
8
Exceptional Control Flow

8.1 Exceptions 759

8.2 Processes 768

8.3 System Call Error Handling 773

8.4 Process Control 774

8.5 Signals 792

8.6 Nonlocal Jumps 817

8.7 Tools for Manipulating Processes 822

8.8 Summary 823

Bibliographic Notes 823

Homework Problems 824

Solutions to Practice Problems 831

758 Chapter 8 Exceptional Control Flow

From the time you first apply power to a processor until the time you shut it off,
the program counter assumes a sequence of values

a0, a1, . . . , an−1

where each ak is the address of some corresponding instruction Ik. Each transition
from ak to ak+1 is called a control transfer. A sequence of such control transfers is
called the flow of control, or control flow, of the processor.

The simplest kind of control flow is a “smooth” sequence where each Ik and
Ik+1 are adjacent in memory. Typically, abrupt changes to this smooth flow, where
Ik+1 is not adjacent to Ik, are caused by familiar program instructions such as jumps,
calls, and returns. Such instructions are necessary mechanisms that allow programs
to react to changes in internal program state represented by program variables.

But systems must also be able to react to changes in system state that are
not captured by internal program variables and are not necessarily related to
the execution of the program. For example, a hardware timer goes off at regular
intervals and must be dealt with. Packets arrive at the network adapter and must
be stored in memory. Programs request data from a disk and then sleep until they
are notified that the data are ready. Parent processes that create child processes
must be notified when their children terminate.

Modern systems react to these situations by making abrupt changes in the
control flow. In general, we refer to these abrupt changes as exceptional control
flow (ECF). ECF occurs at all levels of a computer system. For example, at the
hardware level, events detected by the hardware trigger abrupt control transfers
to exception handlers. At the operating systems level, the kernel transfers control
from one user process to another via context switches. At the application level,
a process can send a signal to another process that abruptly transfers control to
a signal handler in the recipient. An individual program can react to errors by
sidestepping the usual stack discipline and making nonlocal jumps to arbitrary
locations in other functions.

As programmers, there are a number of reasons why it is important for you
to understand ECF:

. Understanding ECF will help you understand important systems concepts.ECF
is the basic mechanism that operating systems use to implement I/O, processes,
and virtual memory. Before you can really understand these important ideas,
you need to understand ECF.

. Understanding ECF will help you understand how applications interact with the
operating system. Applications request services from the operating system by
using a form of ECF known as a trap or system call. For example, writing data
to a disk, reading data from a network, creating a new process, and terminating
the current process are all accomplished by application programs invoking
system calls. Understanding the basic system call mechanism will help you
understand how these services are provided to applications.

. Understanding ECF will help you write interesting new application programs.
The operating system provides application programs with powerful ECF

Section 8.1 Exceptions 759

mechanisms for creating new processes, waiting for processes to terminate,
notifying other processes of exceptional events in the system, and detecting
and responding to these events. If you understand these ECF mechanisms,
then you can use them to write interesting programs such as Unix shells and
Web servers.

. Understanding ECF will help you understand concurrency. ECF is a basic
mechanism for implementing concurrency in computer systems. The following
are all examples of concurrency in action: an exception handler that interrupts
the execution of an application program; processes and threads whose exe-
cution overlap in time; and a signal handler that interrupts the execution of
an application program. Understanding ECF is a first step to understanding
concurrency. We will return to study it in more detail in Chapter 12.

. Understanding ECF will help you understand how software exceptions work.
Languages such as C++ and Java provide software exception mechanisms via
try, catch, and throw statements. Software exceptions allow the program
to make nonlocal jumps (i.e., jumps that violate the usual call/return stack
discipline) in response to error conditions. Nonlocal jumps are a form of
application-level ECF and are provided in C via the setjmp and longjmp
functions. Understanding these low-level functions will help you understand
how higher-level software exceptions can be implemented.

