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Today’s Agenda

o Why all this talk about sequential performance?
e Seldom taught
e Even more rarely practiced in coursework
e Key foundation for efficient parallel code

e |ecture on sequential performance tuning
e QOverview, much of it should be review
e Help you tune code
e Help you understand odd performance effects
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Goals of Performance Tuning

e Reduce resource usage to “go faster”

e Runtime: wall clock time for a single task
e Throughput: items of work per unit time

e Memory usage

e Or, energy consumption
e Same computation, less energy
 Why? battery life, power & cooling costs, fan noise
e Run fast and sleep =--or-- run slowly just to meet deadlines

e Either way: software tuning basically the same
e In fact, processors dynamically trade energy and performance
e Dynamic voltage/frequency scaling, Core i7 “turbo mode”
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Three Hats of Software Development

e Starting point: always some pile of existing code

e Refactoring: No change to visible external behavior

e Add new functionality
e Change behavior

o Performance optimization: empirical & experimental
e 1. wait
e 2. benchmark and profile, identify bottleneck
e 3. Modify code, test functionality, measure perf,, revert if not beneficial
e Ongoing performance regression testing

o "“We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil”
- Donald Knuth
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Identifying Performance Bottlenecks

e Where is the code spending its time?
e Need representative input (full sized, long running)
e Various profiling tools (gprof, Valgrind’s cachegrind, Intel’s VTune)
e Look beyond code profile (collect by object, algorithm change, etc.)

e What is the cause of the slow performance?
e Might not always be what you think

¢ Hardware performance counters

Various profiling tools collect statistics from the hardware
Examples: stall cycles, cache miss rates, branch mispredictions, etc.
Can even associate them with specific instructions

Using sampling, can be done with low overhead (a few percent)

e Focused experiments (example: large v. small data set)
6
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Overview: Sequential Code Performance

o Fast parallel code is fast sequential code running in parallel

e Runtime = # of inst. * cycles per inst. * clock period
e Want to minimize all three

e When tuning code, consider:
e "Dynamic” instruction count
e Micro-architectural impacts
e Instruction level parallelism of code, branch mispredictions
e Memory hierarchy
e Cache misses, etc.
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Reducing Instruction Count

e Dynamic instruction count is first-order performance metric
e “"Dynamic” means at runtime

e First order model: runtime is ~ to instruction count
e Assumes all instruction take a single cycle
e Con: ignores all micro-architectural and memory effects

e Pro: architecture independent, easier to reason about,
captures most important metric

e Reducing instruction count
e Better algorithm or approach to problem
e Avoid software bloat in terms of too much layering, too general
e Write code the compiler can easily optimize (and turn on -O3)
e Compilers are really smart, but lack higher level context
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Cost of Function Calls

e Function calls add overhead
e (Obvious overhead: “"Call” and “Return” instruction overheads

e Less obvious
e Putting parameters/arguments into right registers
e Or on in-memory stack
e (Calling into a dynamically linked library can be a bit more expensive
e Virtual functions (C++ and Java): adds a table lookup on call path

e Worse yet, breaks compiler optimization boundaries
e Compilers today typically don‘t look at code in other C files
e After a call, compiler doesn’t know what has changed or not
e Compilers can inline functions, especially in C header files

e Aside: “extern inline” function in .h file is a fast as a macro
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Operation & Instruction Latencies

e Instruction latencies

e One cycle: integer adds, subtract, compare, shift, etc.
e Few cycles: loads/stores (best case), int multiply, floating point
e Dozens of cycles: integer divide (89 cycles for 64-bit on Core i7)

e Non-instructions (on most machines)
e Sqrt, exponentiation, sine/cosine, modulo (%), etc.
e Trend toward more hardware support for these operations

e Compilers can by help
e Selects cheapest instructions (strength reduction)

e Replace multiply by constant power-of-two with shift:
X * 2" with "x << 1”
e Tries to eliminate redundant computation
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Tuning for Micro-Architectural Impacts

e Superscalar execution: three or four insn per cycle max

e Restrictions on instruction mix (different function unit types)
e Loads/stores are most limited (just one or maybe two per cycle)
e Compiler reorganizes and schedules code with this in mind

e QOut-of-order (dynamic scheduling)
e Code runs faster, but makes performance difficult to understand

e Branching
e “Taken” branches disrupt fetch
e Branch mis-predictions flush pipeline, throws away work
e Cost hard to quantify, but often dozens of cycles
e Try to avoid unpredictable branches

e Loop accelerators (if loop body is <N insn, goes faster)
12



Code Example I

int distance(int a, int b)

