
CMPT 880/479
Multicore Programming

and Architecture

1

CMPT 880/479
Multicore Programming

and Architecture

Unit 1: Performance Tuning

1

CMPT 880/479
Multicore Programming

and Architecture

Unit 1: Performance Tuning

1

Today’s Agenda

2

Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

2

Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

2

Today’s Agenda

• Why all this talk about sequential performance?
• Seldom taught
• Even more rarely practiced in coursework
• Key foundation for efficient parallel code

• Lecture on sequential performance tuning
• Overview, much of it should be review
• Help you tune code
• Help you understand odd performance effects

2

The Process of Performance Tuning

3

Goals of Performance Tuning

4

Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage

Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage

• Or, energy consumption
• Same computation, less energy
• Why? battery life, power & cooling costs, fan noise
• Run fast and sleep --or-- run slowly just to meet deadlines

Goals of Performance Tuning

4

• Reduce resource usage to “go faster”
• Runtime: wall clock time for a single task
• Throughput: items of work per unit time

• Memory usage

• Or, energy consumption
• Same computation, less energy
• Why? battery life, power & cooling costs, fan noise
• Run fast and sleep --or-- run slowly just to meet deadlines

• Either way: software tuning basically the same
• In fact, processors dynamically trade energy and performance

• Dynamic voltage/frequency scaling, Core i7 “turbo mode”

Three Hats of Software Development

5

Three Hats of Software Development

5

• Starting point: always some pile of existing code

Three Hats of Software Development

5

• Starting point: always some pile of existing code

• Refactoring: No change to visible external behavior

Three Hats of Software Development

5

• Starting point: always some pile of existing code

• Refactoring: No change to visible external behavior

• Add new functionality
• Change behavior

Three Hats of Software Development

5

• Starting point: always some pile of existing code

• Refactoring: No change to visible external behavior

• Add new functionality
• Change behavior

• Performance optimization: empirical & experimental
• 1. wait
• 2. benchmark and profile, identify bottleneck
• 3. Modify code, test functionality, measure perf., revert if not beneficial
• Ongoing performance regression testing

Three Hats of Software Development

5

• Starting point: always some pile of existing code

• Refactoring: No change to visible external behavior

• Add new functionality
• Change behavior

• Performance optimization: empirical & experimental
• 1. wait
• 2. benchmark and profile, identify bottleneck
• 3. Modify code, test functionality, measure perf., revert if not beneficial
• Ongoing performance regression testing

• “We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil”
 - Donald Knuth

Identifying Performance Bottlenecks

6

Identifying Performance Bottlenecks

• Where is the code spending its time?
• Need representative input (full sized, long running)
• Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
• Look beyond code profile (collect by object, algorithm change, etc.)

6

Identifying Performance Bottlenecks

• Where is the code spending its time?
• Need representative input (full sized, long running)
• Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
• Look beyond code profile (collect by object, algorithm change, etc.)

• What is the cause of the slow performance?
• Might not always be what you think

6

Identifying Performance Bottlenecks

• Where is the code spending its time?
• Need representative input (full sized, long running)
• Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
• Look beyond code profile (collect by object, algorithm change, etc.)

• What is the cause of the slow performance?
• Might not always be what you think

• Hardware performance counters
• Various profiling tools collect statistics from the hardware
• Examples: stall cycles, cache miss rates, branch mispredictions, etc.
• Can even associate them with specific instructions
• Using sampling, can be done with low overhead (a few percent)

6

Identifying Performance Bottlenecks

• Where is the code spending its time?
• Need representative input (full sized, long running)
• Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
• Look beyond code profile (collect by object, algorithm change, etc.)