Up to this point in your study of systems, you have learned how applications
interact with the hardware. This chapter is pivotal in the sense that you will begin
to learn how your applications interact with the operating system. Interestingly,
these interactions all revolve around ECF. We describe the various forms of ECF
that exist at all levels of a computer system. We start with exceptions, which lie at
the intersection of the hardware and the operating system. We also discuss system
calls, which are exceptions that provide applications with entry points into the
operating system. We then move up a level of abstraction and describe processes
and signals, which lie at the intersection of applications and the operating system.
Finally, we discuss nonlocal jumps, which are an application-level form of ECF.

8.1 Exceptions

Exceptions are a form of exceptional control flow that are implemented partly
by the hardware and partly by the operating system. Because they are partly
implemented in hardware, the details vary from system to system. However, the
basic ideas are the same for every system. Our aim in this section is to give you a
general understanding of exceptions and exception handling and to help demystify
what is often a confusing aspect of modern computer systems.

An exception is an abrupt change in the control flow in response to some
change in the processor’s state. Figure 8.1 shows the basic idea.

In the figure, the processor is executing some current instruction Icurr when a
significant change in the processor’s state occurs. The state is encoded in various
bits and signals inside the processor. The change in state is known as an event.

760 Chapter 8 Exceptional Control Flow

Aside Hardware versus software exceptions

C++ and Java programmers will have noticed that the term “exception” is also used to describe the
application-level ECF mechanism provided by C++ and Java in the form of catch, throw, and try

statements. If we wanted to be perfectly clear, we might distinguish between “hardware” and “software”
exceptions, but this is usually unnecessary because the meaning is clear from the context.

Figure 8.1
Anatomy of an exception.
A change in the processor’s
state (an event) triggers
an abrupt control transfer
(an exception) from the
application program to an
exception handler. After
it finishes processing, the
handler either returns
control to the interrupted
program or aborts.

Application
program

Exception
handler

Exception
Exception
processing

Exception
return

(optional)

Event
occurs

here

Icurr
Inext

The event might be directly related to the execution of the current instruction.
For example, a virtual memory page fault occurs, an arithmetic overflow occurs,
or an instruction attempts a divide by zero. On the other hand, the event might be
unrelated to the execution of the current instruction. For example, a system timer
goes off or an I/O request completes.

In any case, when the processor detects that the event has occurred, it makes
an indirect procedure call (the exception), through a jump table called an exception
table, to an operating system subroutine (the exception handler) that is specifically
designed to process this particular kind of event. When the exception handler
finishes processing, one of three things happens, depending on the type of event
that caused the exception:

1. The handler returns control to the current instruction Icurr, the instruction
that was executing when the event occurred.

2. The handler returns control to Inext, the instruction that would have executed
next had the exception not occurred.

3. The handler aborts the interrupted program.

Section 8.1.2 says more about these possibilities.

8.1.1 Exception Handling

Exceptions can be difficult to understand because handling them involves close
cooperation between hardware and software. It is easy to get confused about

Section 8.1 Exceptions 761

Figure 8.2
Exception table. The
exception table is a
jump table where entry
k contains the address
of the handler code for
exception k.

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n ! 1

. . .

. . .

0
1
2

n ! 1

Exception
table

Figure 8.3
Generating the address
of an exception handler.
The exception number is
an index into the exception
table.

. . .

0
1
2

n – 1

Exception table

Address of entry
for exception # k

Exception number
(x 8)

Exception table
base register

+

which component performs which task. Let’s look at the division of labor between
hardware and software in more detail.

Each type of possible exception in a system is assigned a unique nonnegative
integer exception number. Some of these numbers are assigned by the designers
of the processor. Other numbers are assigned by the designers of the operating
system kernel (the memory-resident part of the operating system). Examples of
the former include divide by zero, page faults, memory access violations, break-
points, and arithmetic overflows. Examples of the latter include system calls and
signals from external I/O devices.