{

return (a > b) ? a-b :

}

b-a;
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Code Example I

int distance(int a, int b)
{
return (a > b) ? a-b : b-a;

}
gcc -m32 -03

distance:
pushl %ebp
movl S3esp, %ebp
movl 8 (%ebp), %edx
movl 12 (%ebp), %eax
cmpl 3%eax, %edx

jg .L6
subl %edx, %eax
popl %ebp
ret
.L6:

subl %eax, %edx
movl %edx, %eax
popl %ebp
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Code Example I

int distance (int a,

{

int b)

return (a > b) ? a-b : b-a;

}

gcc -m32 -03

distance:
pushl
movl
movl
movl
cmpl
Jg
subl
popl
ret

.L6:
subl
movl
popl
ret

sebp

esp, %ebp
8 (%ebp) ,
12 (%ebp) ,
$eax, %edx
.L6

$edx, %eax
sebp

$eax, %edx
$edx, %eax
sebp

gcc -m32 -march=core2 -O3

distance:
pushl
movl

Fedx pushl
%eax movl

movl
movl
movl
subl
subl
cmpl
cmovle
popl
leave
ret

%ebp

%sesp, %ebp
$ebx

8 ($ebp) , %ecx
12 (%ebp) , %edx
%$ecx, %eax

%$edx, %ebx
%$edx, %eax
%$ecx, %ebx
$edx, %ecx
%$ebx, %eax
$ebx
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Code Example I

int distance(int a, int b)
{
return (a > b) ? a-b : b-a;

}
gcc -m32 -03 gcc -m32 -march=core2 -O3 gcc -m64 -0O3

distance: distance: distance:
pushl 3%ebp pushl %ebp movl 3%edi, %eax
movl 3esp, %ebp movl %esp, %ebp movl 3%esi, %edx
movl 8 (%ebp), %edx pushl %ebx subl %esi, %eax
movl 12 (%ebp), %eax movl 8 ($ebp) , %ecx subl %edi, %edx
cmpl %eax, %edx movl 12 (%ebp), %edx cmpl %$esi, %edi
jg .L6 movl %ecx, %eax cmovle %edx, %eax
subl %edx, %eax movl %edx, %ebx ret
popl %ebp subl edx, %eax
ret subl %$ecx, %ebx

.L6: cmpl %edx, %ecx
subl %eax, %edx cmovle %ebx, %eax
movl 3%edx, %eax popl %ebx
popl %ebp leave
ret ret
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Code Example I

int distance(int a, int b)
{
return (a > b) ? a-b : b-a;
}
gcc -m32 -03 gcc -m32 -march=core2 -O3 gcc -m64 -0O3

distance: distance: distance:
pushl 3%ebp pushl %ebp movl 3%edi, %eax
movl 3esp, %ebp movl %esp, %ebp movl 3%esi, %edx
movl 8 (%ebp), %edx pushl %ebx subl %esi, %eax
movl 12 (%ebp), %eax movl 8 ($ebp) , %ecx subl %edi, %edx
cmpl %eax, %edx movl 12 (%ebp), %edx cmpl %$esi, %edi
jg .L6 movl %ecx, %eax cmovle %edx, %eax
subl %edx, %eax movl %edx, %ebx ret
popl %ebp subl edx, %eax
ret subl %$ecx, %ebx

.L6: cmpl %edx, %ecx
subl %eax, %edx cmovle %ebx, %eax
movl 3%edx, %eax popl %ebx
popl %ebp leave
ret ret

e Note: only works (on x86) for non-memory operations
e Why? Must ensure the memory operation won't seg fault
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Code Example II

int func(int a, int b, int* array)

{
return (a > 0) ? b : arrayl[b];

}



Code Example II

int func(int a, int b, int* array)

{
return (a > 0) ? b : arrayl[b];