• What is the cause of the slow performance?
• Might not always be what you think

• Hardware performance counters
• Various profiling tools collect statistics from the hardware
• Examples: stall cycles, cache miss rates, branch mispredictions, etc.
• Can even associate them with specific instructions
• Using sampling, can be done with low overhead (a few percent)

• Focused experiments (example: large v. small data set)
6

Performance Tuning of Sequential Code

7

Overview: Sequential Code Performance

8

Overview: Sequential Code Performance

8

• Fast parallel code is fast sequential code running in parallel

Overview: Sequential Code Performance

8

• Fast parallel code is fast sequential code running in parallel

• Runtime = # of inst. * cycles per inst. * clock period
• Want to minimize all three

Overview: Sequential Code Performance

8

• Fast parallel code is fast sequential code running in parallel

• Runtime = # of inst. * cycles per inst. * clock period
• Want to minimize all three

• When tuning code, consider:
• “Dynamic” instruction count
• Micro-architectural impacts

• Instruction level parallelism of code, branch mispredictions
• Memory hierarchy

• Cache misses, etc.

Reducing Instruction Count

9

Reducing Instruction Count

• Dynamic instruction count is first-order performance metric
• “Dynamic” means at runtime

9

Reducing Instruction Count

• Dynamic instruction count is first-order performance metric
• “Dynamic” means at runtime

• First order model: runtime is ~ to instruction count
• Assumes all instruction take a single cycle
• Con: ignores all micro-architectural and memory effects
• Pro: architecture independent, easier to reason about,

captures most important metric

9

Reducing Instruction Count

• Dynamic instruction count is first-order performance metric
• “Dynamic” means at runtime

• First order model: runtime is ~ to instruction count
• Assumes all instruction take a single cycle
• Con: ignores all micro-architectural and memory effects
• Pro: architecture independent, easier to reason about,

captures most important metric

• Reducing instruction count
• Better algorithm or approach to problem
• Avoid software bloat in terms of too much layering, too general
• Write code the compiler can easily optimize (and turn on -O3)

• Compilers are really smart, but lack higher level context

9

Cost of Function Calls

10

Cost of Function Calls

• Function calls add overhead
• Obvious overhead: “Call” and “Return” instruction overheads

10

Cost of Function Calls

• Function calls add overhead
• Obvious overhead: “Call” and “Return” instruction overheads

• Less obvious
• Putting parameters/arguments into right registers

• Or on in-memory stack
• Calling into a dynamically linked library can be a bit more expensive
• Virtual functions (C++ and Java): adds a table lookup on call path

10

Cost of Function Calls

• Function calls add overhead
• Obvious overhead: “Call” and “Return” instruction overheads

• Less obvious
• Putting parameters/arguments into right registers

• Or on in-memory stack
• Calling into a dynamically linked library can be a bit more expensive
• Virtual functions (C++ and Java): adds a table lookup on call path

• Worse yet, breaks compiler optimization boundaries
• Compilers today typically don’t look at code in other C files
• After a call, compiler doesn’t know what has changed or not
• Compilers can inline functions, especially in C header files

10

Cost of Function Calls

• Function calls add overhead
• Obvious overhead: “Call” and “Return” instruction overheads

• Less obvious
• Putting parameters/arguments into right registers

• Or on in-memory stack
• Calling into a dynamically linked library can be a bit more expensive
• Virtual functions (C++ and Java): adds a table lookup on call path

• Worse yet, breaks compiler optimization boundaries
• Compilers today typically don’t look at code in other C files
• After a call, compiler doesn’t know what has changed or not
• Compilers can inline functions, especially in C header files

• Aside: “extern inline” function in .h file is a fast as a macro
10

Operation & Instruction Latencies

11

Operation & Instruction Latencies

• Instruction latencies
• One cycle: integer adds, subtract, compare, shift, etc.
• Few cycles: loads/stores (best case), int multiply, floating point
• Dozens of cycles: integer divide (89 cycles for 64-bit on Core i7)

11

Operation & Instruction Latencies

• Instruction latencies
• One cycle: integer adds, subtract, compare, shift, etc.
• Few cycles: loads/stores (best case), int multiply, floating point
• Dozens of cycles: integer divide (89 cycles for 64-bit on Core i7)

