‘a

— e
g —Ad ph=prt=
1

Programming Parallel and
Distributed Systems

http://www.cs.sfu.ca/~ashriram/courses/CS880 479/

Monday : 2:30-3:20
Wednesday : 2:30-3:20
Fridays : 2:30-3:20

http://www.cs.sfu.ca/~ashriram/CS885/
http://www.cs.sfu.ca/~ashriram/CS885/

Who am | ?

= Arrvindh Shriraman
— faculty at SFU since Jan 2011
— graduated from University of Rochester, NY in 2010

® Areas of research
— Multicore / Manycore Systems Architecture
— Parallel Programming Models
— Energy Management
— (Cache Subsystem

http://livepage.apple.com/
http://livepage.apple.com/

What’s the class about?

= Multicore processors
— current and future computing platform
— lots of integration (e.g., GPUS)
— various architectural tradeoffs

x [he parallelism wall
— programming models
— how to structure communication and data structures

x | arge-scale Distributed Systems
— formal models of execution on warehouse-scale systems
— Programming the warehouse

Technology

Transistor : 1947 Chip : 1958

Moore’s Law : # of transistors double every 18months

Clock Frequency

Clock Frequency (MHz)

10 \ \ \ \ \

8 87 89 91 93 95 97 99 01 03 05 07 09

. nte &= |tanium
== Alpha MIPS b
® IBM Power6: 100 W
t~ HP PA = Power PC

@ 'BM Power € AMD \!
A\ Sun Sparc Sun Niagara g8 ; . .. v .
R ™ 4 ’ §e
Increasing clock and core complexity
Increasing power dissipation
g | T atomd N o
'i - rond \(=)
= 4-13W \ /

=

1
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011

Year

Source: Rethinking digital design: Why design must change [IEEE Micro]

http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf
http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf

Development cycle

In@reaged
proGgssor

‘I i perfgfmiance

S A

Game Over
Next: Multicore

Higher-level Larger
languages & development

abstractions teams

Multicore Revolution Is here!

Research avenues (hint: final papers)

x Architecture
— many different types of cores (GPUs, Cryptos, etc..)
— many caching strategies and memory models

x Programmability
— Where are the threads?

- D

ifferent programming models

x Distributed Systems

o
—

—

ow to scale.
ow scalable are multicores?

ow to run parallel programs across O (100000)

machines ?

Class Organization

= Module 1 (Weeks 1-4) : Parallelism

— Today (Multicore systems)
— Memory hierarchy, Locks, Parallel Programming

x Module 1.5 (Weeks 5-7): Multicore Systems

— cache coherence, memory model
— GPUs, Vector processors.

= Module 2 (Weeks 5-12): Distributed Systems
— Google Datacenters
— Distributed Transactions, Consensus Protocols etc
— Recovery Protocols, Election Algorithms

10

Class structure

x (Class participation (20%.) Extra Credit : 10% if

you present
— each student will lead the discussion in the class
— peer-group evaluation

x 3 Prog. Assignments (20% each. Can form

groups of 2)
— Assignment 1: Threads and Synchronization
— Assignment 2: Multicore Application (OpenMP, Cilk)

= Final Mini project (groups of 2)
— Parallelize your favorite Application.

11

What'’s expected of you”

x Expect to dedicate about 25 hrs/week for class
work

x Need to be self-motivated and work hard
— self driven
— | can help you help yourself (I can’t do it for you)

x No Books! lots of programming,.

12

Relation to other classes

x Summer CMPT 885
— More details on cache coherence
— Parallel Data Structures

— Formal Memory Models
— GPUs and Vectors

= CMPT 886
— Similarities in Distributed Systems

—

13

What’ inside a multicore chip®?

14

Outline

= How did we get here. Why Multicores”

x Amdahl’s Law: How do Apps scale on Multicores?
— Symmetric, Asymmetric, Morphing

x [issecting a Processor Core
— Different types, Performance etc.

15

Amdahl’s Law [1967, Gene Amdanhl]

= Maximum speedup achievable on a multicore

Program Phases Time on 1 core = l—-F F
(Serial) 1 1
arIaIIeI Time on N cores = 1~ | l
IO Serial 1 N
HHH”} No Improvement
1 ifIF = 0,88
@ 4 cores, speedup = 2

Speedup = 1—1F |]F\; @ oocores, speedup = 3

16

Strong scaling vs Weak scaling

® Strong Scaling : If new machine has K times more
resources, how much does perf. improve ?

x \Neak Scaling : If new machine has K times more
resources, can we solve a bigger problem size ?