}

func:

testl $edi, %edi

jg .L2

movslqg %esi,%rax

movl $rdx, %rax,4), %esi
.L2:

movl $esi, %eax

ret

e Comments on x86 assembly
e Right-most register is usually the output register
e "mov” instructions are loads, stores, or register copies
e Memory access is indicated by “( ... )”
e “%exx" are 32-bit registers, "%rxx" are 64-bit registers
e movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)
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Code Example II

int func2(int a, int b, int* arra
int func(int a, int b, int* array) ? u (1 i i y)

{ - — .
return (a > 0) ? b : array[b]; ;:Euzimﬁa >agfag[:]; temp;
} }
func:
testl $edi, %edi
jg .L2
movslqg %esi,%rax
movl $rdx, %rax,4), %esi
.L2:
movl $esi, %eax
ret

e Comments on x86 assembly
e Right-most register is usually the output register
e "mov” instructions are loads, stores, or register copies
e Memory access is indicated by “( ... )”
e “%exx" are 32-bit registers, "%rxx" are 64-bit registers

e movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)
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Code Example II

int func2(int a, int b, int* array)

{

int func(int a, int b, int* array)

{
return (a > 0) ? b : arrayl[b];

} }

int temp = array[b];
return (a > 0) ? b : temp;

func: func2:
testl %edi, %edi ) o = o
. L2 movslg %esi,%rax
J9 e testl %edi, %edi
movslqg %esi,%rax o o o =
. 5 o i cmovle $rdx,%$rax,4), %esi
movl (%rdx, %rax,4), %esi o - .
movl Zesi, %eax
.L2:
. ret
movl $esi, %eax
ret

e Comments on x86 assembly
Right-most register is usually the output register
“mov” instructions are loads, stores, or register copies
e Memory access is indicated by “( ... )”
“Ooexx” are 32-bit registers, “%rxx” are 64-bit registers
movslq: “sign extending” a “long” (32-bit) to a quad (64-bit)
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What Can the Compiler Do or Not Do?

void loop(int64 n, int64* arrayl, int64* array2, int64* ptr)
{
for (int i = 0; i < n; i++) {
for (int j = 0; jJ < n; j++) {
if (*ptr > array2[j]) {
arrayl[i] += array2[]j];
}
}
}
}
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What Can the Compiler Do or Not Do?

void loop(int64 n, int64* arrayl, int64* array2, int64* ptr)
{
for (int i = 0; i < n; i++) {
for (int j = 0; jJ < n; j++) {
if (*ptr > array2[j]) {
arrayl[i] += array2[]j];
}
}
}
}

e How might you rewrite the code to help?
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Code Example III

void loop(int64 n, int64* arrayl,
int64* array2, int64* ptr)
{
for (int64 i = 0; i < n; i++) {
for (int64 j = 0; j < n; j++) {
if (*ptr > array2[j]) {
arrayl[i] += array2[]j];
}
}
}
}

16



Code Example III

void loop(int64 n, int64* arrayl,

int64* array2, int64* ptr) -LS5:

{
for (int64 1 = 0; i < n; i++) {
for (int64 j = 0; j < n; J++) {

if (*ptr > array2[j]) { -L4:

arrayl[i] += array2[j];
}
}
}
}

Inner loop of loop()

movq
cmpq
jle
addq
addq
cmpq
Jg

$rdx, %rax,8), %r8
$r8, (%rcx)

.L4
$r8, (%rsi,%r9,8)
$1, %$rax
$rax, $rdi \

.L5 load, add, store
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Code Example III

void loop(int64 n, int64* arrayl,

int64* array2, int64* ptr) -LS5:

{
for (int64 1 = 0; i < n; i++) {
for (int64 j = 0; j < n; J++) {

if (*ptr > array2[j]) { -L4:

arrayl[i] += array2[j];
}
}
}
}

void loop2(int64 n, int64* arrayl,
int64* array2, int64* ptr)
{
for (int64 i = 0; 1 < n; i++) {
int64 accumulator = 0;
for (int64 j = 0; j < n; j++) {
if (*ptr > array2[j]) {
accumulator += array2[j];
}
}

arrayl[i] = accumulator;

