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Programming Parallel and          
Distributed Systems 

Monday       : 2:30-3:20 
Wednesday : 2:30-3:20
Fridays        : 2:30-3:20

http://www.cs.sfu.ca/~ashriram/CS885/
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Who am I ?

Arrvindh Shriraman
faculty at SFU since Jan 2011
graduated from University of Rochester, NY in 2010

Areas of research
Multicore / Manycore Systems Architecture
Parallel Programming Models
Energy Management
Cache Subsystem
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What’s the class about?

Multicore processors
current and future computing platform
lots of  integration (e.g., GPUs)
various architectural tradeoffs

The parallelism wall
programming models
how to structure communication and data structures

 Large-scale Distributed Systems 
formal models of execution on warehouse-scale systems
Programming the warehouse

3



Technology

Moore’s Law : # of transistors double every 18months
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Clock Frequency
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Why Power Increased

Clock Frequency (MHz)
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CPUs consume a lot of power
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Source:  Rethinking digital design: Why design must change [IEEE Micro]
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Increasing clock and core complexity
Increasing power dissipation

http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf
http://www.duke.edu/~BCL15/documents/shacham2010-micro-chipgen.pdf


Development cycle
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processor 
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X
Game Over

Next: Multicore



Multicore Revolution is here!
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More cores on a chip

Each core ; 40%  Ghz = 0.25x Power

Overall Performance = 4 cores * 0.6x/core = 2.4x



Research avenues (hint: final papers)

Architecture
many different types of cores (GPUs, Cryptos, etc..)
many caching strategies and memory models

Programmability
Where are the threads?
Different programming models 

Distributed Systems
How to scale.
How scalable are multicores? 
How to run parallel programs across O (100000) 
machines ?
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Class Organization

Module  1 (Weeks 1-4) : Parallelism 
Today (Multicore systems)
Memory hierarchy, Locks, Parallel Programming

Module 1.5 (Weeks 5-7): Multicore  Systems
cache coherence, memory model
GPUs, Vector processors. 

Module 2 (Weeks 5-12): Distributed Systems 
Google Datacenters
Distributed Transactions, Consensus Protocols etc
Recovery Protocols, Election Algorithms
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Class structure

Class participation (20%.) Extra Credit : 10% if 
you present

each student will lead the discussion in the class 
peer-group evaluation

3 Prog. Assignments (20% each. Can form 
groups of 2)

Assignment 1: Threads and Synchronization
Assignment 2: Multicore Application (OpenMP, Cilk)

Final Mini project  (groups of 2)
Parallelize your favorite Application.
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What’s expected of you?

Expect to dedicate about 25 hrs/week for class 
work

Need to be self-motivated and work hard
self driven
I can help you help yourself (I can’t do it for you)

No Books! lots of programming.
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Relation to other classes

Summer CMPT 885 
More details on cache coherence
Parallel Data Structures
Formal Memory Models
GPUs and Vectors

CMPT 886 
Similarities in Distributed Systems
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What’ inside a multicore chip?

Today

Next
Week



Outline

How did we get here. Why Multicores?

Amdahl’s Law: How do Apps scale on Multicores?
Symmetric, Asymmetric, Morphing

Dissecting a Processor Core
Different types, Performance etc.
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Amdahl’s Law [1967, Gene Amdahl]
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Maximum speedup achievable on a multicore

}F 

Time on 1 core = 
1− F

1
+

F
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Time on N cores = 
 (parallel)

                    (Serial)
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+
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NSerial 
No Improvement

Program Phases

Speedup = 
1

1−F
1 + F

N

If F = 0.35
@ 4 cores, speedup = 2

@     cores, speedup = 3∞



Strong scaling vs Weak scaling
Strong Scaling : If new machine has K times more 
resources, how much does perf. improve ? 
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Amdahl’s Law for Multicores 
[Marty and Hill, 2009]

Multicore Chip partitioned into
multiple cores (includes L1 cache)
uncore (Intel terminology for Shared L2 cache, L3)

Resources per-chip bounded
Area, Power, $, or a combination
Bound of total N resources per-chip.
How many cores ? How big each ?
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Core Types

Your favorite trick can be used to improve 
single-core performance using same resource

becoming increasingly hard to do power-efficiently

Wimpy Core : 
Consumes 1 CU (CU: measure of core resources)
performance = 1

Hulk Core:
consumes R CUs 
performance = perf(R)
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If Perf (R) >= R ; always use the hulk cores.
speeds up everything

Unfortunately, life isn’t easy Perf (R)  < R 

Assume Perf (R) =        
reasonable assumption?
Microprocessor examples seem to indicate

How to design core for specific Perf (R)
coming up later in the latter 1/3rd of talk
basic idea: do many instructions in parallel

Hulk Cores
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Multicores under consideration
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Symmetric

Asymmetric

Morphing 



Symmetric Multicores 

How many cores ? How big each core ?