Speedup

30
70
60
50
40
30
20

99% Parallel
/2x speedup O 05
* 0.9
0.99

a—0=0=0—0—0 3 o0 ©

1 2 4 8 16 32 064 128 256

of cores 17

Amdahl’s Law for Multicores
[Marty and Hill, 2009]

L1$ L1$ L1$ L1$

Shared Mem.

x Multicore Chip partitioned into
— multiple cores (includes L1 cache)
— uncore (Intel terminology for Shared L2 cache, L3)

®x Resources per-chip bounded
— Area, Power, $, or a combination
— Bound of total N resources per-chip.
— How many cores ? How big each 7

18

Core Types

= Your favorite trick can be used to improve

single-core performance using same resource
— becoming increasingly hard to do power-efficiently

= \Wimpy Core :
— Consumes 1 CU (CU: measure of core resources)
— performance = 1

x Hulk Core: PaS
— consumes R CUs &\
~ performance = perf(R) /|

19

Hulk Cores

x |f Perf (R) >= R ; always use the hulk cores.
— speeds up everything

x Unfortunately, life isn’'t easy Perf (R) <R

x Assume Perf (R) :\/5

— reasonable assumption?
— Microprocessor examples seem to indicate

= How to design core for specific Perf (R)
— coming up later in the latter 1/3rd of talk
— pbasic idea: do many instructions in parallel

20

Multicores under consideration

I 3
Symmetric 1 BN Bl B8
I8 [2 I

P PHBH B

[0 (0

Asymmetric

Morphing

Symmetric Multicores

= How many cores ? How big each core ?

Chip is bounded to N CUs

— each core has R CUs
= Number of cores per-chip = N/R

®x [For example, lets say N = 16

Fl=
HEE] FE20) {20 {E
I3 [0 (20 [
12 [0 2 [
I3 FE30] EE3A) EEE

22

Symmetric Multicore : Performance

x Serial Phase (1-F) runs on 1 thread on 1 core
— performance X Perf (R)
— Execution time = (1-F) / Perf (R)

x Parallel Phase uses all N/R cores. Core @ Perf (R)
— Execution time = F / [Perf (R) * N/R]

1
Speedup = 1—F | FxR
Perf(R) ' Perf(R)*xN
Serial Phase[I Phase
Perf(R) More cores!

23

Symmetric Multicore (Chip = 16 CUSs)

1 2 4 8 16
(16 cores) (4 cores) (1 core)

Per-core CU

®x Need lots of parallelism in multicore world!

24

Symmetric Multicore (Chip = 16 CUSs)

(16 cores) (4 cores) (1 core)
Per-core CU

® More parallelism helps; but limited speedup!

25

Symmetric Multicore (Chip = 16 CUSs)

(16 cores) (4 cores) (1 core)
Per-core CU

x Applications with high F;
— significant performance loss with bigger cores
— Performance loss E. VR

VR

26

Model-bias towards parallelism

x Remember Perf (R) when scaling up CPU = V2
®x | ets say 1st gen 1 CU system =1 CU

x Now consider 2nd gen 4 CU system
— Four 1CU cores or One 4CU core?
— When F=0.999; always pick Four 1CU cores

F=0.999 [E1E} _
Speedup ~4E B Spssdly =2

x Even parallel fraction not pertectly parallel
— Synchronization, Contention, Locks etc
— Need SW-Perf(R) (depends on application)

27

Multicore Moore’s Law

x Since 1970s Technology Moore’s Law
— Double transistors every 2 years.
— Should possibly continue....

» Microarchitect’s Moore’s Law
— double single-thread performance every 2 years
— Stopped due to power required

— Multicore’s Moore’s Law

— 2x cores every 2 years (1 in 2007- 8 in 2010)

— Need to double software threads every two years
— Need HW to enable 2x threads every two years

28

Symmetric Multicore (Chip = 256 CUSs) Er

256 """ o """ 05 """""""""""

204 S 009
K) 204x @256 cores 0.99

192 L MOre WImpy COres = v """ 0999 """""""

More cores, |) Hulk cores

i hulk cores! —

1 2 4 8 16 32 04 128 24]6)
(256 cores) (16 cores) (1 core)

Per-core CU 29

Cost-Effective Multicore Computing

Is Speedup (N cores) < N that bad “?

It depends on cost of adding cores.
— $33F, Power
— Cost-ratio = Cost (Ncores) / Cost (1)

If chip budget is cost, Cost-ratio << 1.
— Much of multicore cost outside core [I[EEE 1995]
— Caches, Memory Controller etc.

