i < n; i++) {
    int64 accumulator = 0;
    for (int64 j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        accumulator += array2[j];
      }
    }
    array1[i] = accumulator;
  }
}

.L5:  movq  (%rdx,%rax,8), %r8
      cmpq  %r8, (%rcx)
      jle   .L4
      addq  %r8, (%rsi,%r9,8)
.L4:  addq  $1, %rax
      cmpq  %rax, %rdi
      jg    .L5
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void loop(int64 n, int64* array1, 
          int64* array2, int64* ptr)
{ 
  for (int64 i = 0; i < n; i++) {
    for (int64 j = 0; j < n; j++) {
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{ 
  for (int64 i = 0; i < n; i++) {
    int64 accumulator = 0;
    for (int64 j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        accumulator += array2[j];
      }
    }
    array1[i] = accumulator;
  }
}

.L13: movq  (%rdx,%rax,8), %r8
      cmpq  %r10, %r8
      jge   .L12
      addq  %r8, %r9
.L12: addq  $1, %rax
      cmpq  %rax, %rdi
      jg    .L13

Inner loop of loop2()

.L5:  movq  (%rdx,%rax,8), %r8
      cmpq  %r8, (%rcx)
      jle   .L4
      addq  %r8, (%rsi,%r9,8)
.L4:  addq  $1, %rax
      cmpq  %rax, %rdi
      jg    .L5
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void loop(int64 n, int64* array1, 
          int64* array2, int64* ptr)
{ 
  for (int64 i = 0; i < n; i++) {
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      }
    }
  }
}

void loop2(int64 n, int64* array1, 
           int64* array2, int64* ptr)
{ 
  for (int64 i = 0; i < n; i++) {
    int64 accumulator = 0;
    for (int64 j = 0; j < n; j++) {
      if (*ptr > array2[j]) {
        accumulator += array2[j];
      }
    }
    array1[i] = accumulator;
  }
}

.L13: movq  (%rdx,%rax,8), %r8
      cmpq  %r10, %r8
      jge   .L12
      addq  %r8, %r9
.L12: addq  $1, %rax
      cmpq  %rax, %rdi
      jg    .L13

Inner loop of loop2()

.L14: movq  (%r11,%r8,8), %rax
      leaq  (%r9,%rax), %rdx
      cmpq  %r10, %rax
      cmovl %rdx, %r9
      addq  $1, %r8
      cmpq  %r8, %rdi
      jg    .L14

Inner loop of loop2() + CMOV

not a load!

.L5:  movq  (%rdx,%rax,8), %r8
      cmpq  %r8, (%rcx)
      jle   .L4
      addq  %r8, (%rsi,%r9,8)
.L4:  addq  $1, %rax
      cmpq  %rax, %rdi
      jg    .L5

Inner loop of loop()

load, add, store
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Aside: Profile-Based Compilation

• To help the compiler, you can give it “profile” feedback
• gcc -fprofile-generate ...
• <run program>
• gcc -fprofile-use ...

• Helps compiler:
• Know which way branches commonly go
• Frequency of loops (loop unrolling, loop peeling, etc.)

• Good just-in-time (JIT) compilers do this automatically

17



Memory Hierarchy Impacts

18



Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory  (64 byte blocks)

18



Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory  (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

18



Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory  (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

• Translation look-aside buffers (TLBs)
• Map pages (4KB), miss can be expensive (at least dozens of cycles)

18



Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory  (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

• Translation look-aside buffers (TLBs)
• Map pages (4KB), miss can be expensive (at least dozens of cycles)

• Hardware prefetching
• Good, but makes it difficult to reason about

18
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Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

• Memory allocation location issues
• Example: reduce TLB misses by packing objects onto same page

• Software prefetching?
• __builtin_prefetch(const void *addr)

• Random versus sequential access patterns
• Pointer chasing: hard to prefetch, chain of dependencies
• Array walking: easy to prefetch, few dependencies

• Example: is a binary tree or an N-array tree more efficient?
• Binary tree nodes are small (low spatial locality)
• Binary trees do lots of pointer indirections
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More Information
• “Intel 64 and IA-32 Architectures Optimization Reference Manual”

• http://www.intel.com/Assets/PDF/manual/248966.pdf

• “Software Optimization Guide for AMD Family 10h Processors”
• http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/40546.pdf

• “man gcc” for compiler flags 

• “What Every Programmer Should Know About Memory”
• Ulrich Drepper, http://people.redhat.com/drepper/cpumemory.pdf

• “Instruction latencies and throughput for x86 processors” 
• Torbjorn Granlund, http://gmplib.org/~tege/x86-timing.pdf

• “x86-64 Machine-Level Programming”
• Bryant & O’Hallaron, 
• http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout.pdf
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Low-Level Tuning of Parallel Code
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Multicore Organization

22

• Multiple threads per “core”
• Share functional units, data cache, instruction cache

• Multiple core per chip (or “socket”)
• Private first-level caches (8KB to 64KB)
• Maybe a second-level cache (256KB or 512KB)
• Last-level on-chip cache (4MB to 8MB)
• Memory controllers for directly connect memory chips (DRAM)

• Multiple sockets per system
• Dual-socket servers standard for years
• Quad-socket becoming common (from AMD & Intel)
• Large systems with hundreds of sockets have been built
• Today, usually no caching shared among sockets
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Multi-Socket Memory System

• Chips connected point-to-point by high-speed links

• Each chip connected to 1/Nth the off-chip memory
• Accessing a “local” page is lower latency than a “remote” page

• Today, maybe 2x difference at most
• Old term: Non-Uniform Memory Architecture (NUMA)

• Was more important when latency difference was 10x or 100x

• Page mapping controlled by OS
• To optimize for lowest latency: 

• All local pages
• To optimize for highest bandwidth:

• Distribute pages to use all memory controllers
• What happens in practice?  oblivious allocation probably does okay
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Dual-Socket Oct-Core “Niagara T2”
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Cache Coherence

• Goal: whenever reading a location in memory...
• ...receive the value of the last write to that location

• Invariant:  Single writer  --or--  one or more readers

• Implementation
• Each cache tracks the “state” of each cache block

• Modified: read/write state       Shared: read-only
• Invalid: no reads or writes

• Must transition to “modified” to be able to write block
• Must “invalidate” all Shared copies before writing block

• Performance implication: sharing is slow
• Slower off-chip sharing than on-chip sharing
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Data Sharing Penalties
• Read-only sharing

• Fine!

• True (read/write) sharing
• Write a block invalidates all readers... so reader miss on next read
• Next writer may stall waiting for invalidations to complete
• Take away: avoid read/write sharing of data 

• False sharing
• If two variables fall in the same cache block, block may ping-pong
• Example: Each core increments “own” counter in an array

• Repeatedly fetch and invalidate block -> extremely slow
• Possible solutions: 

• Manually pad data to ensure they are in different cache blocks
• malloc() could align each object to 64B boundaries
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Multicore Memory System Implications

• Positive
• Multithreading hides lots of miss latency!

• Negative
• Higher miss rates

• More threads all trying to use limited shared cache capacity
• Impact depends on data locality among threads

• Sharing misses
• High miss latencies

• Sharing misses are often slower
• Perhaps missing to other socket’s memory

• More memory bandwidth bottlenecks
• Many parallel misses trying to use limited memory bandwidth
• Adding memory bandwidth is expensive, so big concern
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Next Time
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• Review of processes and threads.

• Review of synchronization, locks and barriers
• Shared memory/multithreaded coding
• Synchronization primitives