Inner loop of loop()

movq
cmpq
jle
addq
addq
cmpq
Jg

$rdx, %rax,8), %r8
$r8, (%rcx)

.L4

$r8, (%rsi,%r9,8)

$1, %$rax

$rax, $rdi \

.L5 load, add, store
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Code Example III

void loop(int64 n, int64* arrayl,
int64* array2, int64* ptr)
{
for (int64 i = 0; i < n; i++) {
for (int64 j = 0; j < n; j++) {
if (*ptr > array2[j]) {
arrayl[i] += array2[]j];
}
}
}
}

void loop2(int64 n, int64* arrayl,
int64* array2, int64* ptr)
{
for (int64 i = 0; i < n;
int64 accumulator = 0;
for (int64 j = 0; j < n;
if (*ptr > array2[j]) {
accumulator += array2[j];
}
}

arrayl[i] =

i++) |

J++) |

accumulator;

.L5:

.L4:

.L13:

Ll12:

Inner loop of loop()

movq
cmpq
jle
addq
addq
cmpq
Jg

$rdx, %rax,8), %r8

$r8, (%rcx)

.L4

$r8, (%rsi,%r9,8)

$1, %$rax

srax, $rdi \

.L5 load, add, store

Inner loop of loop2()

movqg

cmpq
jge

addqgq
addqgq

cmpq
jg

(%$rdx,%rax,8), %r8
%$rl0, %r8

.L12

%$r8, %r9

$1, %$rax

$rax, %rdi

.L13
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Code Example III

void loop(int64 n, int64* arrayl,

Inner loop of loop()

int64* array2, int64* ptr) -L5: movq %rdx,%rax,8), %r8
{ cmpg %r8, (%rcx)
for (int64 i = 0; i < n; i++) { jle .14
for (int64 j = 0; j < n; j++) { addqg %r8, (%rsi,%r9,8)
if (*ptr > array2[j]) { .L4: addg $1, %rax \
arrayl[i] += array2[j]; cmpqg %rax, %rdi
} jg .L5 load, add, store
I Inner loop of loop2()
} .L13: movqg (%rdx,%rax,8), %r8
} cmpg %rl0, %r8
void loop2(int64 n, int64* arrayl, jge .L12
int64* array2, int64* ptr) addg %r8, %r9
{ .L12: addg $1, %rax
for (int64 i = 0; 1 < n; i++) { cmpg Srax, %rdi
int64 accumulator = 0; jg .L13
f°§f(l(f;ﬁi N arg;yg [;]?'{JH) { Inner loop of loop2() + CMOV
accumulator += array2[j]; .L14: movg (%rll,%r8,8), %rax
} leaq %$r9,%rax), %$rdx
} notaload! cmpqg %rl0, 3%rax
arrayl[i] = accumulator; cmovl %rdx, %r9
} addg $1, %r8
} cmpg %r8, %rdi 16
jg .L14



Aside: Profile-Based Compilation
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e To help the compiler, you can give it “profile” feedback
e gcc -fprofile-generate ...
e <run program>
e gcc -fprofile-use ...

17



Aside: Profile-Based Compilation

e To help the compiler, you can give it “profile” feedback

e gcc -fprofile-generate ...
e <run program>
e gcc -fprofile-use ...

e Helps compiler:
e Know which way branches commonly go
e Frequency of loops (loop unrolling, loop peeling, etc.)

17



Aside: Profile-Based Compilation

e To help the compiler, you can give it “profile” feedback

e gcc -fprofile-generate ...
e <run program>
e gcc -fprofile-use ...

e Helps compiler:
e Know which way branches commonly go
e Frequency of loops (loop unrolling, loop peeling, etc.)