If power Is cost, cost-ratio can approach

Multicore computing effective if Cost-ratio > N
— AMD 6 core = $470 ; AMD 8-core 580%
— |f 8-core speedup >1.2x%, then cost-effective 30

Multicores in Servers and Clients

""'?:lj‘

— Smart-phones just moved to dual-cores
— how many cores”?

® SEervers
— can use vast parallelism (Mapreduce, data analysis)
— natural overlap across clients 31

Asymmetric Multicores [B1 1

L Lo

®x Enhance some cores to improve performance
for serial phase.

x Many designs possible (In this talk, 1 Hulk core)

= How to enhance core ?
— coming up in last 1/3rd of class

32

Asymmetric Multicores

x [otal chip resources = N CUs

®x Assume two-types of cores on-chip
— One core = R CU, N-R 1 CU cores
— Jotal cores = N-R+1

L

33

Asymmetric Cores : Performance

SEEl
I D@jﬂﬂlﬂ Eig i}g Serial Phase = (1-F) / K*
FIEEBIER Parallel Phase = (F) / [K*
(parallel) Iy mm n
HH”H}F where K is # of Hulk
In our case, K =1
1
Speedup = —— . =

Perf(R) ' Perf(R)+N—R

Perf (R)
Perf (R)

N-(K*R)]
cores.

34

Asymmetric Multicore (Chip = 256 CUSs)
O 05 1F 09 0.99 ¥ 0.999

030,60 . R
v ‘ R=41 (vs 3)
. 216 (vs. 85 cores)

172,95 v RO s i
o “ Speedup = 166 (vs 80)
D)
 11gad ’ i (/s 28)
D
1 O cores)

g Asymmetric cores provide bang for the buck [l

1 2 4 8 10 32 04 128 256
(256 cores) (1 Hulk, 240 cores) (1 core)

Per-core CU

®x Asymmetric cores offer great potential
— with 1 Hulk core, speedup increases significantly

— helps take care of Amdahl’s law .

Asymmetric Multicore (Chip = 256 CUSs)

O 05 1 09 0.99 W 0999 4 4

e A 8. S o\\
---) ") () B & S
24 ¢ Pr &-.f' e 4 PR ® Y
Higher parallelism, [S e
/ A_’_c, o Lt AN VL
™)"; a bt 0

T ey SO more wimpy!

1 2 4 8 16 paralleﬁs/m
(1 Hulk (4 Hulk, 192 Wimpy) (16 Hullgnly Hulk!

240 Wimpy) # of Hulk Cores

As F increases, always increase wimpy cores!

Asymmetric Multicores : Challenge

Task Management :
How to schedule computation”?

Locality :
How to keep data close to task?

Coordinate Tasks :
How to synchronize data?

37

Morphing Multicores

[T _STIT | [

B /\vantage : Can harness all cores on the chip
Core optimized

x At runtime glue R 1CU cores to create R CU core
— Improves performance for serial phase

= How to dynamically glue cores 7
— Not the focus; need’s future research

38

Morphing Multicores : Performance

= N 1CU cores, from which R 1CU cores glued

x Serial phase uses R CU core at Perf (R)
— execution time = (1-F)/R

» Parallel phases uses N cores
— execution time = (1-F)/N

1
Speedup = —7—f

F
Perf(R) ' N

39

Morphing Multicore (Chip = 256 CUSs)

Morphing multicores are awesome!
Especially at higher chip resource levels

How to glue!

Hulk-Core CU

40

Multicore Amdahl’s Law

| [0 I3 (3 [1
Symmetric B ED B Bl — =
BHBHBH B Perf(R) ' Perf(R)xN
I IBH DL
Asymmetric L] 1
1—F F
Perf(R) ' Perf(R)+N—R
Morphin !
orphing Py

41

Challenges (1/2)

x Serial Fraction (1-F) has fine-grain parallelism

®x Parallel Fraction (F) has serialization overheads
— You will learn in the next 2-3 weeks.

x Software challenges for asymmetric and
dynamic multicores

= How much parallelism in future software?

42

Challenges (2/2)

Parallelism all the time ?

Amdahl’s Law affects serial fraction ?
Need to increase core speed.

Lots of walls: Power, Area, Shared caches
How to scale CPU performance?

43

Outline

= How did we get here. Why Multicores”

x Amdahl’s Law: How do Apps scale on Multicores”?
— Symmetric, Asymmetric, Morphing

x [issecting a Processor Core
— Different types, Performance etc.

