GPU Architecture &
CUDA Programming




Basic GPU architecture

~150-300 GB/sec
(high end GPUs)

-

DDR5 DRAM

(a few GB)

GPU
Multi-core chip

SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently)
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Review: howto run codeona CPU

Lets say a user wants to run a programona -

multi-core CPU... ALU ALU
OS loads program text into memory uﬁxewte) (Execute)

OS selects CPU execution context

i

OS interrupts processor, prepares execution
- context (sets contents of registers, program

counter, etc. to prepare execution context)

- Gol!

Processor begins executing instructions from
within the environment maintained in the

execution context.

Multi-core CPU



Howto run code on a GPU(prior to 2007)

Input vertex

Let’s say a user wants to draw a picture using a GPU... bu;fer
- Application (via graphics driver) provides GPUvertex
\ 4

and fragment shader program binaries

_ Application sets graphics pipeline parameters

VEIMEX FTOCESSING
(e.g., output image size) v
- Application provides GPUa buffer of vertices y
Primitive Generation
Application sends GPUa “draw” command: v
- drawPrimitives(vertex_buffer) 4
Fragment Generation
“Rasterization”
\ 4
This was the only interface to GPUhardware. \ 4
. HFaBMENUETOCESSING
GPUhardware could only execute graphics ¥
pipeline computations. Output ¥

(pixels) Ixel Operations



Brook stream programming language (2004)

= Stanford graphics lab research project (suck 2004)
= Abstract GPU hardware as data-parallel processor

kernel void scale(float amount, float a<>, out float b<>)

{
b = amount * a;

}

float scale_amount;
float input_stream<1000>; // stream declaration
float output stream<1000>; // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output _stream);

=  Brook compiler translated generic stream program into
graphics commands (such as drawTriangles) and a set of
graphics shader programs that could be run on GPUsof the day.



NVIDIA Tesla architecture (2007)

(GeForce 8xxx series GPUs)
First alternative, non-graphics-specific (“compute mode”) interface to GPU

Hardware
Let’s say a user wants to run a non-graphics program on the GPU’s cores...

- Application can allocate buffers in GPU

memory and copy data to/from buffers

Application (via graphics driver) provides
GPU a single kernel program binary

_ Application tells GPU to run the kernel in

an SPMD fashion (“run N instances”)
launch(myKernel, N)

e CE0E AR

e CB0R (AR

Aside: interestingly, this is a far simpler
operation than the graphics operation
drawPrimitives()



CUDA programming language

Introduced in 2007 with NVIDIA Tesla architecture

“C-like” language to express programs that run on GPUs using
the compute-mode hardware interface

Relatively low-level: CUDA's abstractions closely match
the capabilities/performance characteristics of modern
GPUs (design goal: maintain low abstraction distance)

Note: OpenCL is an open standards version of CUDA

- CUDA only runs on NVIDIA GPUs
- OpenCL runs on CPUs and GPUs from many vendors
- Almost everything | say about CUDA also holds for OpenCL

- CUDA is better documented, thus | find it preferable to teach with



Theplan

1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- Is CUDA a data-parallel programming model?

- Is CUDA an example of the shared address space model?

- Or the message passing model?

- Can you draw analogies to ISPC instances and tasks? What about

pthreads?



Clarification (here wegoagain...)

= | am going to describe CUDA abstractions using
CUDA terminology

= Specifically, be careful with the use of the term CUDA
thread. A CUDA thread presents a similar abstraction
as a pthread in that both correspond to logical threads
of control, but the implementation of a CUDA thread is

very different

= We will discuss these differences at the end of the
lecture



CUDA program is a hierarchy of concurrent threads

Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

Grid
‘Block (0, 0)  Block (1,0)  Block (2, 0)
Block (0, 1)" Block (1,1) | Block (2, 1)

Block (1, 1)

Regular application thread running on CPU (the “host”)

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks (Nx/threadsPerBlock.x,
Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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Basic CUDA syntax

“Host” code : serial execution
Running as part of normal C/C++

Regular application thread running on CPU(the “host”)

