
Parallelism and Heterogenity
Scaling Laws

Amdahl’s Law [1967, Gene Amdahl]

2

Maximum speedup achievable on a multicore

}F

Time on 1 core = 1� F

1
+

F

1

Time on N cores =
 (parallel)

 (Serial)

1� F

1
+

F

NSerial
No

Program Phases

Speedup =
1

1�F
1 + F

N

If F = 0.35
@ 4 cores, speedup = 2
@ cores, speedup = 31

Strong scaling vs Weak scaling
Strong Scaling : If new machine has K times more
resources, how much does perf. improve ?

3

Sp
ee

du
p

0
10
20
30
40
50
60
70
80

of cores
1 2 4 8 16 32 64 128 256

0.5
0.9
0.99

Weak Scaling : If new machine has K times more
resources, can we solve a bigger problem size ?

99% Parallel
72x speedup

Amdahl’s Law for Multicores
[Marty and Hill, 2009]

Multicore Chip partitioned into
multiple cores (includes L1 cache)
uncore (Intel terminology for Shared L2 cache, L3)

Resources per-chip bounded
Area, Power, $, or a combination
Bound of total N resources per-chip.
How many cores ? How big each ?

4

L1$

Shared

L1$ L1$ L1$

Mem.

C0 C1 C2 C3

Core Types

Your favorite trick can be used to improve single-
core performance using same resource

becoming increasingly hard to do power-efficiently

Wimpy Core :
Consumes 1 CU (CU: measure of core resources)
performance = 1

Hulk Core:
consumes R CUs
performance = perf(R)

5

If Perf (R) >= R ; always use the hulk cores.
speeds up everything

Unfortunately, life isn’t easy Perf (R) < R

Assume Perf (R) =
reasonable assumption?
Microprocessor examples seem to indicate

How to design core for specific Perf (R)
basic idea: do many instructions in parallel

Hulk Cores

6

p
R

<latexit sha1_base64="MjdJCE7F2MmKym4U1RE7P/GFSrc=">AAAB/nicdVDLSgNBEOyNrxhfUY9eBhPBg4TdqITcAl5yjGIemCxhdjJJhszOrjOzgbAE/AivevQmXv0VT/6Kk02EKFrQUFR1093lhZwpbdsfVmpldW19I72Z2dre2d3L7h80VBBJQusk4IFseVhRzgSta6Y5bYWSYt/jtOmNrmZ+c0ylYoG41ZOQuj4eCNZnBGsj3eU76l7q+Gaa72ZzTsFOgOxC2aB0sSBlB31bOVig1s1+dnoBiXwqNOFYqbZjh9qNsdSMcDrNdCJFQ0xGeEDbhgrsU3XWG7NQJdSNk+On6MSYPdQPpCmhUaIuD8fYV2rie6bTx3qofnsz8S+vzc2LwnFjJsJIU0Hmq/oRRzpAsyxQj0lKNJ8Ygolk5nBEhlhiok1imeVE/ieNYsE5L1xeF3OV6iKbNBzBMZyCAyWoQBVqUAcCAh7hCZ6tB+vFerXe5q0pazFzCD9gvX8BHmGWdQ==</latexit>

Multicores under consideration

7

Symmetric

Asymmetric

Morphing

Symmetric Multicores

How many cores ? How big each core ?

Chip is bounded to N CUs
each core has R CUs

Number of cores per-chip = N/R

For example, lets say N = 16

8

R = 1 R = 4 R = 16

Symmetric Multicore : Performance

Serial Phase (1-F) runs on 1 thread on 1 core
performance Perf (R)
Execution time = (1-F) / Perf (R)

Parallel Phase uses all N/R cores. Core @ Perf (R)
Execution time = F / [Perf (R) * N/R]

9

Speedup =

/

1
1�F

Perf(R) + F⇤R
Perf(R)⇤N

II Phase
More cores!

Serial Phase
 Perf(R)

Symmetric Multicore (Chip = 16 CUs)

Need lots of parallelism in multicore world!