At system boot time (when the computer is reset or powered on), the operat-
ing system allocates and initializes a jump table called an exception table, so that
entry k contains the address of the handler for exception k. Figure 8.2 shows the
format of an exception table.

At run time (when the system is executing some program), the processor
detects that an event has occurred and determines the corresponding exception
number k. The processor then triggers the exception by making an indirect pro-
cedure call, through entry k of the exception table, to the corresponding handler.
Figure 8.3 shows how the processor uses the exception table to form the address of
the appropriate exception handler. The exception number is an index into the ex-
ception table, whose starting address is contained in a special CPU register called
the exception table base register.

An exception is akin to a procedure call, but with some important differences:

. As with a procedure call, the processor pushes a return address on the stack
before branching to the handler. However, depending on the class of excep-
tion, the return address is either the current instruction (the instruction that

762 Chapter 8 Exceptional Control Flow

was executing when the event occurred) or the next instruction (the instruc-
tion that would have executed after the current instruction had the event not
occurred).

. The processor also pushes some additional processor state onto the stack that
will be necessary to restart the interrupted program when the handler returns.
For example, an x86-64 system pushes the EFLAGS register containing the
current condition codes, among other things, onto the stack.

. When control is being transferred from a user program to the kernel, all of
these items are pushed onto the kernel’s stack rather than onto the user’s
stack.

. Exception handlers run in kernel mode (Section 8.2.4), which means they have
complete access to all system resources.

Once the hardware triggers the exception, the rest of the work is done in
software by the exception handler. After the handler has processed the event, it
optionally returns to the interrupted program by executing a special “return from
interrupt” instruction, which pops the appropriate state back into the processor’s
control and data registers, restores the state to user mode (Section 8.2.4) if the
exception interrupted a user program, and then returns control to the interrupted
program.

8.1.2 Classes of Exceptions

Exceptions can be divided into four classes: interrupts, traps, faults, and aborts.
The table in Figure 8.4 summarizes the attributes of these classes.

Interrupts

Interrupts occur asynchronously as a result of signals from I/O devices that are
external to the processor. Hardware interrupts are asynchronous in the sense
that they are not caused by the execution of any particular instruction. Exception
handlers for hardware interrupts are often called interrupt handlers.

Figure 8.5 summarizes the processing for an interrupt. I/O devices such as
network adapters, disk controllers, and timer chips trigger interrupts by signaling
a pin on the processor chip and placing onto the system bus the exception number
that identifies the device that caused the interrupt.

Class Cause Async/sync Return behavior

Interrupt Signal from I/O device Async Always returns to next instruction
Trap Intentional exception Sync Always returns to next instruction
Fault Potentially recoverable error Sync Might return to current instruction
Abort Nonrecoverable error Sync Never returns

Figure 8.4 Classes of exceptions. Asynchronous exceptions occur as a result of events in I/O devices that
are external to the processor. Synchronous exceptions occur as a direct result of executing an instruction.

Section 8.1 Exceptions 763

Figure 8.5
Interrupt handling.
The interrupt handler
returns control to the
next instruction in the
application program’s
control flow.

(2) Control passes
to handler after current

instruction finishes

(3) Interrupt
handler runs

(4) Handler
returns to

next instruction

(1) Interrupt pin
goes high during

execution of
current instruction

Icurr
Inext

Figure 8.6
Trap handling. The trap
handler returns control
to the next instruction in
the application program’s
control flow.

(2) Control passes
to handler

(3) Trap
handler runs

(4) Handler returns
to instruction

following the syscall

(1) Application
makes a

system call
syscall

Inext

After the current instruction finishes executing, the processor notices that the
interrupt pin has gone high, reads the exception number from the system bus, and
then calls the appropriate interrupt handler. When the handler returns, it returns
control to the next instruction (i.e., the instruction that would have followed the
current instruction in the control flow had the interrupt not occurred). The effect is
that the program continues executing as though the interrupt had never happened.

The remaining classes of exceptions (traps, faults, and aborts) occur syn-
chronously as a result of executing the current instruction. We refer to this in-
struction as the faulting instruction.