12;
6;

const int Nx
const int Ny

] . dim3 threadsPerBlock(4, 3, 1);
application on CPU dim3 numBlocks (Nx/threadsPerBlock.x,
Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

Bulk launch of many CUDA threads

”Iaunch a grld Of CUDA thread blOCkS" // this call will launch 72 CUDA threads:
] // 6 thread blocks of 12 threads each
Call returns when all threads have terminated . matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

SPMD execution of device kernel

function:
CUDA kernel definition
“CUDA device” code: kernel function global  // kernel definition (runs on GPU)
( denotes a CUDA kernel function) runs on —> —global_ void matrixAdd(float AlNy][Nx],
float B[Ny][Nx],
GPU float C[Ny][Nx])
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
» int j = blockIdx.y * blockDim.y + threadIdx.y;

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

C[3][i] = A[3][i] + B[3][i];



Clear separation of host and device code

Separation of execution into host and device codeis performed statically by the programmer

const int Nx
const int Ny

12;
6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks (Nx/threadsPerBlock.Xx,
Ny/threadsPerBlock.y, 1);

“Host” code : serial execution
on CPU

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each

matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{

}

return 2 * x;

// kernel definition

~_global__ void matrixAddDoubleB(float A[Ny][Nx],

“Device” code (SPMD execution ey

on GPU) {

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int 1
int j

C[jl[i] = A[j]l[i] + doubleValue(B[j]l[i]);



Number of SPIVIDthreads is explicit in program

Number of kernel invocations is not determined by size of data collection
(a kernel launch is not specified by map(kemel, collection) as was the case with graphics shader programming)

Grid

|

i

Block (0, 1)" Block (1, 1)

Block (1, 1)

Regular application thread running on CPU(the “host”)

115 // not a multiple of threadsPerBlock.x
5; // not a multiple of threadsPerBlock.y

const int Nx
const int Ny

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

AUDAkernel definition

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],

float C[Ny][Nx])

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int i
int j

// guard against out of bounds array access
if (i < Nx & j < Ny)

C[3][i] = A[3][i] + B[3][1i];
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CUDA execution model

Host CUDA device
(serial execution) (SPMD execution)

Implementation: CPU Implementation: GPU



CUDA memory model

Distinct host and device address spaces
Host CUDA device
(serial execution) (SPMD execution)

Implementation: CPU Implementation: GPU



memapy primitive
Movedata between address spaces

Host Device

Device “global”
memory address
space

float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A WhatdoescudaMemcpy remmdyouoP
for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N;
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: directly accessing deviceA[i] is an invalid

// operation here (cannot manipulate contents of deviceA
// directly from host only from device code, since deviceA
// is not a pointer into the host’s address space)



CUDA device memory model

Three distinct types of address spaces visible to kernels

Readable/ writable by
all threads in block

Readable/ writable by
thread

Per-block
shared

memory

Grid 0

«—» Block (0,0) Block (1,0) Block (2, 0)

R W

AAA

»

Block (0,1) Block(1,1) Block(2,1)

Per-thread
private memory

N

Different address spaces reflect different regions of
locality in the program

Aswewill soon see, this hasimportant implications to
efficiency of GPUimplementations of QUDA:

e.g., howmight you schedule threads if you knowa priori
that certain threads access the same variables)?

Device
global

Readable/writable by
all threads



CUDA example: 1D convolution

ot | | oty | et | et | et | | | ot

output[i] = (input[i] + input[i+l] + input[i+2]) / 3.f;




1D convolution in CUDA (version 1)

Onethread per output element
input[0] input[129] input[N-128] input[N+1]
y v v v
b b/ b b
r 1 ] 1
output[0] output[127] output[N-128] output[N-1]
CUDA Kernel

#define THREADS PER BLK 128
global void convolve(int N, float* input, float* output) {

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++) each thread compuites
result += input[index + i]; result for one element
output[index] = result / 3.f; each thread writes result
} to global memory

Host code

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) ); // allocate input array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate output array in device memory

// properly initialize contents of devInput here ...

convolve<<<N/THREADS PER_BLK, THREADS PER BLK>>>(N, devInput, devOutput);