e Good just-in-time (JIT) compilers do this automatically

17



Memory Hierarchy Impacts
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e (Caches exploit locality

e Temporal: same memory accessed again soon
e Spatial: in same region of memory (64 byte blocks)
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Memory Hierarchy Impacts

e (Caches exploit locality

e Temporal: same memory accessed again soon
e Spatial: in same region of memory (64 byte blocks)

e Hierarchy of caches
o First-level instruction and data caches (~32KB): a few cycles
e Second/Third-level cache (~256KB to ~*MB): a dozen cycles or so
e Main memory: ~150 cycles, highly variable
e Limited bandwidth as well (only so many bits to/from memory)

e Translation look-aside buffers (TLBs)
e Map pages (4KB), miss can be expensive (at least dozens of cycles)

e Hardware prefetching

e Good, but makes it difficult to reason about
18



Tuning for the Memory Hierarchy
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e Increase locality (temporal or spatial)
e Change access order to re-use data
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Tuning for the Memory Hierarchy

e Increase locality (temporal or spatial)
e Change access order to re-use data
e Pack data for spatial locality
e Reduce code footprint (instruction cache behavior)

e Memory allocation location issues
e Example: reduce TLB misses by packing objects onto same page

e Software prefetching?

e _ builtin_prefetch(const void *addr)

e Random versus sequential access patterns
e Pointer chasing: hard to prefetch, chain of dependencies
e Array walking: easy to prefetch, few dependencies

e Example: is a binary tree or an N-array tree more efficient?
e Binary tree nodes are small (low spatial locality)
e Binary trees do lots of pointer indirections
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More Information

o “Intel 64 and IA-32 Architectures Optimization Reference Manual”
o http://www.intel.com/Assets/PDF/manual/248966.pdf

e "“Software Optimization Guide for AMD Family 10h Processors”
e http://www.amd.com/us-en/assets/content e

white_papers_and_tech_docs/40546.pdf

e "man gcc” for compiler flags

e “What Every Programmer Should Know About Memory”
o Ulrich Drepper, http://people.redhat.com/drepper/cpumemory.pdf

e “Instruction latencies and throughput for x86 processors”
e Torbjorn Granlund, http://gmplib.org/~tege/x86-timing.pdf

e "x86-64 Machine-Level Programming”

e Bryant & O'Hallaron,
e http://www.cs.cmu.edu/~fp/courses/15213-s06/misc/asm64-handout. pdf
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Low-Level Tuning of Parallel Code
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Multicore Organization
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Multicore Organization

e Multiple threads per “core”
e Share functional units, data cache, instruction cache

e Multiple core per chip (or “socket”)
e Private first-level caches (8KB to 64KB)
e Maybe a second-level cache (256KB or 512KB)
e Last-level on-chip cache (4MB to 8MB)
e Memory controllers for directly connect memory chips (DRAM)

e Multiple sockets per system
e Dual-socket servers standard for years
e Quad-socket becoming common (from AMD & Intel)
e Large systems with hundreds of sockets have been built
e Today, usually no caching shared among sockets
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Multi-Socket Memory System
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Multi-Socket Memory System

e Chips connected point-to-point by high-speed links
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Multi-Socket Memory System

e Chips connected point-to-point by high-speed links

e Each chip connected to 1/Nth the off-chip memory
e Accessing a “local” page is lower latency than a “remote” page
e Today, maybe 2x difference at most
e Old term: Non-Uniform Memory Architecture (NUMA)
e Was more important when latency difference was 10x or 100x
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Multi-Socket Memory System

e Chips connected point-to-point by high-speed links

e Each chip connected to 1/Nth the off-chip memory
e Accessing a “local” page is lower latency than a “remote” page
e Today, maybe 2x difference at most
e Old term: Non-Uniform Memory Architecture (NUMA)
e Was more important when latency difference was 10x or 100x

e Page mapping controlled by OS
e To optimize for lowest latency:
e All local pages
e To optimize for highest bandwidth:
e Distribute pages to use all memory controllers
e What happens in practice? oblivious allocation probably does okay
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Dual-Socket Dual-Core “"Core 2"

Core Core

3 issue 3 issue
2.6Ghz 2.6Ghz

Data Data
Cache Cache
(32KB) (32KB)

Second-Level
Cache
(4MB)

Core Core

3 issue 3 issue
2.6Ghz 2.6Ghz

Data Data
Cache Cache
(32KB) (32KB)

Second-Level
Cache
(4MB)

acggrid01 - acggrid32
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DuaI Socket Quad- Core “Core 2"

Core Core
3 issue
2.6Ghz

3 issue
2.6Ghz

Data Data
Cache Cache

(32kB) | (32KB)