Traps and System Calls

Traps are intentional exceptions that occur as a result of executing an instruction.
Like interrupt handlers, trap handlers return control to the next instruction. The
most important use of traps is to provide a procedure-like interface between user
programs and the kernel, known as a system call.

User programs often need to request services from the kernel such as reading
a file (read), creating a new process (fork), loading a new program (execve), and
terminating the current process (exit). To allow controlled access to such kernel
services, processors provide a special syscall n instruction that user programs can
execute when they want to request service n. Executing the syscall instruction
causes a trap to an exception handler that decodes the argument and calls the
appropriate kernel routine. Figure 8.6 summarizes the processing for a system call.

From a programmer’s perspective, a system call is identical to a regular func-
tion call. However, their implementations are quite different. Regular functions

764 Chapter 8 Exceptional Control Flow

Figure 8.7
Fault handling.
Depending on whether the
fault can be repaired or
not, the fault handler either
re-executes the faulting
instruction or aborts.

(2) Control passes
to handler

(3) Fault
handler runs

(4) Handler either re-executes
current instruction or aborts

(1) Current
instruction

causes a fault
Icurr

abort

Figure 8.8
Abort handling. The abort
handler passes control to a
kernel abort routine that
terminates the application
program.

(2) Control passes
to handler

(3) Abort
handler runs

(4) Handler returns
to abort routine

(1) Fatal hardware
error occurs

Icurr

abort

run in user mode, which restricts the types of instructions they can execute, and
they access the same stack as the calling function. A system call runs in kernel
mode, which allows it to execute privileged instructions and access a stack defined
in the kernel. Section 8.2.4 discusses user and kernel modes in more detail.

Faults

Faults result from error conditions that a handler might be able to correct. When
a fault occurs, the processor transfers control to the fault handler. If the handler
is able to correct the error condition, it returns control to the faulting instruction,
thereby re-executing it. Otherwise, the handler returns to an abort routine in the
kernel that terminates the application program that caused the fault. Figure 8.7
summarizes the processing for a fault.

A classic example of a fault is the page fault exception, which occurs when
an instruction references a virtual address whose corresponding page is not res-
ident in memory and must therefore be retrieved from disk. As we will see in
Chapter 9, a page is a contiguous block (typically 4 KB) of virtual memory. The
page fault handler loads the appropriate page from disk and then returns control
to the instruction that caused the fault. When the instruction executes again, the
appropriate page is now resident in memory and the instruction is able to run to
completion without faulting.

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors such
as parity errors that occur when DRAM or SRAM bits are corrupted. Abort
handlers never return control to the application program. As shown in Figure 8.8,
the handler returns control to an abort routine that terminates the application
program.

Section 8.1 Exceptions 765

Exception number Description Exception class

0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32–255 OS-defined exceptions Interrupt or trap

Figure 8.9 Examples of exceptions in x86-64 systems.

8.1.3 Exceptions in Linux/x86-64 Systems

To help make things more concrete, let’s look at some of the exceptions defined
for x86-64 systems. There are up to 256 different exception types [50]. Numbers
in the range from 0 to 31 correspond to exceptions that are defined by the Intel
architects and thus are identical for any x86-64 system. Numbers in the range from
32 to 255 correspond to interrupts and traps that are defined by the operating
system. Figure 8.9 shows a few examples.

Linux/x86-64 Faults and Aborts

Divide error. A divide error (exception 0) occurs when an application attempts
to divide by zero or when the result of a divide instruction is too big for
the destination operand. Unix does not attempt to recover from divide
errors, opting instead to abort the program. Linux shells typically report
divide errors as “Floating exceptions.”

General protection fault. The infamous general protection fault (exception 13)
occurs for many reasons, usually because a program references an unde-
fined area of virtual memory or because the program attempts to write to a
read-only text segment. Linux does not attempt to recover from this fault.
Linux shells typically report general protection faults as “Segmentation
faults.”