1D convolution in CUDA (version 2)

One thread per output element: stage input data in per-block shared memory

AQUDA Kemel

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; // per-block allocation All threads cooperatively load
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable block’s support region from
ST TR A o =TT BT TS global memoryinto shared
if (threadIdx.x < 2) { memory
support[ THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK]; (total of 130load instructions
} instead of 3 * 128 loadinstructions)

__syncthreads(); barrier (all threads in block)
oat result = 0.0f;
for (int i=@; i<3; i++) eaChthreadcomPUtes
result += support[threadIdx.x + i]; result for one element
output[index] = result / 3.f; Write resulttoglobal
} memory

Host code

int N = 1024 * 1024

cudaMalloc(&devInput, sizeof(float) * (N+2) ); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS PER_BLK, THREADS PER_BLK>>>(N, devInput, devOutput);
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CUDA synchronization constructs

= syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

= Atomic operations
- e.g.,, float atomicAdd(float* addr, float amount)

- CUDA provides atomic operations on both global memory
addresses and per-block shared memory address.

= Host/device synchronization
- Implicit barrier across all threads at return of kernel



Summary: CUDA abstractions

= Execution: thread hierarchy
- Bulk launch of manythreads (this is imprecise... I'll clarify later)

- Two-evel hierarchy: threads are grouped into thread blocks

= Distributed address space
- Built-in memapy primitives to copy between host and device address spaces

- Threedifferent types of device address spaces
- Perthread, per block (“shared”), or per program (“global”)

= Barrier synchronization primitive for threads in thread block

= Atomicprimitives for additional synchronization (shared and global variables)



CUDA semantics

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

}

__shared__ float support[ THREADS PER BLK+2]; // per-block allocation
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIldx.x] = input[index];
if (threadIdx.x < 2) {
support[ THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result / 3.f;

// host code ////////////17//177/1777/777/7717/77/77/777//7/7/17/7/7///////
int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory

cudaMalloc (&devOutput, N);

// allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Consider implementation of
call to pthread_create():

Allocate thread state:
- Stack space for thread

- Allocate control block soOScan
schedule thread

Will running this QJDAprogram
create 1 million instances of
local variables/per-thread stack?

8K instances of shared
variables? (support)

launch over 1 million QUDA
threads (over 8K thread blocks)

24



Assigning work

Desirable for CUDA program to run on

all of these GPUs without modification
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High-end GPU

Note: there is no concept of
num cores in the CUDA

programs |
have shown you. (CUDA thread

(16 cores)

launch is similar in spirit to a forall

loop in data parallel model

examples)
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CUDA compilation

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS PER_BLK+2]; // per block allocation
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support|[threadIldx.x] = input[index];
if (threadIdx.x < 2) {
support[ THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

int N = 1024 * 1024;
cudaMalloc(&devInput, N+2);
cudaMalloc (&devOutput, N);

// allocate array in device memory
// allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

A compiled CUDA device binary
includes:
Program text (instructions)

Information about required resources:
- 128 threads per block

- B bytes of local data per thread

- 130floats (520 bytes) of shared
space per thread block

launch 8K thread blocks



CUDA thread-block assignment

JOoOoooodou --ad

Grid of 8K convolve thread blocks (specified by kernel launch)

Special HW

in GPU

~

Kernel launch command from host

launch(blockDim, convolve)

~

~

~

~

"> Thread block scheduler

[ I | [ [
1] OO0c OO0 OO0c
[ ===z (==== ====(==== ===z (====
i' | | |
I Iiil il Iiil
Shared mem Shared mem Shared mem Shared mem

|

|

Device global memory

(DRAM)

N\
N\
N\

Block resource requirements:

(contained in compiled kermel binary)
128 threads

520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDAassumption: thread block

execution can be carried out in any order
(no dependencies between blocks)

GPUimplementation maps thread blocks
(“work”) to cores using a dynamic

scheduling policy that respects resource
requirements

\ Shared memis fast

on-chip memory



Another instance of our commondesign pattern:
a pool of worker “threads”

[ Problem to solve J
4 )
Sub-problems ; <
(aka “tasks”, “work”) L )
Worker Threads