Chip is bounded to N CUs
each core has R CUs

Number of cores per-chip = N/R

For example, lets say N = 16
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R = 1 R = 4 R = 16



Symmetric Multicore : Performance

Serial Phase (1-F) runs on 1 thread on 1 core
performance      Perf (R)
Execution time = (1-F) / Perf (R)

Parallel Phase uses all N/R cores. Core @ Perf (R)
Execution time = F / [Perf (R) * N/R]
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Speedup = 

∝

1
1−F

Perf(R) + F∗R
Perf(R)∗N

II Phase
More cores!

Serial Phase
 Perf(R) 



Symmetric Multicore (Chip = 16 CUs)

Need lots of parallelism in multicore world!
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Symmetric Multicore (Chip = 16 CUs)

More parallelism helps; but limited speedup!
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Applications with high F; 
significant performance loss with bigger cores
Performance loss 

Symmetric Multicore (Chip = 16 CUs)

26

0

4

8

12

16

1 2 4 8 16

S
pe

ed
up

Per-core CU

0.5
0.9
0.99
0.999

(16 cores) (4 cores) (1 core)

∝ R√
R

=
√

R



Model-bias towards parallelism

Remember Perf (R) when scaling up CPU = 
Lets say 1st gen 1 CU system = 1 CU

Now consider 2nd gen 4 CU system
Four 1CU cores or One 4CU core?
When F=0.999; always pick Four 1CU cores

Even parallel fraction not perfectly parallel
Synchronization, Contention, Locks etc
Need SW-Perf(R) (depends on application)
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Multicore Moore’s Law

Since 1970s Technology Moore’s Law
Double transistors every 2 years.
Should possibly continue....

Microarchitect’s Moore’s Law 
double single-thread performance every 2 years
Stopped due to power required

Multicore’s Moore’s Law
2x cores every 2 years (1 in 2007- 8 in 2010)
Need to double software threads every two years
Need HW to enable 2x threads every two years
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Symmetric Multicore (Chip = 256 CUs)
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Cost-Effective Multicore Computing
Is Speedup (N cores) < N that bad ?

It depends on cost of adding cores.
$$$, Power
Cost-ratio = Cost (Ncores) / Cost (1)

If chip budget is cost, Cost-ratio << 1.
Much of multicore cost outside core [IEEE 1995]
Caches, Memory Controller etc.

If power is cost, cost-ratio can approach 1

Multicore computing effective if Cost-ratio > N
AMD 6 core = $470 ; AMD 8-core 580$
If 8-core speedup >1.2x, then cost-effective 30



Multicores in Servers and Clients

Multicore parallelism where cost-ratio is low and 
applications have the parallelism (high F)

Clients (high F is hard)
Smart-phones just moved to dual-cores
how many cores?

Servers
can use vast parallelism (Mapreduce, data analysis)
natural overlap across clients 31

May cause move to cloud computing



Asymmetric Multicores 

Enhance some cores to improve performance 
for serial phase. 

Many designs possible (In this talk, 1 Hulk core)

How to enhance core ?
coming up in last 1/3rd of class 
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Total chip resources = N CUs

Assume two-types of cores on-chip
One core = R CU, N-R 1 CU cores
Total cores = N-R+1

Asymmetric Multicores 
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Asymmetric Cores : Performance
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}F 
 (parallel)

                    (Serial)
Serial Phase = (1-F) / K*Perf (R)

Parallel Phase = (F) / [K*Perf (R)       
                                  + N-(K*R)]

where K is # of Hulk cores.

In our case, K = 1

Speedup = 
1

1−F
Perf(R) + F

Perf(R)+N−R



Asymmetric cores offer great potential
with 1 Hulk core, speedup increases significantly
helps take care of Amdahl’s law

Asymmetric Multicore (Chip = 256 CUs)
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Low  
parallelism
only Hulk!

Asymmetric Multicore (Chip = 256 CUs)
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Asymmetric Multicores : Challenge
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Task Management : 
How to schedule computation?  

Locality : 
How to keep data close to task?  

Coordinate Tasks :
How to synchronize data?