Page fault. A page fault (exception 14) is an example of an exception where
the faulting instruction is restarted. The handler maps the appropriate
page of virtual memory on disk into a page of physical memory and then
restarts the faulting instruction. We will see how page faults work in detail
in Chapter 9.

Machine check. A machine check (exception 18) occurs as a result of a fatal
hardware error that is detected during the execution of the faulting in-
struction. Machine check handlers never return control to the application
program.

Linux/x86-64 System Calls

Linux provides hundreds of system calls that application programs use when they
want to request services from the kernel, such as reading a file, writing a file, and

766 Chapter 8 Exceptional Control Flow

Number Name Description Number Name Description

0 read Read file 33 pause Suspend process until signal arrives
1 write Write file 37 alarm Schedule delivery of alarm signal
2 open Open file 39 getpid Get process ID
3 close Close file 57 fork Create process
4 stat Get info about file 59 execve Execute a program
9 mmap Map memory page to file 60 _exit Terminate process

12 brk Reset the top of the heap 61 wait4 Wait for a process to terminate
32 dup2 Copy file descriptor 62 kill Send signal to a process

Figure 8.10 Examples of popular system calls in Linux x86-64 systems.

creating a new process. Figure 8.10 lists some popular Linux system calls. Each
system call has a unique integer number that corresponds to an offset in a jump
table in the kernel. (Notice that this jump table is not the same as the exception
table.)

C programs can invoke any system call directly by using the syscall function.
However, this is rarely necessary in practice. The C standard library provides a
set of convenient wrapper functions for most system calls. The wrapper functions
package up the arguments, trap to the kernel with the appropriate system call
instruction, and then pass the return status of the system call back to the calling
program. Throughout this text, we will refer to system calls and their associated
wrapper functions interchangeably as system-level functions.

System calls are provided on x86-64 systems via a trapping instruction called
syscall. It is quite interesting to study how programs can use this instruction
to invoke Linux system calls directly. All arguments to Linux system calls are
passed through general-purpose registers rather than the stack. By convention,
register %rax contains the syscall number, with up to six arguments in %rdi, %rsi,
%rdx, %r10, %r8, and %r9. The first argument is in %rdi, the second in %rsi, and
so on. On return from the system call, registers %rcx and %r11 are destroyed, and
%rax contains the return value. A negative return value between −4,095 and −1
indicates an error corresponding to negative errno.

For example, consider the following version of the familiar hello program,
written using the write system-level function (Section 10.4) instead of printf:

1 int main()

2 {

3 write(1, "hello, world\n", 13);

4 _exit(0);

5 }

The first argument to write sends the output to stdout. The second argument
is the sequence of bytes to write, and the third argument gives the number of bytes
to write.

Section 8.1 Exceptions 767

Aside A note on terminology

The terminology for the various classes of exceptions varies from system to system. Processor ISA
specifications often distinguish between asynchronous “interrupts” and synchronous “exceptions” yet
provide no umbrella term to refer to these very similar concepts. To avoid having to constantly refer to
“exceptions and interrupts” and “exceptions or interrupts,” we use the word “exception” as the general
term and distinguish between asynchronous exceptions (interrupts) and synchronous exceptions (traps,
faults, and aborts) only when it is appropriate. As we have noted, the basic ideas are the same for every
system, but you should be aware that some manufacturers’ manuals use the word “exception” to refer
only to those changes in control flow caused by synchronous events.

code/ecf/hello-asm64.sa
1 .section .data

2 string:

3 .ascii "hello, world\n"

4 string_end:

5 .equ len, string_end - string

6 .section .text

7 .globl main

8 main:

First, call write(1, "hello, world\n", 13)

9 movq $1, %rax write is system call 1

10 movq $1, %rdi Arg1: stdout has descriptor 1

11 movq $string, %rsi Arg2: hello world string

12 movq $len, %rdx Arg3: string length

13 syscall Make the system call

Next, call _exit(0)

14 movq $60, %rax _exit is system call 60

15 movq $0, %rdi Arg1: exit status is 0

16 syscall Make the system call

code/ecf/hello-asm64.sa

Figure 8.11 Implementing the hello program directly with Linux system calls.

