
1

Roofline Model

© 2014 IBM Corporation

DATA

DATA

CALCULATIONS
(+, -, /, *,)

The Roofline Model

2 ICSC 2014, Shanghai, China

The Roofline Model

3

• The roofline model was introduced in 2009 by Williams et.al.
• Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance

model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76. DOI=10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

• It provides an easy way to get performance bounds for compute and memory bandwidth
bound computations.

• It relies on the concept of Computational Intensity (CI) – sometimes also called Arithmetic
or Operational Intensity.

• The Roofline Model provides a relatively simple way for performance estimates
based on the computational kernel and hardware characteristics.

Performance [GF/s] = function (hardware and software characteristics)

http://doi.acm.org/10.1145/1498765.1498785

DATA

DATA

CALCULATIONS
(+, -, /, *,)

for (i=0; i < N; i=i+1)
a[i] = b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

DATA TRANSFER,
NO FLOPS

DATA TRANSFER,
ADDs and MULs

DATA TRANSFER,
FLOPS

4

FLOPS : Bytes Balance

FLOPS:Bytes ratio is
the basic variable of the
Roofline model

Communication
[GB/s] Locality

Computation
[GF/s]

The Roofline Model: Principal Components to Performance

32

Communica
tion Locality

Compute
Performance can be estimated

6

from hardware and kernel characteristics

Kernels can be Compute bounded (DGEMM) or Communication bounded (DAXPY)
(kernels are rarely well balanced)
Some hardware is more communication oriented than another (high memory BW)

Some hardware is more computation oriented than another (high FLOPs)

Mapping kernel characteristics to hardware characteristics (or vice-versa) → performance

The Roofline Model: Principal Components to Performance

The Roofline Model - is a tool to understand the kernel/hardware limitation
and it is also a tool for kernel optimization

Performance is upper bounded by:

1) the peak flop rate

2) the streaming bandwidth

Pe
rfo

rm
an

ce
 [G

F/
s]

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

BW
limited

7

FLOP
limited

for (i=0; i < N; i=i+1)
a[i] = 2.3*b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

Pe
rfo

rm
an

ce
 [G

F/
s]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

The Roofline Model

8

Arithmetic Intensity
(FLOPs/Byte)

FLOPS / Bytes ratio – one of the basic characteristics of a kernel

for (i = 0; i < N; ++i)
 z[i] = x[i]+y[i]

1. ADD
2. (8 byte) loads

1 (8 byte) write
AI = 1 / (2*8 + 8) = 1/24*

for (i = 0; i < N; ++i)
 z[i] = x[i]+y[i]*x[i]

1 ADD
1. MUL

2. (8 byte) loads
1 (8 byte) write

AI = 2 / (2*8 + 8) = 1/12*

for (i = 0; i < N; ++i){
I1 = A_offset[i]; I2 = A_offset[i+1];
sum = 0.0
for (j = 0; j < (I2-I1); ++j)

sum += A[I1+j] * x[col_index [I2+j]];
y[i] = sum;

}

1 ADD
1 MUL

2 (8 byte) + 1 (4 bytes) loads
1 (8 byte) write

AI = 2 / (2*8 + 4 + 8) = 1/14

9

* because of write-allocate traffic on cache-based systems kernel
would actually requires an extra read for Z and have even lower AI.

The Roofline Model: Arithmetic Intencity (AI)

Arithmetic Intensity

10

FFT
stencil

BLAS L1,
SpMv

BLAS L3
Particle
methods

The Roofline Model: Arithmetic Intencity (AI)

The trend is for architectures to have ever
decreasing machine balance (the point
where the bandwidth roof meets the ceiling
moves to the right).

More and more algorithms are going to find
themselves memory bound.

 Even DGEMM can run into trouble
depending on the blocking factor chosen.

A “balanced” architecture can also be a
“crippled” one, e.g. low-end GPUs with
1/24th the DP peak performance.
➢➢You can achieve a higher percentage of a

lower peak.

11

The Roofline Model: Kernel-Hardware mapping

It is an art to find a perfect match between kernel and hardware characteristics

In another words it requires a lot of work to create a kernel that will exhaust both, the memory BW and
FLOPs capacity at the same time. (many times it is even impossible ….)

Pe
rfo

rm
an

ce
 [G

F/
s]

Computational Intensity (FLOPS/BYTE)

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors
Pe

rfo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

SIMD
ILP

TLP

13

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors
Pe

rfo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

Data
prefetch NUMA

Stride
access

14

N – is large, i.e., buffer does not fit
cache

--

for (i=0; i < N; ++i)
a[i] = buffer[i] + b[i];

for (i=0; i < N; ++i)
c[i] = buffer[i] + d[i];

AI_total = 2 / (2 * 3 * 8) = 1/24;

--

for (i=0; i < N; ++i){
 a[i] = buffer[i] + b[i];

c[i] = buffer[i] + d[i];
}

AI = 2/(5*8) = 1 / 20;

--

Pe
rfo

rm
an

ce
 [G

F/
s]