Morphing Multicores

Chip consists of N 1CU cores
efficient for parallel phase

At runtime glue R 1CU cores to create R CU core
improves performance for serial phase

How to dynamically glue cores ?
Not the focus; need’s future research
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Advantage : Can harness all cores on the chip 
Core optimized 



Morphing Multicores : Performance

N 1CU cores, from which R 1CU cores glued

Serial phase uses R CU core at Perf (R)
execution time = (1-F)/R

Parallel phases uses N cores
execution time = (1-F)/N
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Morphing Multicore (Chip = 256 CUs)
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Multicore Amdahl’s Law
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Challenges (1/2)

Serial Fraction (1-F) has fine-grain parallelism

Parallel Fraction (F) has serialization overheads
You will learn in the next 2-3 weeks.

Software challenges for asymmetric and 
dynamic multicores

How much parallelism in future software?
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Challenges (2/2)
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Parallelism all the time ?

Amdahl’s Law affects serial fraction ? 
Need to increase core speed.

Lots of walls: Power, Area, Shared caches
How to scale CPU performance?



Outline

How did we get here. Why Multicores?

Amdahl’s Law: How do Apps scale on Multicores?
Symmetric, Asymmetric, Morphing

Dissecting a Processor Core
Different types, Performance etc.
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The core
Basic loop in each core

program order on dynamic 
instructions

Ins is Memory[PC]
typically, Next PC = PC+1;

Atomic illusion
ins X finishes before X+1
can break constraint 

Iron-Law Performance =                       
# ins * (cycles/ins) *  (seconds/cycle)
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CIS 501 (Martin): Instruction Set Architectures 5 

What Is An ISA? 

•  ISA (instruction set architecture) 
•  A well-defined hardware/software interface 
•  The “contract” between software and hardware 

•  Functional definition of operations, modes, and storage 
locations supported by hardware 

•  Precise description of how to invoke, and access them 

•  Not in the “contract”: non-functional aspects 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 

•  Instruction ! Insn 
•  ‘Instruction’ is too long to write in slides 

CIS 501 (Martin): Instruction Set Architectures 6 

A Language Analogy for ISAs 

•  Communication 
•  Person-to-person ! software-to-hardware 

•  Similar structure 
•  Narrative ! program 
•  Sentence ! insn 
•  Verb ! operation (add, multiply, load, branch) 
•  Noun ! data item (immediate, register value, memory value) 
•  Adjective ! addressing mode 

•  Many different languages, many different ISAs 
•  Similar basic structure, details differ (sometimes greatly) 

•  Key differences between languages and ISAs 
•  Languages evolve organically, many ambiguities, inconsistencies 
•  ISAs are explicitly engineered and extended, unambiguous 

CIS 501 (Martin): Instruction Set Architectures 7 

The Sequential Model 
•  Basic structure of all modern ISAs 

•  Processor logically executes loop at left 

•  Program order: total order on dynamic insns 
•  Order and named storage define computation 

•  Convenient feature: program counter (PC) 
•  Insn itself at memory[PC] 
•  Next PC is PC++ unless insn says otherwise  

•  Atomic: insn X finishes before insn X+1 starts 
•  Can break this constraint physically (pipelining) 
•  But must maintain illusion to preserve programmer 

sanity 

Fetch PC 

Decode 

Read Inputs 

Execute 

Write Output 

Next PC 

CIS 501 (Martin): Instruction Set Architectures 8 

Where Does Data Live? 

•  Registers 
•  Named directly in instructions 
•  “short term memory” 
•  Faster than memory, quite handy 

•  Memory 
•  Fundamental storage space 
•  “longer term memory” 

•  Immediates 
•  Values spelled out as bits in instructions 
•  Input only 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 



How to implement the loop?
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CIS 501 (Martin/Roth): Technology 1 

CIS 501 
Computer Architecture 

Unit 3: Technology 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 

CIS 501 (Martin/Roth): Technology 2 

This Unit 

•  Technology basis 
•  Transistors & wires 
•  Cost & fabrication 
•  Implications of transistor scaling (Moore’s Law) 

CIS 501 (Martin/Roth): Technology 3 

Readings 

•  Chapter 1.1 of MA:FSPTCM 

•  Paper 
•  G. Moore, “Cramming More Components onto Integrated Circuits” 

CSE 371 (Roth): Performance 4 

Review: Simple Datapath 

•  How are instruction executed? 
•  Fetch instruction (Program counter into instruction memory) 
•  Read registers 
•  Calculate values (adds, subtracts, address generation, etc.) 
•  Access memory (optional) 
•  Calculate next program counter (PC) 
•  Repeat 

•  Clock period = longest delay through datapath 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 

+ 
4 

Fetch Decode Read Inputs/Execute Data Mem Finish



Pipelines (Laundry Analogy)

Amy, Bob, Cathy, Dave  each 
have to wash, dry and fold

Washer : 30minutes
Dryer : 30 minutes
Folder : 30 minutes
Stasher : 30 minutes
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Pipelining doesn’t help latency. 
Single task takes same time

Speedup = # of stages
Pipeline only as fast as slowest stages



One-at-a-time Laundry
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Total Time : 4 * (T-laundry+T-drier+T-Fold+T-stash.)