• Non-instructions (on most machines)
• Sqrt, exponentiation, sine/cosine, modulo (%), etc.
• Trend toward more hardware support for these operations

11

Operation & Instruction Latencies

• Instruction latencies
• One cycle: integer adds, subtract, compare, shift, etc.
• Few cycles: loads/stores (best case), int multiply, floating point
• Dozens of cycles: integer divide (89 cycles for 64-bit on Core i7)

• Non-instructions (on most machines)
• Sqrt, exponentiation, sine/cosine, modulo (%), etc.
• Trend toward more hardware support for these operations

• Compilers can by help
• Selects cheapest instructions (strength reduction)

• Replace multiply by constant power-of-two with shift:
“x * 2” with “x << 1”

• Tries to eliminate redundant computation

11

Tuning for Micro-Architectural Impacts

12

Tuning for Micro-Architectural Impacts

• Superscalar execution: three or four insn per cycle max
• Restrictions on instruction mix (different function unit types)
• Loads/stores are most limited (just one or maybe two per cycle)
• Compiler reorganizes and schedules code with this in mind

12

Tuning for Micro-Architectural Impacts

• Superscalar execution: three or four insn per cycle max
• Restrictions on instruction mix (different function unit types)
• Loads/stores are most limited (just one or maybe two per cycle)
• Compiler reorganizes and schedules code with this in mind

• Out-of-order (dynamic scheduling)
• Code runs faster, but makes performance difficult to understand

12

Tuning for Micro-Architectural Impacts

• Superscalar execution: three or four insn per cycle max
• Restrictions on instruction mix (different function unit types)
• Loads/stores are most limited (just one or maybe two per cycle)
• Compiler reorganizes and schedules code with this in mind

• Out-of-order (dynamic scheduling)
• Code runs faster, but makes performance difficult to understand

• Branching
• “Taken” branches disrupt fetch
• Branch mis-predictions flush pipeline, throws away work

• Cost hard to quantify, but often dozens of cycles
• Try to avoid unpredictable branches

12

Tuning for Micro-Architectural Impacts

• Superscalar execution: three or four insn per cycle max
• Restrictions on instruction mix (different function unit types)
• Loads/stores are most limited (just one or maybe two per cycle)
• Compiler reorganizes and schedules code with this in mind

• Out-of-order (dynamic scheduling)
• Code runs faster, but makes performance difficult to understand

• Branching
• “Taken” branches disrupt fetch
• Branch mis-predictions flush pipeline, throws away work

• Cost hard to quantify, but often dozens of cycles
• Try to avoid unpredictable branches

• Loop accelerators (if loop body is <N insn, goes faster)
12

Code Example I

13

int distance(int a, int b)
{
 return (a > b) ? a-b : b-a;
}

Code Example I

13

distance:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 cmpl %eax, %edx
 jg .L6
 subl %edx, %eax
 popl %ebp
 ret
.L6:
 subl %eax, %edx
 movl %edx, %eax
 popl %ebp
 ret

gcc -m32 -O3

int distance(int a, int b)
{
 return (a > b) ? a-b : b-a;
}

Code Example I

13

distance:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 cmpl %eax, %edx
 jg .L6
 subl %edx, %eax
 popl %ebp
 ret
.L6:
 subl %eax, %edx
 movl %edx, %eax
 popl %ebp
 ret

gcc -m32 -O3
distance:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 movl 8(%ebp), %ecx
 movl 12(%ebp), %edx
 movl %ecx, %eax
 movl %edx, %ebx
 subl %edx, %eax
 subl %ecx, %ebx
 cmpl %edx, %ecx
 cmovle %ebx, %eax
 popl %ebx
 leave
 ret

gcc -m32 -march=core2 -O3

int distance(int a, int b)
{
 return (a > b) ? a-b : b-a;
}

Code Example I

13

distance:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 cmpl %eax, %edx
 jg .L6
 subl %edx, %eax
 popl %ebp
 ret
.L6:
 subl %eax, %edx
 movl %edx, %eax
 popl %ebp
 ret