Computational Intensity (FLOPS/BYTE)

The Roofline Model: Performance limiting factors

15

16

sum = 0;
for (i=0; i < N; ++i)

sum = sum + a[i];

sum0 = sum1 = sum2 = sum3 = 0;
for (i=0; i < N; i+=4){

sum0 = sum0 + a[i];
sum1 = sum1 + a[i+1];
sum2 = sum2 + a[i+2];
sum3 = sum3 + a[i+3];

}
sum0 = sum0+sum1;
sum2 = sum2+sum3;
sum = sum0+sum2;

The Roofline Model: Performance Limiting Factors -
 Instruction Level Parallelism (ILP)

Pe
rfo

rm
an

ce
 [G

F/
s]

Arithmetic Intensity (FLOPS/BYTE)

EXAMPLES and EXERCISES

Pe
rfo

rm
an

ce
 [G

F/
s]

204.8

7.11

Arithmetic Intensity (FLOPS/BYTE)
18

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node)

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7.11 →
We are in the memory BW
limited area on the
Roofline plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

Consider DAXPY : for (i = 0; i < N; ++i)

19

y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic
per node
(Bytes/
cycle)

1 0.0879111 0.455 3.519

2 0.044039 0.907 7.022

4 0.022151 1.801 13.94

8 0.0174019 2.284 17.686

16 0.017447 2.287 17.719

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

Pe
rfo

rm
an

ce
 [G

F/
s]

204.8

7.11

Arithmetic Intensity (FLOPS/BYTE)
20

Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

Example 2

Consider : for (i = 0; i < N; ++i)

21

y[i] = a*x[i]+y[i] +x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node): Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

threads Time [s] GFLOPS DDR traffic
per node

1 0.106501 0.751 2.906

2 0.053323 1.499 5.802

4 0.0267339 2.989 11.566

8 0.0176179 4.532 17.545

16 0.0174541 4.573 17.712

Example 2

Consider

22

for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic per
node

1 0.615393 1.755 0.503

2 0.307695 3.51 1.006

4 0.153861 7.018 2.244

8 0.076983 14.023 4.02

16 0.0385199 28.008 8.034

32 0.0217798 49.461 14.202

64 0.018496 58.137 16.73

Example 3

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

We spend
less time

moving data
than computing

58.137 GF/s

23

Examples 1 and 3

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

solve time: 17.5 ms

We spend
less time

moving data
than computing

58.137 GF/s
solve time: 18.5 ms

24

Examples 1 and 3

Consider two
arrays A, and B,
both have
dimension of NxN

B is computed from:
B[i][j] = A[i-2][j] + A[i-1][j] + C*A[i][j] + A[i+1][j] + A[i+2][j] +
 A[i][j-2] + A[i][j-1] +A[i][j+1] + A[i][j+2]

Arithmetic intensity: 7 adds, 1 mul, 1 load and 1 store → AI = 8 / (2*8) = 1 / 2
Estimated performance on BG/Q: 7.11 / (½) = 14.22;

204.8 / 14.22 = 14.4 GF/s

25

Example: 2D stencil

2D Stencil: Algorithm No. 1

#pragma omp parallel for private(row,col)

for (row = 2; row < (N-2); ++row){
for (col = 2; col < (N-2); ++col) {

B[row][col] = C*A[row][col] +
A[row][col-1] + A[row][col+1] +
A[row][col-2] + A[row][col+2] +
A[row-1][col] + A[row+1][col] +
A[row-2][col] + A[row+2][col] ;

}
}

HPM info:
Total weighted GFlops = 4.922
Loads that hit in L1 d-cache = 93.05 %

L1P buffer = 5.08 %
L2 cache = 0.00 %
DDR = 1.86 %

Average DDR traffic per node: ld = 13.680, st = 2.757, total = 16.437 (Bytes/cycle)

We run on a single BGQ node
, 64 threads

We estimated 14.4GF/s

What have we done wrong?

26

2D Stencil: Algorithm No. 2
#pragma omp parallel for private(rb,cb,row,col)

for (rb = 2; rb < N; rb = rb + row_block_size){ //ROW BLOCKING
for (cb = 2; cb < N; cb = cb + col_block_size){ // COLUMN BLOCKING

for (row = rb; row < MIN(N-2,rb + row_block_size+1); ++row){
for (col = cb; col < MIN(N-2,cb + col_block_size+1); ++col)
{ B_rcb[row][col] = C*A[row][col] +

A[row][col-1] + A[row][col+1] +
A[row][col-2] + A[row][col+2] +
A[row-1][col] + A[row+1][col] +
A[row-2][col] + A[row+2][col] ;

}
}

}
}
HPM info:
Total weighted GFlops = 12.264
Loads that hit in L1 d-cache = 97.69 %

L1P buffer = 1.26 %
L2 cache = 0.34 %
DDR = 0.70 %

Average DDR traffic per node: ld = 7.599, st = 6.746, total = 14.346 (Bytes/cycle)

We estimated 14.4GF/s
We got 12.264GF/s …

27