44

45

The core

Fetch PC

Decode

Read Inputs

Execute
Write Output
Next PC

Basic loop In each core
— program order on dynamic
instructions

Ins is Memory|[PC]
— typically, Next PC = PC+1;

Atomic illusion
— Ins X finishes before X+1
— can break constraint

lron-Law Performance =
#ins * (cycles/ins) * (seconds/cycle)

46

How to implement the loop”?

Fetch Decode Read Inputs/Execute Data Mem Finish

47

Pipelines (Laundry Analogy)

= Amy, Bob, Cathy, Dave each

have to wash, dry and fold
— Washer : 30minutes

— Dryer : 30 minutes

— Folder : 30 minutes

— Stasher : 30 minutes

®x Pipelining doesn’t help latency.
— Single task takes same time

x Speedup = # of stages
— Pipeline only as fast as slowest stages

48

One-at-a-time Laundry

Total Time : 4 * (T-laundry+T-drier+ I-Fold+ T-stash.)

9 10 11 12 1 2AM
—— % 10 W e

l 3030 30| 30 3030 30I 30'%%1 30|30I

Time

49

Plpelined Laundry

= Partition total work into stages
— start specific stage ASAP

6PM 7 8 9 10 11 12

Total Time : (T-laundry+T-drier+T-Fold+ I-stash) + (4 -1)*30m

50

Wimpy Core

Pipelined-only In-order CPUs offerings
— MIPS, Niagara, Intel Atom, ARM (early cell-phones)

Benefits

r—

—

Simple design
Not too much wastage

(performance brittle)
stalls due to control
stalls due to data dependencies
only # stages instructions in flight (limited ins. parallel)
overhead of pipeline stages

51

Deep pipelines

Delay = 48ns, Throughput = 128MHz

®x Diminishing returns
— overhead of pipeline interface
— Increased latency
— Pentium 4 (22 stages)

52

Program

execution

order lime
(in instructions)

. Instruction
a(l(] $4- $5o Sb r‘_\l(:h

Data
access

. . Dat
Iw $3, 300(S0) : ’ ' acr;_-zs

53

Program Time

execution
order
(in Instructions)

lw 20($t1

v sub $t2,

)

$t3

D=5

54

®x Anti and Output dependencies (N0 need to wait)

True Read %A, Mem|[Oxa] ...
Rd-Wr.—F Read %B, Mem[Oxb] True
R - >%C - %A Op %B‘**‘-‘.‘.‘,:""“

.
o*
o
*

|

Wr_v\/r ‘-_“““ :““““‘............... C:O?: r_

d Control ™ ;
%C =1 %A = 1
\. /

%D =5

55

X

g

Hulk Core : Basic Strategy "f’j
.

= Build flow-graph from window of instructions

Honor True Dep.

Read %A, Mem[0xa]
Read %B, Mem[OxDb]
%C = %A Op. %B

Branches: Speculate

Anti Dep. : Rename Reg.

%A =1

56

Hulk core : Challenges

= (Cost of speculation

— hard in data dependent programs (e.g., databases)
— lots of buffering
— deep pipelines (on Pentium 4 spec-fail costs 30+cycles)

= Dependence checks
— storage cost (instructions window)?
— propagating dependency expensive (window size)

57

AMD Phenom:
125 W

Intel Core i7: 130 W

IBM Power6: 100 W

v

Intel /\l()mw

_\)
"/

1
1985

1987

1989

1991

1993

1995

1997 1999 2001 2003 2005 2007 2009

Year

Memory is too slow!

100,000

Performance

Log scale 190

10

L]

1 - - A A A 1 A A
O N oV @ o™ P O A DD O N DL OO OO N D N>
D" R RN RN R XX DO DD DO DT O DN H OO

o
¢
>

< core window fills up;
ting......It costs energy to walit

Keeping a core busy

Time
. >
Wimpy core
Read Mem[Oxa] Read Mem[Oxb] Op(C) No Ins. Parallel
Hulk core
S
C=0? S = U] A=] el = 2 Independent Ins. Parallel
Read Mem[Oxa] ~ Read Mem[Oxb] Op(C) per-thread

Multithreading

__- Ul thrent
from multiple threads

Read Mem|[0xa] Read Mem[Oxb] Op(C

60

What else can core do when waiting

Simultaneous
Multithreading

Multicore
Multithreading

Level 1 é Level 1 Level 1 Level 1
Mem. | Mem. Mem. Mem.

1
:
1
1
1
1
1
1
1
1
1
1
1 J
1
1 -
1
|
1
|
1
|
1
|
11

1
ST elin” Tuiin” aila” Teila” Teila” Tells” TellsT I IS IS EE B S O O B S B B B B B B B B S S S S .

61

What’s are these red and

orange rectangular regions? §

Cores

62