10

Sp
ee

du
p

0

4

8

12

16

Per-core CU
1 2 4 8 16

0.5

(16 cores) (4 cores) (1 core)

R=16
Core=1
Optimal!

Symmetric Multicore (Chip = 16 CUs)

More parallelism helps; but limited speedup!

11

Sp
ee

du
p

0

4

8

12

16

Per-core CU
1 2 4 8 16

0.5
0.9

(16 cores) (4 cores) (1 core)

F=0.9,R=2
Speedup 6.7x @ 8 cores

Applications with high F;
significant performance loss with bigger cores
Performance loss

Symmetric Multicore (Chip = 16 CUs)

12

Sp
ee

du
p

0

4

8

12

16

Per-core CU
1 2 4 8 16

0.5 0.9
0.99 0.999

(16 cores) (4 cores) (1 core)

/ Rp
R

=
p

R

Remember Perf (R) when scaling up CPU = √R
Lets say 1st gen 1 CU system = 1 CU

Now consider 2nd gen 4 CU system
Four 1CU cores or One 4CU core?
When F=0.999; always pick Four 1CU cores

Even parallel fraction not perfectly parallel
Synchronization, Contention, Locks etc
Need SW-Perf(R) (depends on application)

Model-bias towards parallelism

13

F=0.999
Speedup ~4 Speedup = 2

Multicore Moore’s Law

Since 1970s Technology Moore’s Law
Double transistors every 2 years.
Should possibly continue....

Microarchitect’s Moore’s Law
double single-thread performance every 2 years
Stopped due to power required

Multicore’s Moore’s Law
2x cores every 2 years (1 in 2007- 8 in 2010)
Need to double software threads every two years
Need HW to enable 2x threads every two years

14

Symmetric Multicore (Chip = 256 CUs)

15

Sp
ee

du
p

0

32

64

96

128

160

192

224

256

Per-core CU
1 2 4 8 16 32 64 128 256

0.99 0.999

(256 cores) (16 cores) (1 core)

R=2 (vs R=1@16)
80x @ 128 cores

More cores,
lil hulk cores!

R=1
204x @ 256 cores
More wimpy cores

Symmetric Multicore (Chip = 256 CUs)

16

Sp
ee

du
p

0

32

64

96

128

160

192

224

256

Per-core CU
1 2 4 8 16 32 64 128 256

0.5 0.9
0.99 0.999

(256 cores) (16 cores) (1 core)

R=2 (vs R=1@16)
80x @ 128 cores

More cores,
lil hulk cores!

R=1
204x @ 256 cores
More wimpy cores

R=32 (vs R=2@16)
8 cores @ 256/16 CU chip

Hulk cores

Symmetric Multicore (Chip = 256 CUs)

17

Sp
ee

du
p

0

32

64

96

128

160

192

224

256

Per-core CU
1 2 4 8 16 32 64 128 256

0.5 0.9
0.99 0.999

(256 cores) (16 cores) (1 core)

R=2 (vs R=1@16)
80x @ 128 cores

More cores,
lil hulk cores!

R=1
204x @ 256 cores
More wimpy cores

R=32 (vs R=2@16)
8 cores @ 256/16 CU chip

Hulk cores

With more CUs per chip, need hulk cores

Cost-Effective Multicore Computing
Is Speedup (N cores) < N that bad ?

It depends on cost of adding cores.
$$$, Power
Cost-ratio = Cost (Ncores) / Cost (1)

If chip budget is cost, Cost-ratio << 1.
Much of multicore cost outside core [IEEE 1995]
Caches, Memory Controller, SSD etc.

If power is cost, cost-ratio can approach 1

Multicore computing effective if Cost-ratio > N
Intel 6 core = $1600; AMD 10-core 2000$
If 10-core speedup >1.25x, then cost-effective 18

Multicores in Servers and Clients

Multicore parallelism where cost-ratio is low and
applications have the parallelism (high F)

Clients (high F is hard)
Smart-phones just moved to dual-cores
how many cores?

