Roofline Model

The Roofline Model

DATA

CALCULATIONS
(+,-, 1, % ...0)

; DATA

Core | Core

2 ICSC 2014, Shanghai, China © 2014 IBM Corporation

The Roofline Model

The roofline model was introduced in 2009 by Williams et.al.
« Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76. DOI=10.1145/1498765.1498785

http://doi.acm.org/10.1145/1498765.1498785

It provides an easy way to get performance bounds for compute and memory bandwidth
bound computations.

It relies on the concept of Computational Intensity (Cl) — sometimes also called Arithmetic
or Operational Intensity.

The Roofline Model provides a relatively simple way for performance estimates
based on the computational kernel and hardware characteristics.

Performance [GF/s] = function (hardware and software characteristics)

http://doi.acm.org/10.1145/1498765.1498785

FLOPS : Bytes Balance

DATA

CALCULATIONS

FLOPS:Bytes ratio is ol

the basic variable of the
Roofline model

4 N Y4)

for (i=0; i < N; i=i+1) for (i=0; i < N; i=i+1) for (i=0; i < N; i=i+1)
ali] = bJ[i] a[i] = b[i]*b[i]+bl[i] a[i] = b[i]*b[i]+sin(bi])+exp(bli])

o J\

DATA TRANSFER, DATATRANSFER,
NO FLOPS ADDs and MULs

4 4

The Roofline Model: Principal Components to Performance

32

Computation
[GF/s]

Communication

(GB/s] Locality

The Roofline Model: Principal Components to Performance

Performance can be estimated
Compute

from hardware and kernel characteristics

Communica

fion Locality

Kernels can be Compute bounded (DGEMM) or Communication bounded (DAXPY)
(kernels are rarely well balanced)

Some hardware is more communication oriented than another (high memory BW)

Some hardware is more computation oriented than another (high FLOPSs)

Mapping kernel characteristics to hardware characteristics (or vice-versa) — performance

The Roofline Model

The Roofline Model - is a tool to understand the kernel/hardware limitation

and it is also a tool for kernel optimization

Performance is upper bounded by:
1) the peak flop rate

2) the streaming bandwidth

Performance [GF/s]

BW FLOP
limited limited

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(bli])+exp(b[i])

for (i=0; i < N; i=#1)
ali] = b[i]*b[i

for (i=0; i < N; i=i+1) /
ali] = 2.3*b[i]

Performance [GF/s]

Arithmetic Intensity
(FLOPs/Byte)

The Roofline Model: Arithmetic Intencity (Al)

FLOPS / Bytes ratio — one of the basic characteristics of a kernel

1. ADD
_ _ _ 2. (8 byte) loads
for (i = 0; i < N; ++i) 1 (8 byte) write
z[i] = i +y(i] Al =1/ (2*8 + 8) = 1/24*
1 ADD
for (i=0; i <N; ++i) 1. MUL
Z[i] = X[i+y[]*x[i] 2. (8 byte) loads
1 (8 byte) write
Al=2/(2*8 + 8) = 1/12*
for (i = 0; i < N; ++i){
11 =A_offset[i; 12 =A_offset[i+1] 1 f\\ﬂ%ﬁ)_
for (1= 01} < (12-11); ++) 2 (8 byte) + 1 (4 bytes) oads
sum += A[l1+j] * x[col_index [I2+i]]; _ Dyte)write
y[i] = sum: Al=2/(2*8 +4 +8)=1/14
}

* because of write-allocate traffic on cache-based systems kernel
would actually requires an extra read for Z and have even lower All.

The Roofline Model: Arithmetic Intencity (Al)

Arithmetic |

10

BLAS L1,
SpMv

Particle

BLAS L3 methods
FFT
stencil

The Roofline Model: Kernel-Hardware mapping

Double precision performance (Gflop/s)

11

2048,
10247 —|BM BG/Q
512
256+
128,
64
32|
163

8

1

— Intel Sandy Bridge

——AMD Abu Dhabi v

— Fujitsu FX10
|==NVIDIA Kepler
Intel Xeon Phi

FMM M2L (Cartesian) | N

LDGEMM e B

FMM M2L (Spherical)

"6 1/8 1/4 12 1 2 4 8 16 32
Operational intensity (flop/byte)

FMM P2P

64 128 256

The trend is for architectures to have ever
decreasing machine balance (the point
where the bandwidth roof meets the ceiling
moves to the right).