Pipelined Laundry

Partition total work into stages
start specific stage ASAP

50

Total Time : (T-laundry+T-drier+T-Fold+T-stash) + (4 -1)*30m



Wimpy Core

Pipelined-only In-order CPUs offerings
MIPS, Niagara, Intel Atom, ARM (early cell-phones)

Benefits
Simple design
Not too much wastage

Challenges (performance brittle)
stalls due to control 
stalls due to data dependencies 
only # stages instructions in flight (limited ins. parallel)
overhead of pipeline stages
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Deep pipelines 

Diminishing returns
overhead of pipeline interface
increased latency
Pentium 4 (22 stages)
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Wimpy Challenge (1/3) : Branches
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Wimpy Challenge (2/3) : Mem. Ops
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Wimpy Challenge (3/3): Data Hazard
Anti and Output dependencies (no need to wait)
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Read %A, Mem[0xa]
Read %B, Mem[0xb]
%C = %A Op. %B

Is 
C=0?

%C = 1 %A = 1

%D = 5

True True 

Control 

Output 
Wr-Wr

Rd-Wr

Anti 
Wr-Rd



Hulk Core : Basic Strategy 
Build flow-graph from window of instructions
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Read %A, Mem[0xa]
Read %B, Mem[0xb]
%C = %A Op. %B Is 

C=0?

%A = 1

%D = 5

Honor True Dep.

%C = 1

Branches: Speculate 

C [1.1] = 1

Anti Dep. : Rename Reg.

C [1.1] = 1

D [1.0] = 5



Hulk core : Challenges

Cost of speculation 
hard in data dependent programs (e.g., databases)
lots of buffering 
deep pipelines (on Pentium 4 spec-fail costs 30+cycles)

Dependence checks
storage cost (instructions window)2

propagating dependency expensive (window size)

57

Power



58

P
ow

er

Year



59

Memory is too slow!

CIS 501 (Martin): Caches 9 

The “Memory Wall” 

•  Processors are get faster more quickly than memory (note log scale) 
•  Processor speed improvement: 35% to 55% 
•  Memory latency improvement: 7% 

Copyright Elsevier Scientific 2003 

Log scale 

+35 to 55% 

+7% 

CIS 501 (Martin): Caches 10 

Known From the Beginning 

 “Ideally, one would desire an infinitely large memory 
capacity such that any particular word would be 
immediately available … We are forced to recognize the 
possibility of constructing a hierarchy of memories, each 
of which has a greater capacity than the preceding but 
which is less quickly accessible.” 

Burks, Goldstine, VonNeumann  
“Preliminary discussion of the logical design of an 

electronic computing instrument” 
 IAS memo 1946  

CIS 501 (Martin): Caches 11 

Locality to the Rescue 

•  Locality of memory references 
•  Property of real programs, few exceptions 
•  Books and library analogy (next slide) 

•  Temporal locality 
•  Recently referenced data is likely to be referenced again soon 
•  Reactive: cache recently used data in small, fast memory 

•  Spatial locality 
•  More likely to reference data near recently referenced data 
•  Proactive: fetch data in large chunks to include nearby data 

•  Holds for data and instructions 

Library Analogy 

•  Consider books in a library 

•  Library has lots of books, but it is slow to access 
•  Far away (time to walk to the library) 
•  Big (time to walk within the library) 

•  How can you avoid these latencies? 
•  Check out books, take them home with you 

•  Put them on desk, on bookshelf, etc. 
•  But desks & bookshelves have limited capacity 

•  Keep recently used books around (temporal locality) 
•  Grab books on related topic at the same time (spatial locality) 
•  Guess what books you’ll need in the future (prefetching)  

CIS 501 (Martin): Caches 12 

Hulk core window fills up;  
Waiting......It costs energy to wait



Keeping a core busy
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Read Mem[0xa]

Is 
C=0?

%C = 1 %A = 1 %D = 5

Read Mem[0xb] Op(C)

Wimpy core
No Ins. Parallel

Time

Hulk core

Read Mem[0xa] Read Mem[0xb] Op(C)

Multithreading  

Independent Ins. Parallel
per-thread

Read Mem[0xa] Read Mem[0xb] Op(C)

Exploit Parallelism
from multiple threads
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Level 1
Mem.

Level 1
Mem.

Level 1
Mem.

Level 1 
Mem.

Core Core Core Core

Simultaneous
Multithreading Multicore

Multithreading

What else can core do when waiting ?
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Cores

What’s are these red and 
orange rectangular regions?