Other examples:
- ISPC’s implementation of launching tasks
- Creates one pthread for each hyper-thread on CPU. Threads kept alive for remainder of program
- Thread pool in a web server
- Number of threads is a function of number of cores, not number of outstanding requests

- Threads spawned at web server launch, wait for work to arrive



NVIDIAGTX 1080 (2016)

This is one NVIDIA Pascal GP104 streaming multi-processor (SM) unit

‘ Fetch/ ‘ Fetch/ ‘ Fetch/ ‘ Fetch/ ‘ Fetch/ ‘ Fetch/

etc Fetch/
Decode

(256 KB)

Warp Selector Warp Selector Warp Selector Warp Selector
| L L L
| L | L
| L L L
| L | L
| L L L
| L L L
| L - L
N L L L

Warp | Warp Registers for warpexecution Warp | Warp
0 1 contexts: max 64 62 63

“Shared” memorystorage
(96 KB)

L1 cache
(48 KB)

= SIMD functional unit,

. = load/store

control shared across 32

units (1 MUL-ADD per clock)

= SIMD special function unit

(sin, cos, etc.)

SViresource limits:

- Maxwarp execution contexts:
64 (2,048 total QUDAthreads)

- 96 KB of shared memory



Running a single thread block on a SM “col

S sl SR
Warp SeIecic Warp Selector Varp Sele
O0go T B OOogc B OOogooo: B OOo0r N
o) e i e ) o ) o o e
o) o e T o | [
| i ] o ] o
| ] i ] o o] o
o) i ] o o] o
OOgE | OOco e Ooso T B OO .
)| ) o o o] o
Warp  Warp Warp registers: max é4warps Warp | Warp
o ‘I K (256 KB) coe 62 63
“Shared” memorystorage . support _:
(96 KB) ! (520 bytes),
L1 cache
(48 KB)

Recall, CUDA kernels execute as SPMD programs

#define THREADS_PER_BLK 128

__global__void convolve(int N, float* input,
float* output)

{
__shared__float support[ THREADS PER _ BLK+2];

int index = blockIdx.x * blockDim.x +
threadIdx.x;

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {

support[ THREADS PER_BLK+threadIdx.x]
= input[index+THREADS PER_BLK];

}

__syncthreads();
float result = 90.0f; // thread-local

for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called

“warps”.

A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads
per block) (Warps are an important GPU implementation detail, but not a CUDA abstraction!)

SM core operation each clock:

- Select up to four runnable warps from 64 resident on SM core (thread-level parallelism)

- Select up to two runnable instructions per warp (instruction-level parallelism) *



® o @ l
Review: whatis a “warp”?
* A warp is a CUDA implementation detail on NVIDIA GPUs

" On modern NVIDIA hardware, groups of 32 CUDA threads in a
thread block are executed simultaneously using 32-wide SIMD
execution.

ST e In this fictitious NVIDIA GPU example:
Core maintains contexts for 12 warps

4+ 1context
Hapieo Selects one warp to run each clock

thread 64 ctx

<4— \\Narpllcontext
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® o @ l
Review: whatis a “warp”?
= A warp is a CUDA implementation detail on NVIDIA GPUs

" On modern NVIDIA hardware, groups of 32 CUDA threads in a thread
block are executed simultaneously using 32-wide SIMD execution.

- These 32 logical CUDA threads share an instruction stream and therefore
performance can suffer due to divergent execution.

- This mapping is similar to how ISPC runs program instances in a gang.

_ The group of 32 threads sharing an instruction stream is called a warp.
- In a thread block, threads 0-31 fall into the same warp (so do threads

32-63, etc.)
- Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.

- Each “SM” core in the GTX 1080 is capable of scheduling and interleaving

execution
of up to 64 warps.

- So a “SM” core is capable of concurrently executing multiple CUDA thread
blocks.