Figure 8.11 shows an assembly-language version of hello that uses the
syscall instruction to invoke the write and exit system calls directly. Lines
9–13 invoke the write function. First, line 9 stores the number of the write sys-
tem call in %rax, and lines 10–12 set up the argument list. Then, line 13 uses the
syscall instruction to invoke the system call. Similarly, lines 14–16 invoke the
_exit system call.

768 Chapter 8 Exceptional Control Flow

8.2 Processes

Exceptions are the basic building blocks that allow the operating system kernel
to provide the notion of a process, one of the most profound and successful ideas
in computer science.

When we run a program on a modern system, we are presented with the
illusion that our program is the only one currently running in the system. Our
program appears to have exclusive use of both the processor and the memory.
The processor appears to execute the instructions in our program, one after the
other, without interruption. Finally, the code and data of our program appear to
be the only objects in the system’s memory. These illusions are provided to us by
the notion of a process.

The classic definition of a process is an instance of a program in execution.
Each program in the system runs in the context of some process. The context
consists of the state that the program needs to run correctly. This state includes the
program’s code and data stored in memory, its stack, the contents of its general-
purpose registers, its program counter, environment variables, and the set of open
file descriptors.

Each time a user runs a program by typing the name of an executable object
file to the shell, the shell creates a new process and then runs the executable object
file in the context of this new process. Application programs can also create new
processes and run either their own code or other applications in the context of the
new process.

A detailed discussion of how operating systems implement processes is be-
yond our scope. Instead, we will focus on the key abstractions that a process
provides to the application:

. An independent logical control flow that provides the illusion that our pro-
gram has exclusive use of the processor.

. A private address space that provides the illusion that our program has exclu-
sive use of the memory system.

Let’s look more closely at these abstractions.

8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use of the
processor, even though many other programs are typically running concurrently
on the system. If we were to use a debugger to single-step the execution of
our program, we would observe a series of program counter (PC) values that
corresponded exclusively to instructions contained in our program’s executable
object file or in shared objects linked into our program dynamically at run time.
This sequence of PC values is known as a logical control flow, or simply logical
flow.

Consider a system that runs three processes, as shown in Figure 8.12. The
single physical control flow of the processor is partitioned into three logical flows,
one for each process. Each vertical line represents a portion of the logical flow for

Section 8.2 Processes 769

Figure 8.12
Logical control flows.
Processes provide each
program with the illusion
that it has exclusive use of
the processor. Each vertical
bar represents a portion of
the logical control flow for
a process.

Process A Process B Process C

Time

a process. In the example, the execution of the three logical flows is interleaved.
Process A runs for a while, followed by B, which runs to completion. Process C
then runs for a while, followed by A, which runs to completion. Finally, C is able
to run to completion.

The key point in Figure 8.12 is that processes take turns using the processor.
Each process executes a portion of its flow and then is preempted (temporarily
suspended) while other processes take their turns. To a program running in the
context of one of these processes, it appears to have exclusive use of the proces-
sor. The only evidence to the contrary is that if we were to precisely measure the
elapsed time of each instruction, we would notice that the CPU appears to peri-
odically stall between the execution of some of the instructions in our program.
However, each time the processor stalls, it subsequently resumes execution of our
program without any change to the contents of the program’s memory locations
or registers.

8.2.2 Concurrent Flows

Logical flows take many different forms in computer systems. Exception handlers,
processes, signal handlers, threads, and Java processes are all examples of logical
flows.