gcc -m32 -O3
distance:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 movl 8(%ebp), %ecx
 movl 12(%ebp), %edx
 movl %ecx, %eax
 movl %edx, %ebx
 subl %edx, %eax
 subl %ecx, %ebx
 cmpl %edx, %ecx
 cmovle %ebx, %eax
 popl %ebx
 leave
 ret

gcc -m32 -march=core2 -O3
distance:
 movl %edi, %eax
 movl %esi, %edx
 subl %esi, %eax
 subl %edi, %edx
 cmpl %esi, %edi
 cmovle %edx, %eax
 ret

gcc -m64 -O3

int distance(int a, int b)
{
 return (a > b) ? a-b : b-a;
}

Code Example I

13

distance:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 cmpl %eax, %edx
 jg .L6
 subl %edx, %eax
 popl %ebp
 ret
.L6:
 subl %eax, %edx
 movl %edx, %eax
 popl %ebp
 ret

gcc -m32 -O3
distance:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 movl 8(%ebp), %ecx
 movl 12(%ebp), %edx
 movl %ecx, %eax
 movl %edx, %ebx
 subl %edx, %eax
 subl %ecx, %ebx
 cmpl %edx, %ecx
 cmovle %ebx, %eax
 popl %ebx
 leave
 ret

gcc -m32 -march=core2 -O3
distance:
 movl %edi, %eax
 movl %esi, %edx
 subl %esi, %eax
 subl %edi, %edx
 cmpl %esi, %edi
 cmovle %edx, %eax
 ret

gcc -m64 -O3

int distance(int a, int b)
{
 return (a > b) ? a-b : b-a;
}

• Note: only works (on x86) for non-memory operations
• Why? Must ensure the memory operation won’t seg fault

Code Example II

14

int func(int a, int b, int* array)
{
 return (a > 0) ? b : array[b];
}

Code Example II

14

func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array)
{
 return (a > 0) ? b : array[b];
}

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies

• Memory access is indicated by “(...)”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)

Code Example II

14

func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array)
{
 return (a > 0) ? b : array[b];
}

int func2(int a, int b, int* array)
{
 int temp = array[b];
 return (a > 0) ? b : temp;
}

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies

• Memory access is indicated by “(...)”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)

Code Example II

14

func:
 testl %edi, %edi
 jg .L2
 movslq %esi,%rax
 movl (%rdx,%rax,4), %esi
.L2:
 movl %esi, %eax
 ret

int func(int a, int b, int* array)
{
 return (a > 0) ? b : array[b];
}

int func2(int a, int b, int* array)
{
 int temp = array[b];
 return (a > 0) ? b : temp;
}

func2:
 movslq %esi,%rax
 testl %edi, %edi
 cmovle (%rdx,%rax,4), %esi
 movl %esi, %eax
 ret

• Comments on x86 assembly
• Right-most register is usually the output register
• “mov” instructions are loads, stores, or register copies

• Memory access is indicated by “(...)”
• “%exx” are 32-bit registers, “%rxx” are 64-bit registers
• movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)

What Can the Compiler Do or Not Do?

15

void loop(int64 n, int64* array1, int64* array2, int64* ptr)
{
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

What Can the Compiler Do or Not Do?

15

void loop(int64 n, int64* array1, int64* array2, int64* ptr)
{
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

• How might you rewrite the code to help?

Code Example III

16

void loop(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

Code Example III

16

void loop(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

.L5: movq (%rdx,%rax,8), %r8
 cmpq %r8, (%rcx)
 jle .L4
 addq %r8, (%rsi,%r9,8)
.L4: addq $1, %rax
 cmpq %rax, %rdi
 jg .L5

Inner loop of loop()

load, add, store

Code Example III

16

void loop(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

void loop2(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 int64 accumulator = 0;
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 accumulator += array2[j];
 }
 }
 array1[i] = accumulator;
 }
}