Servers
can use vast parallelism (Mapreduce, data analysis)
natural overlap across clients 19

Causing move to cloud computing

Asymmetric Multicores

Enhance some cores to improve performance for
serial phase.

Many designs possible (In this talk, 1 Hulk core)

How to enhance core ?
coming up in last 1/3rd of class

20

Total chip resources = N CUs

Assume two-types of cores on-chip
One core = R CU, N-R 1 CU cores
Total cores = N-R+1

Asymmetric Multicores

21

Asymmetric Cores : Performance

22

}F
 (parallel)

 (Serial)
Serial Phase = (1-F) / K*Perf (R)
Parallel Phase = (F) / [K*Perf (R)
 + N-(K*R)]

where K is # of Hulk cores.

In our case, K = 1

Speedup =
1

1�F
Perf(R) + F

Perf(R)+N�R

Asymmetric cores offer great potential
with 1 Hulk core, speedup increases significantly
helps take care of Amdahl’s law

Asymmetric Multicore (Chip = 256 CUs)

23

Sp
ee

du
p

0.00

57.65

115.30

172.95

230.60

Per-core CU
1 2 4 8 16 32 64 128 256

0.5 0.9 0.99 0.999

(256 cores) (1 Hulk, 240 cores) (1 core)

R=41 (vs 3)
216 (vs. 85 cores)

Speedup = 166 (vs 80)

R=118 (vs 28)
139 (vs 9 cores)
Speedup = 65.6

Asymmetric cores provide bang for the buck

Low
parallelism
only Hulk!

Asymmetric Multicore (Chip = 256 CUs)

24

Sp
ee

du
p

0

40

80

120

160

200

240

of Hulk Cores
1 2 4 8 16

0.5 0.9 0.99 0.999

(1 Hulk
240 Wimpy)

(4 Hulk, 192 Wimpy) (16 Hulk)

Higher parallelism,
more wimpy!

As F increases, always increase wimpy cores!

Asymmetric Multicores : Challenge

25

Task Management :
How to schedule computation?

Locality :
How to keep data close to task?

Coordinate Tasks :
How to synchronize data?

Morphing Multicores

Chip consists of N 1CU cores
efficient for parallel phase

At runtime glue R 1CU cores to create R CU core
improves performance for serial phase

How to dynamically glue cores ?
Not the focus; need’s future research

26

Advantage : Can harness all cores on the chip
Core optimized

Morphing Multicores : Performance

N 1CU cores, from which R 1CU cores glued

Serial phase uses R CU core at Perf (R)
execution time = (1-F)/R

Parallel phases uses N cores
execution time = (1-F)/N

27

Speedup =
1

1�F
Perf(R) + F

N

Morphing Multicore (Chip = 256 CUs)

28

Sp
ee

du
p

0
32
64
96

128
160
192
224
256

Hulk-Core CU
1 2 4 8 16 32 64 128 256

0.5 0.9 0.99 0.999

Sp
ee

du
p

0
32
64
96

128
160
192
224
256

Hulk-Core CU
1 2 4 8 16 32 64 128 256

0.5 0.9 0.99 0.999
Morphing multicores are awesome!

Especially at higher chip resource levels

How to glue!

Multicore Amdahl’s Law

29

Symmetric

Asymmetric

Morphing

1
1�F

Perf(R) + F⇤R
Perf(R)⇤N

1
1�F

Perf(R) + F
Perf(R)+N�R

1
1�F

Perf(R) + F
N

Challenges (1/2)

Serial Fraction (1-F) has fine-grain parallelism

Parallel Fraction (F) has serialization overheads
You will learn in the next 2-3 weeks.

Software challenges for asymmetric and dynamic
multicores

How much parallelism in future software?

30

Challenges (2/2)

31

Parallelism all the time ?

Amdahl’s Law affects serial fraction ?
Need to increase core speed.

Lots of walls: Power, Area, Shared caches
How to scale CPU performance?