More and more algorithms are going to find
themselves memory bound.

Even DGEMM can run into trouble
depending on the blocking factor chosen.

A “balanced” architecture can also be a
“crippled” one, e.g. low-end GPUs with
1/24th the DP peak performance.

Youcan achieve a higher percentage of a
lower peak.

It is an art to find a perfect match between kernel and hardware characteristics

In another words it requires a lot of work to create a kernel that will exhaust both, the memory BW and
FLOPs capacity at the same time. (many times it is even impossible)

Performance [GF/s]

»
»

Computational Intensity (FLOPS/BYTE)

The Roofline Model: Performance Limiting Factors

Performance [GF/s]

13

Arithmetic Intensity (FLOPS/BYTE)

SIMD
ILP

TLP

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors

Performance [GF/s]

14

Data

prefetch NUMA
Stride
access

v

Arithmetic Intensity (FLOPS/BYTE)

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance limiting factors

Performance [GF/s]

15

/|

/

»
»

Computational Intensity (FLOPS/BYTE)

N —is large, i.e., buffer does not fit
cache

for (i=0; i < N; ++i)
a[i] = buffer[i] + b[i];

for (i=0; i < N; ++i)
cli] = bufferi] + d[il;

Al total=2/(2*3*8)=1/24;

for (i=0; i < N; ++i){
ali] = buffer[i] + b[i];
c[i] = buffer[i] + d[i];

}
Al = 2/(5*8) = 1/ 20;

Performance [GF/s]

Arithmetic Intensity (FLOPS/BYTE)

sum = 0;
for (i=0; i < N; ++i)
sum = sum + a[i;

sumO = sum1 = sum2 = sum3 = 0;
for (i=0; i < N; i+=4){
sumO =sumO0 + a[i |;
sum1 = sum1 + a[i+1];
sum2 = sum2 + afi+2];
sum3 = sum3 + a[i+3];
}
sumO = sum0O+sum1;
sum2 = sum2+sum3;
sum = sumQ0+sum2;

EXAMPLES and EXERCISES

Example 1: DAXPY

Consider DAXPY : for (i=0; i< N; ++i) y[i] = a*x][i]+V]i]

(1134

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node)

Performance estimates:

Al =2/(3"8)=1/12

7.11/(1/12)=85.32
204.8 /85.32 = 2.4 GF/s

)

g 112 <7.11 —

— 1204.8 We are in the memory BW
(D) ..

O limited area on the

g Roofline plot

&

(D)

o

7.11

Arithmetic Intensity (FLOPS/BYTE)

Example 1: DAXPY

19

Consider DAXPY : for (i=0;i < N; ++) y[i] = a*x[i]+V[i]

(1334

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic
per node
(Bytes/
cycle)
1 0.0879111 0.455 3.519
2 0.044039 0.907 7.022
4 0.022151 1.801 13.94
8 0.0174019 2.284 17.686
16 0.017447 2.287 17.719

Performance estimates:
Al=2/(3*8)=1/12

112 <7 —
We are in the memory BW
limited area on the roofline

plot
7.11/(1/12)=385.32

204.8 /85.32 = 2.4 GF/s

Example 2

20

Consider DAXPY : for (i=0;i < N; ++) y[i] = a*x[i[+y[i] + x[i]*x[i]

(1334

For each " : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node): Performance estimates:

Al = 4/(3*8)=1/6

16 <7 —
204 .8 We are in the memory BW
limited area on the roofline

plot
7.11/(1/6)=42.66

204.8 / 42.66 = 4.8 GF/s

Performance [GF/s]

7.11

Arithmetic Intensity (FLOPS/BYTE)

Example 2

21

Consider : for (i= 0;i < N; ++i) y[i] = a*x[i[+y[i] +x[i]*x[i]