.L5: movq (%rdx,%rax,8), %r8
 cmpq %r8, (%rcx)
 jle .L4
 addq %r8, (%rsi,%r9,8)
.L4: addq $1, %rax
 cmpq %rax, %rdi
 jg .L5

Inner loop of loop()

load, add, store

Code Example III

16

void loop(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

void loop2(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 int64 accumulator = 0;
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 accumulator += array2[j];
 }
 }
 array1[i] = accumulator;
 }
}

.L13: movq (%rdx,%rax,8), %r8
 cmpq %r10, %r8
 jge .L12
 addq %r8, %r9
.L12: addq $1, %rax
 cmpq %rax, %rdi
 jg .L13

Inner loop of loop2()

.L5: movq (%rdx,%rax,8), %r8
 cmpq %r8, (%rcx)
 jle .L4
 addq %r8, (%rsi,%r9,8)
.L4: addq $1, %rax
 cmpq %rax, %rdi
 jg .L5

Inner loop of loop()

load, add, store

Code Example III

16

void loop(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 array1[i] += array2[j];
 }
 }
 }
}

void loop2(int64 n, int64* array1,
 int64* array2, int64* ptr)
{
 for (int64 i = 0; i < n; i++) {
 int64 accumulator = 0;
 for (int64 j = 0; j < n; j++) {
 if (*ptr > array2[j]) {
 accumulator += array2[j];
 }
 }
 array1[i] = accumulator;
 }
}

.L13: movq (%rdx,%rax,8), %r8
 cmpq %r10, %r8
 jge .L12
 addq %r8, %r9
.L12: addq $1, %rax
 cmpq %rax, %rdi
 jg .L13

Inner loop of loop2()

.L14: movq (%r11,%r8,8), %rax
 leaq (%r9,%rax), %rdx
 cmpq %r10, %rax
 cmovl %rdx, %r9
 addq $1, %r8
 cmpq %r8, %rdi
 jg .L14

Inner loop of loop2() + CMOV

not a load!

.L5: movq (%rdx,%rax,8), %r8
 cmpq %r8, (%rcx)
 jle .L4
 addq %r8, (%rsi,%r9,8)
.L4: addq $1, %rax
 cmpq %rax, %rdi
 jg .L5

Inner loop of loop()

load, add, store

Aside: Profile-Based Compilation

17

Aside: Profile-Based Compilation

• To help the compiler, you can give it “profile” feedback
• gcc -fprofile-generate ...
• <run program>
• gcc -fprofile-use ...

17

Aside: Profile-Based Compilation

• To help the compiler, you can give it “profile” feedback
• gcc -fprofile-generate ...
• <run program>
• gcc -fprofile-use ...

• Helps compiler:
• Know which way branches commonly go
• Frequency of loops (loop unrolling, loop peeling, etc.)

17

Aside: Profile-Based Compilation

• To help the compiler, you can give it “profile” feedback
• gcc -fprofile-generate ...
• <run program>
• gcc -fprofile-use ...

• Helps compiler:
• Know which way branches commonly go
• Frequency of loops (loop unrolling, loop peeling, etc.)

• Good just-in-time (JIT) compilers do this automatically

17

Memory Hierarchy Impacts

18

Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory (64 byte blocks)

18

Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

18

Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

• Translation look-aside buffers (TLBs)
• Map pages (4KB), miss can be expensive (at least dozens of cycles)

18

Memory Hierarchy Impacts

• Caches exploit locality
• Temporal: same memory accessed again soon
• Spatial: in same region of memory (64 byte blocks)

• Hierarchy of caches
• First-level instruction and data caches (~32KB): a few cycles
• Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
• Main memory: ~150 cycles, highly variable
• Limited bandwidth as well (only so many bits to/from memory)

• Translation look-aside buffers (TLBs)
• Map pages (4KB), miss can be expensive (at least dozens of cycles)

• Hardware prefetching
• Good, but makes it difficult to reason about

18

Tuning for the Memory Hierarchy

19

Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

19

Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

• Memory allocation location issues
• Example: reduce TLB misses by packing objects onto same page