NVIDIA GTX1080 (20 SIVis)
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320 GB/sec
(256 bit interface)

GPU memory
DDR5S DRAM!
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Summary: geometry of the GTX 1080

1.6 GHz clock

20 SM cores per ch
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8.1 TFLOPs
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GPU memory
(DDR5 DRAM)

1280 interleaved warps

per chip (40,960 CUDA threads/chip)

Up to 20 x 64

180 watts

TDP



Running a QJDAprogram ona GPU



Running the convolve kemel

convolve kemel’s execution requirements:

Each thread block must execute 128 QUDAthreads
Each thread block requires 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size Nis very large, so the host-side kernel launch generates thousands of thread blocks.
#define THREADS PER BLK 128

convolve<<<N/THREADS PER_BLK, THREADS PER_BLK>>>(N, input_array, output _array);

Let’s run this program on the fictitious two-core GPUbelow.

(Note: myfictitious cores are much “smaller” than the GTX1080 SVicores discussed earlier in lecture: they
have fewer execution units, support for fewer active warps, less shared memory;, etc.)

| GPUWorkScheduler |
Fetch/Decode Fetch/Decode
Execution context Execution context
“Shared” “Shared”
storage for 384 CUDA storage for 384 CUDA
threads memory threads memory
storage (1.5KB storage (1.5 KB
(12 warps) ge ( ) (12 warps) ge ( )

Core(Q

Corel




Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 1: host sends QUDAdevice (GPU) a command (“execute this kemel”)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
| GPUWorkScheduler |
Fetch/Decode Fetch/Decode
Execution context “Shared” Execution context “Shared”
storage for 384 CUDA storage for 384 CUDA
hreads ALY threads ALY
: storage (1.5 KB) storage (1.5 KB)
(12 warps) (12 warps)

Core(0

Corel




Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads
and 520 bytes of shared storage) ‘

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 1 GPUWorkScheduler
TOTAL = 1000

Block 0(contexts 0-127) Block 0: support
(520 bytes)

Execution context Execution context

storage for 384 CUDA “Shared” storage for 384 CUDA “Shared”
threads memory threads memory
storage (1.5KB) storage (1.5KB)

Core(0 Corel



Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts

(interleaved mapping shown) &
EXECUTE: convolve
ARGS: N, input_array, output_array

NUM_BLOCKS: 1000

NEXT = 2 GPUWorkScheduler
TOTAL = 1000

Block 0(contexts 0-127) Block 0:support Block 1(contexts 0-127) Block 1:
(520 bytes @0x0) support (520

%

Execution context Execution context

storage for 384 CUDA “Shared” storage for 384 CUDA “Shared”
threads memory threads memory
storage (1.5KB) storage (1.5KB)

Core(0 Corel




Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts

(interleaved mapping shown)

EXECUTE:
ARGS:

NUM_BLOCKS: 1000

'

convolve

N, input_array, output_array

NEXT

3

GPUWorkScheduler

TOTAL = 1000

Block O(contexts 0-127)

Block 2 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Core(0

Block 0:support
(520 bytes @0x0)
Block 2:support
(520 bytes 0x520)

“Shared”
memory
storage (1.5KB)

Block 1(contexts 0-127)

Execution context
storage for 384 CUDA
threads

Corel

Block 1:
support (520
bytes @0x0)

“Shared”
memory
storage (1.5KB)
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Running the QUDAkemel

Kermnel's execution requirements:

Each thread block must execute 128 QUDA threads

Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory
Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).

Onlytwo thread blocks fit ona core

(third block won'tfit due to insufficient shared storage 3 x 520 bytes > 1.5KB)

EXECUTE:

v

convolve

ARGS:
NUM_BLOCKS: 1000

N, input_array, output_array

NEXT = 4
TOTAL = 1000

GPUWorkScheduler

Block O(contexts 0-127)

Block 2 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Core(0

Block 0:support
(520 bytes @0x0)
Block 2:support
(520 bytes 0x520)

“Shared”
memory
storage (1.5KB)

Block 1(contexts 0-127)

Block 3 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Corel

Block 1:

support (520
as @OXC

Block 3: support
(520 bytes @
0x520

“Shared”
memory
storage (1.5KB)
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Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 4. thread block 0 completes on core 0

EXECUTE:

'

convolve

ARGS:
NUM_BLOCKS: 1000

N, input_array, output_array

NEXT = 4
TOTAL = 1000

GPUWorkScheduler

Block 2 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Core(0

Block 2: support
(520 bytes 0x520)

“Shared”
memory
storage (1.5KB)

Block 1(contexts 0-127)

Block 3 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Corel

Block 1:support

(520 bytes @0x0)

Block 3: support
(520 bytes @0x520)

“Shared”
memory
storage (1.5KB)
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Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 5: block 4is scheduled on core 0 (mapped to execution contexts 0-127)

EXECUTE:

'

convolve

ARGS:
NUM_BLOCKS: 1000

N, input_array, output_array

NEXT = 5
TOTAL = 1000

GPUWorkScheduler

Block 2 (contexts 128-255)
Execution context

storage for 384 CUDA
threads

Core(0

Block 2: support
(520 bytes 0x520)

“Shared”
memory
storage (1.5KB)

Block 1(contexts 0-127)
Block 3 (contexts
128-255)

Execution context
storage for 384 CUDA
threads

Corel

Block 1:support

(520 bytes @0x0)

Block 3: support
(520 bytes @0x520)

“Shared”
memory
storage (1.5KB)
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Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 6: thread block 2 completes on core 0

EXECUTE:
ARGS:

'

convolve

N, input_array, output_array

NUM_BLOCKS: 1000

NEXT = 5
TOTAL = 1000

GPUWorkScheduler

Block 4 (contexts 0-127)

Execution context
storage for 384 CUDA
threads

Core(0

Block 4:
support (520
bytes @0x0)

“Shared”
memory
storage (1.5KB)

Block 1(contexts 0-127)
Block 3 (contexts
128-255)

Execution context
storage for 384 CUDA
threads

Corel

Block 1:support

(520 bytes @0x0)

Block 3: support
(520 bytes @0x520)

“Shared”
memory
storage (1.5KB)
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Running the QUDAkemel

Kermnel's execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 6 GPUWorkScheduler

TOTAL = 1000

threads

Block 4 (contexts 0-127)

Block 5 (contexts 128-255) ovtes @0xC
Block 5:support

Execution context . ,
storage for 384 CUDA Shared

Block 4:
support (520

(520 bytes 0x520)

memory

storage (1.5KB)

Core(0

Execution co

threads

Block 1(contexts 0-127) Block 1:support
(520 bytes @0x0)
Block 3 (contexts
128-255) Block 3: support
(520 bytes @0x520)

ntext

storage for 384 CUDA “Shared”

memory

storage (1.5KB)

Corel
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More advanced scheduling
questions:

(If you understand the following examples you really
understand how CUDA programs run on a GPU, and also
have a good handle on the work scheduling issues we’ve

discussed in the course up to this point.)



Why must CUDA allocate execution contexts for all
threads in a block?

__global__void convolve(int N, float* input,
float* output)

{

__shared__float support[THREADS PER BLK+2];
int index = blockIdx.x * blockDim.x +

threadIdx.x;

[

Hjn

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
support[ THREADS PER_BLK+threadIdx.x]
= input[index+THREADS PER BLK];

}

| o o
I

IO

N | |

| |

)
{1

I

| o o
N o |
)

O00OO0O0OOE
EEEEEEEN
0] ] o o] ]
0000000

O o
] o o |

__syncthreads();

Warp registers (for 4 warps)
Warp Warp Warp Warp
0 1 2 3

float result = 0.0f; // thread-local
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

“Shared” memory storage
(96 KB) }

output[index] = result;

Imagine a thread block with 256 CUDA
threads (see code, top-right)

CUDA kernels may create dependencies between
threads in a block

Assume a fictitious SM core with only 4 warps worth  gimplest exampleis____syncthreads()

of parallel execution in HW (illustrated above) Threads in a block cannot be executed by the

Why not just run four warps (threads 0-127) to system in any order when dependencies exist.
completion then run next four warps (threads 128-255)CUDA semantics: threads in a block ARE running

to completion in order to execute the entire thread concurrently. If a thread in a block is runnable it
block? will eventually be run! (no deadlock)




Implementation of CUDA abstractions

= Thread blocks can be scheduled in any order by the system

System assumes no dependencies between blocks

Logically concurrent
- Alot like ISPC tasks, right?