(1334

For each " : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic
per node
1 0.106501 0.751 2.906
2 0.053323 1.499 5.802
4 0.0267339 2.989 11.566
8 0.0176179 4.532 17.545

16 0.0174541 4.573 17.712

Performance estimates:
Al=4/3"8)=1/6

16 <7 —
We are in the memory BW

limited area on the roofline

plot
7.11/(1/6)=42.66

204.8 / 42.66 = 4.8 GF/s

Example 3

22

Consider for (i = 0; i < N; ++i)

y[i] = a*x[il+y[i] + x[i]"x[i] + SIN(x[i])

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads

1
2
4
8
16

32

64

Time [s]

0.615393
0.307695
0.153861
0.076983
0.0385199

0.0217798

0.018496

1.755
3.51
7.018
14.023
28.008

49.461

58.137

GFLOPS DDR traffic per

node

0.503
1.006
2.244

4.02
8.034

14.202

16.73

Examples 1 and 3

23

ylil = a*x[i]+y[i]

Loads that hitin L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR =0.01 %

y[il = a*x[il+y[i] + x[i]"x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time
moving data:
2.284 GF/s

We spend
less time

moving data
than computing

58.137 GF/s

Examples 1 and 3

24

ylil = a*x[i]+y[i]

Loads that hitin L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR =0.01 %

y[il = a*x[il+y[i] + x[i]"x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time
moving data:
2.284 GF/s
solve time: 17.5 ms

We spend
less time
moving data
than computing
58.137 GF/s
solve time: 18.5 ms

Example: 2D stencil

Consider two
arrays A, and B,
both have
dimension of NxN

CO®O

OO00@0O0
OO0000
OO0000O
OO0000

OO0

B is computed from:
B[]l = Ali-2][j] + Ali-1]0] + C*Afi][] + Ali+1][j] + Ali+2][j] +
Alill-2] + AlllI-11 +Ad][+1] +Alfi][j+2]

Arithmetic intensity: 7 adds, 1 mul, 1 load and 1 store - Al=8/(2*8)=1/2
Estimated performance on BG/Q: 7.11/ (/2) = 14.22;
204.8 /14.22 = 14.4 GF/s

2D Stencil: Algorithm No.

#pragma omp parallel for private(row,col)

for (row = 2; row < (N-2); ++row){

for (col = 2; col < (N-2); ++col) {

B[row][col] = C*A[row][col] +
Afrow][col-1] + A[row][col+1] +
Alrow][col-2] + A[row][col+2] +
Al[row-1][col] + A[row+1][col] +
Al[row-2][col] + A[row+2][col];

HPM info:

Total weighted GFlops = 4.922

Loads that hit in L1 d-cache = 93.05 %
L1P buffer = 5.08 %
L2 cache = 0.00 %
DDR = 1.86 %

We run on a single BGQ node
, 64 threads

We estimated 14.4GF/s

What have we done wrong?

Average DDR traffic per node: Id = 13.680, st = 2.757, total = 16.437 (Bytes/cycle)

26

2D Stencil: Algorithm No. 2

27

#pragma omp parallel for private(rb,cb,row,col)

for (rbo =2;rb <N; rb =rb + row_block _size){ //ROW BLOCKING
for (cb = 2; cb < N; cb =cb + col_block_size){ /| COLUMN BLOCKING

for (row = rb; row < MIN(N-2,rb + row_block_size+1); ++row){
for (col = cb; col < MIN(N-2,cb + col_block_size+1); ++col)

{ B_rcb[row][col] = C*A[row][col] +
Alrow][col-1] + A[row][col+1] +
A[row][col-2] + A[row][col+2] +
Al[row-1][col] + A[row+1][col] +
Al[row-2][col] + A[row+2][col] ;

}
}
}

}

HPM info:
Total weighted GFlops = 12.264
Loads that hit in L1 d-cache = 97.69 %
L1P buffer= 1.26 %
L2 cache = 0.34 %
DDR = 0.70%

We estimated 14.4GF/s
We got 12.264GF/s ...

Average DDR traffic per node: Id = 7.599, st = 6.746, total = 14.346 (Bytes/cycle)