19

Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

• Memory allocation location issues
• Example: reduce TLB misses by packing objects onto same page

• Software prefetching?
• __builtin_prefetch(const void *addr)

19

Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

• Memory allocation location issues
• Example: reduce TLB misses by packing objects onto same page

• Software prefetching?
• __builtin_prefetch(const void *addr)

• Random versus sequential access patterns
• Pointer chasing: hard to prefetch, chain of dependencies
• Array walking: easy to prefetch, few dependencies

19

Tuning for the Memory Hierarchy
• Increase locality (temporal or spatial)

• Change access order to re-use data
• Pack data for spatial locality
• Reduce code footprint (instruction cache behavior)

• Memory allocation location issues
• Example: reduce TLB misses by packing objects onto same page

• Software prefetching?
• __builtin_prefetch(const void *addr)

• Random versus sequential access patterns
• Pointer chasing: hard to prefetch, chain of dependencies
• Array walking: easy to prefetch, few dependencies

• Example: is a binary tree or an N-array tree more efficient?
• Binary tree nodes are small (low spatial locality)
• Binary trees do lots of pointer indirections

19

More Information
• “Intel 64 and IA-32 Architectures Optimization Reference Manual”

• http://www.intel.com/Assets/PDF/manual/248966.pdf

• “Software Optimization Guide for AMD Family 10h Processors”
• http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/40546.pdf

• “man gcc” for compiler flags

• “What Every Programmer Should Know About Memory”
• Ulrich Drepper, http://people.redhat.com/drepper/cpumemory.pdf

• “Instruction latencies and throughput for x86 processors”
• Torbjorn Granlund, http://gmplib.org/~tege/x86-timing.pdf

• “x86-64 Machine-Level Programming”
• Bryant & O’Hallaron,
• http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout.pdf

20

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf
http://gmplib.org/~tege/x86-timing.pdf
http://gmplib.org/~tege/x86-timing.pdf
http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout.pdf

Low-Level Tuning of Parallel Code

21

Multicore Organization

22

Multicore Organization

22

• Multiple threads per “core”
• Share functional units, data cache, instruction cache

Multicore Organization

22

• Multiple threads per “core”
• Share functional units, data cache, instruction cache

• Multiple core per chip (or “socket”)
• Private first-level caches (8KB to 64KB)
• Maybe a second-level cache (256KB or 512KB)
• Last-level on-chip cache (4MB to 8MB)
• Memory controllers for directly connect memory chips (DRAM)

Multicore Organization

22

• Multiple threads per “core”
• Share functional units, data cache, instruction cache

• Multiple core per chip (or “socket”)
• Private first-level caches (8KB to 64KB)
• Maybe a second-level cache (256KB or 512KB)
• Last-level on-chip cache (4MB to 8MB)
• Memory controllers for directly connect memory chips (DRAM)

• Multiple sockets per system
• Dual-socket servers standard for years
• Quad-socket becoming common (from AMD & Intel)
• Large systems with hundreds of sockets have been built
• Today, usually no caching shared among sockets

Multi-Socket Memory System

23

Multi-Socket Memory System

• Chips connected point-to-point by high-speed links

23

Multi-Socket Memory System

• Chips connected point-to-point by high-speed links

• Each chip connected to 1/Nth the off-chip memory
• Accessing a “local” page is lower latency than a “remote” page

• Today, maybe 2x difference at most
• Old term: Non-Uniform Memory Architecture (NUMA)

• Was more important when latency difference was 10x or 100x

23

Multi-Socket Memory System

• Chips connected point-to-point by high-speed links

• Each chip connected to 1/Nth the off-chip memory
• Accessing a “local” page is lower latency than a “remote” page

• Today, maybe 2x difference at most
• Old term: Non-Uniform Memory Architecture (NUMA)

• Was more important when latency difference was 10x or 100x

• Page mapping controlled by OS
• To optimize for lowest latency:

• All local pages
• To optimize for highest bandwidth:

• Distribute pages to use all memory controllers
• What happens in practice? oblivious allocation probably does okay

23

Dual-Socket Dual-Core “Core 2”

24
Memory

acggrid01 - acggrid32

Chip

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Chip

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Dual-Socket Quad-Core “Core 2”

25
Memory

acggrid34

Chip

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Chip

Data
Cache
(32KB)

Core
3 issue
2.6Ghz

Second-Level
Cache
(4MB)

Core
3 issue
2.6Ghz

Data
Cache
(32KB)

Single-Socket Quad-Core “Core i7”

26

Memory
acggrid35.seas...

Third-Level Cache
(8MB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Dual-Socket Quad-Core “Core i7”

27

Memory

Third-Level Cache
(8MB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Memory

Third-Level Cache
(8MB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

Data
Cache
(32KB)

Core
4 issue
3.2 Ghz

Data
Cache

(256KB)

(none)

Dual-Socket Oct-Core “Niagara T2”

28

Memory

Second-Level Cache (4MB)

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Second-Level Cache (4MB)

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Cache
(8KB)

Core
1.x Ghz

Memory

Cache Coherence

29

Cache Coherence

• Goal: whenever reading a location in memory...
• ...receive the value of the last write to that location

29

Cache Coherence

• Goal: whenever reading a location in memory...
• ...receive the value of the last write to that location

• Invariant: Single writer --or-- one or more readers

29

Cache Coherence

• Goal: whenever reading a location in memory...
• ...receive the value of the last write to that location

• Invariant: Single writer --or-- one or more readers

• Implementation
• Each cache tracks the “state” of each cache block

• Modified: read/write state Shared: read-only
• Invalid: no reads or writes

• Must transition to “modified” to be able to write block
• Must “invalidate” all Shared copies before writing block

29

Cache Coherence

• Goal: whenever reading a location in memory...
• ...receive the value of the last write to that location

• Invariant: Single writer --or-- one or more readers

• Implementation
• Each cache tracks the “state” of each cache block

• Modified: read/write state Shared: read-only
• Invalid: no reads or writes

• Must transition to “modified” to be able to write block
• Must “invalidate” all Shared copies before writing block

• Performance implication: sharing is slow
• Slower off-chip sharing than on-chip sharing

29

Data Sharing Penalties

30

Data Sharing Penalties
• Read-only sharing

• Fine!

30

Data Sharing Penalties
• Read-only sharing

• Fine!

• True (read/write) sharing
• Write a block invalidates all readers... so reader miss on next read
• Next writer may stall waiting for invalidations to complete
• Take away: avoid read/write sharing of data

30

Data Sharing Penalties
• Read-only sharing

• Fine!

• True (read/write) sharing
• Write a block invalidates all readers... so reader miss on next read
• Next writer may stall waiting for invalidations to complete
• Take away: avoid read/write sharing of data

• False sharing
• If two variables fall in the same cache block, block may ping-pong
• Example: Each core increments “own” counter in an array

• Repeatedly fetch and invalidate block -> extremely slow
• Possible solutions:

• Manually pad data to ensure they are in different cache blocks
• malloc() could align each object to 64B boundaries

30

Multicore Memory System Implications

31

Multicore Memory System Implications

• Positive
• Multithreading hides lots of miss latency!

31

Multicore Memory System Implications

• Positive
• Multithreading hides lots of miss latency!

• Negative
• Higher miss rates

• More threads all trying to use limited shared cache capacity
• Impact depends on data locality among threads

• Sharing misses
• High miss latencies

• Sharing misses are often slower
• Perhaps missing to other socket’s memory

• More memory bandwidth bottlenecks
• Many parallel misses trying to use limited memory bandwidth
• Adding memory bandwidth is expensive, so big concern

31

Next Time

32

Next Time

32

• Review of processes and threads.

Next Time

32

• Review of processes and threads.

• Review of synchronization, locks and barriers
• Shared memory/multithreaded coding
• Synchronization primitives