= CUDA threads in same block DO run at the same time

-  When block begins executing, all threads are running

(these semantics impose a scheduling constraint on the system)

A CUDA thread block is itself an SPMD program (like an ISPC gang of program
- instances) Threads in thread block are concurrent, cooperating “workers”

= CUDA implementation:

- A NVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances
(but unlike an ISPC gang, the warp concept does not exist in the programming model*

- All warps in a thread block are scheduled onto the same core, allowing for high-BW/low
latency communication through shared memory variables

- When all threads in block complete, block resources (shared memory allocations, warp
execution contexts) become available for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle andvote



Consider a program that creates a histogram:

= This example: build a histogram of values in an array
- All CUDA threads atomically update shared variables in global memory

= Notice | have never claimed CUDA thread blocks were guaranteed to be
independent. | only stated CUDA reserves the right to schedule them in any order.

= This is valid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing

more)
atomicAdd(&counts[A[i]], 1); N atomicAdd(&counts|[A[i]], 1);

Thread block 0 Thread block N

int counts[10]

int A|N]
int*A={0,3,4,1,9,2, ... ,b8,4,61} [//array of integers between 0-9




But is this reasonable CUDA code?

= Consider implementation of on a single core GPU with
resources for one CUDA thread block per core

What happens if the CUDA implementation runs block O first?

What happens if the CUDA implementation runs block 1 first?

//do stuff here while(atomicAdd(&myFlag, 0) == 0)
{}

atomicAdd(&myFlag, 1);

//do stuff here
Thread block 0 Thread block 1

‘ int myFlag ‘

(assume myFlag s initialized to 0)




“Persistent thread” CUDA programming style

#define THREADS_PER_BLK 128

#define BLOCKS_PER_CHIP 20 * (2048/128) // specific to GTX 1080 GPU
__device__ int workCounter = 0; // global mem variable

__global__ void convolve(int N, float* input, float* output) {

__shared__ int startingIndex;

__shared__ float support[THREADS PER_BLK+2];

while (1) {

if (threadIdx.x == 0)

startingIndex = atomicInc(workCounter, THREADS PER_BLK);

__syncthreads();
if (startingIndex >= N)
break;

int index = startingIndex + threadIdx.x; // thread local

support[threadIdx.x] = input[index];
if (threadIdx.x < 2)

support[ THREADS PER_BLK+threadIdx.x]

__syncthreads();

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)
result += support[threadIdx.x + i];
output[index] = result;

__syncthreads();

}
}

[/ host code /////////1/1171171777777777777777777777777/77/77/77/77/

int N = 1024 * 1024;

cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory
// properly initialize contents of devInput here ...

convolve<<<BLOCKS PER CHIP, THREADS PER_BLK>>>(N, devInput, devOutput);

// shared across block

input[index+THREADS PER_BLK];

Idea: write QUDAcode that requires
knowledge of the number of cores and
blocks per core that are supported by
underlying GPUimplementation.

Programmer launches exactly as many
thread blocks as will fill the GPU

(Program makes assumptions about GPU
implementation: that GPUwiill in fact run
all blocks concurrently. Ugg!)

Now;, work assignment to blocks is
implemented entirely by the application

(circumvents GPU'sthread block scheduler)

Now the programmer’s mental model is
that *all* QUDAthreads are concurrently
running onthe GPUat once.



CUDA summary

" Execution semantics
= Partitioning of problem into thread blocks is in the spirit of the data-parallel model

(intended to be machine independent: system schedules blocks onto cores)

= Threads in a thread block actually do run concurrently (they cooperate)

- Inside a single thread block: SPMD shared address space programming
= There are subtle, but notable differences between these models of execution. Make sur

yvou understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

" Memory semantics

- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about local/shared/
global memory as being distinct address spaces)

" Key implementation details:
= Threads in a thread block are scheduled onto same core to allow fast communication

through shared memory
= Threads in a thread block are are grouped into warps for SIMD on GPU hardware