Second-Level
Cache
(4MB)

Core Core
3 issue
2.6Ghz

3 issue
2.6Ghz

Data Data
Cache Cache
(32KB) (32KB)

Second-Level
Cache
(4MB)

acggrid34

Core Core

3 issue 3 issue
2.6Ghz 2.6Ghz

Data Data
Cache Cache

(32kB) [ (32KB)

Second-Level
Cache
(4MB)

Core Core
3 issue
2.6Ghz

3 issue
2.6Ghz

Data Data
Cache Cache

32kB) | (32KB)

Second-Level
Cache
(4MB)
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Single-Socket Quad-Core “Core i7"

Core Core Core Core
4 issue 4 issue 4 issue 4 issue
3.2 Ghz 3.2 Ghz 3.2 Ghz 3.2 Ghz

Cache Cache Cache Cache
(32KB) (32KB) (32KB) (32KB)

Data Data Data Data
Cache Cache Cache Cache
(256KB) (256KB) (256KB) (256KB)

Third-Level Cache

, Data Data Data Data [
: (8MB) :

acggrid35.seas...
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Dual-Socket Quad-Core “Core i7"

Core
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Cache
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Data
Cache
(32KB)

Data
Cache
(256KB)
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4 issue
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Data
Cache
(32KB)

Data
Cache
(256KB)

Third-Level Cache
(8MB)

Core
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3.2 Ghz

Data
Cache
(32KB)

Data
Cache
(256KB)

4 issue
3.2 Ghz

Data
Cache
(32KB)

Data
Cache
(256KB)

Core

4 issue
3.2 Ghz

Data
Cache
(32KB)

Data
Cache
(256KB)

Core

4 issue
3.2 Ghz

Data
Cache
(32KB)

Data
Cache
(256KB)

Third-Level Cache
(8MB)

Core

4 issue
3.2 Ghz

Data
Cache
(32KB)

Data
Cache
(256KB)




Dual-Socket Oct-Core “"Niagara T2"

Second-Level Cache (4MB) Second-Level Cache (4MB)




Cache Coherence
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e ...receive the value of the last write to that location
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Cache Coherence

e Goal: whenever reading a location in memory...
e ...receive the value of the last write to that location

e Invariant: Single writer --or-- one or more readers

e Implementation
e Each cache tracks the “state” of each cache block
e Modified: read/write state Shared: read-only
e Invalid: no reads or writes
e Must transition to "modified” to be able to write block
e Must “invalidate” all Shared copies before writing block

e Performance implication: sharing is slow
e Slower off-chip sharing than on-chip sharing
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e Read-only sharing
e Finel
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Data Sharing Penalties

e Read-only sharing
e Fine!

e True (read/write) sharing

e \Write a block invalidates all readers... so reader miss on next read
e Next writer may stall waiting for invalidations to complete
o Take away: avoid read/write sharing of data
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Data Sharing Penalties

e Read-only sharing
e Finel

e True (read/write) sharing
e Write a block invalidates all readers... so reader miss on next read
e Next writer may stall waiting for invalidations to complete
o Take away: avoid read/write sharing of data

e False sharing
e If two variables fall in the same cache block, block may ping-pong
e Example: Each core increments “own” counter in an array
e Repeatedly fetch and invalidate block -> extremely slow

¢ Possible solutions:
e Manually pad data to ensure they are in different cache blocks

e malloc() could align each object to 64B boundaries
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Multicore Memory System Implications
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Multicore Memory System Implications

e Positive
e Multithreading hides lots of miss latency!
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Multicore Memory System Implications

e Positive
e Multithreading hides lots of miss latency!

e Negative

e Higher miss rates

e More threads all trying to use limited shared cache capacity
e Impact depends on data locality among threads

e Sharing misses

 High miss latencies
e Sharing misses are often slower
e Perhaps missing to other socket’s memory

e More memory bandwidth bottlenecks
e Many parallel misses trying to use limited memory bandwidth
e Adding memory bandwidth is expensive, so big concern
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Next Time
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Next Time

e Review of processes and threads.
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Next Time

e Review of processes and threads.

e Review of synchronization, locks and barriers
e Shared memory/multithreaded coding
e Synchronization primitives
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