A logical flow whose execution overlaps in time with another flow is called
a concurrent flow, and the two flows are said to run concurrently. More precisely,
flows X and Y are concurrent with respect to each other if and only if X begins
after Y begins and before Y finishes, or Y begins after X begins and before X
finishes. For example, in Figure 8.12, processes A and B run concurrently, as do
A and C. On the other hand, B and C do not run concurrently, because the last
instruction of B executes before the first instruction of C.

The general phenomenon of multiple flows executing concurrently is known
as concurrency. The notion of a process taking turns with other processes is also
known as multitasking. Each time period that a process executes a portion of its
flow is called a time slice. Thus, multitasking is also referred to as time slicing. For
example, in Figure 8.12, the flow for process A consists of two time slices.

Notice that the idea of concurrent flows is independent of the number of
processor cores or computers that the flows are running on. If two flows overlap
in time, then they are concurrent, even if they are running on the same processor.
However, we will sometimes find it useful to identify a proper subset of concurrent

770 Chapter 8 Exceptional Control Flow

flows known as parallel flows. If two flows are running concurrently on different
processor cores or computers, then we say that they are parallel flows, that they
are running in parallel, and have parallel execution.

Practice Problem 8.1 (solution page 831)

Consider three processes with the following starting and ending times:

Process Start time End time

A 1 3
B 2 5
C 4 6

For each pair of processes, indicate whether they run concurrently (Y) or
not (N):

Process pair Concurrent?

AB
AC
BC

8.2.3 Private Address Space

A process provides each program with the illusion that it has exclusive use of the
system’s address space. On a machine with n-bit addresses, the address space is the
set of 2n possible addresses, 0, 1, . . . , 2n − 1. A process provides each program
with its own private address space. This space is private in the sense that a byte
of memory associated with a particular address in the space cannot in general be
read or written by any other process.

Although the contents of the memory associated with each private address
space is different in general, each such space has the same general organization.
For example, Figure 8.13 shows the organization of the address space for an x86-64
Linux process.

The bottom portion of the address space is reserved for the user program, with
the usual code, data, heap, and stack segments. The code segment always begins at
address 0x400000. The top portion of the address space is reserved for the kernel
(the memory-resident part of the operating system). This part of the address space
contains the code, data, and stack that the kernel uses when it executes instructions
on behalf of the process (e.g., when the application program executes a system
call).

8.2.4 User and Kernel Modes

In order for the operating system kernel to provide an airtight process abstraction,
the processor must provide a mechanism that restricts the instructions that an

Section 8.2 Processes 771

Figure 8.13
Process address space.

0x400000

0

Memory
invisible to
user code

%esp (stack pointer)

brk

Loaded from the
executable file

User stack
(created at run time)

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data,.bss)

Read-only code segment
(.init,.text,.rodata)

Kernel virtual memory
(code, data, heap, stack)

248-1

application can execute, as well as the portions of the address space that it can
access.

Processors typically provide this capability with a mode bit in some control
register that characterizes the privileges that the process currently enjoys. When
the mode bit is set, the process is running in kernel mode (sometimes called
supervisor mode). A process running in kernel mode can execute any instruction
in the instruction set and access any memory location in the system.

When the mode bit is not set, the process is running in user mode. A process
in user mode is not allowed to execute privileged instructions that do things such
as halt the processor, change the mode bit, or initiate an I/O operation. Nor is it
allowed to directly reference code or data in the kernel area of the address space.
Any such attempt results in a fatal protection fault. User programs must instead
access kernel code and data indirectly via the system call interface.

A process running application code is initially in user mode. The only way for
the process to change from user mode to kernel mode is via an exception such as
an interrupt, a fault, or a trapping system call. When the exception occurs, and
control passes to the exception handler, the processor changes the mode from
user mode to kernel mode. The handler runs in kernel mode. When it returns to
the application code, the processor changes the mode from kernel mode back to
user mode.

Linux provides a clever mechanism, called the /proc filesystem, that allows
user mode processes to access the contents of kernel data structures. The /proc
filesystem exports the contents of many kernel data structures as a hierarchy of text

772 Chapter 8 Exceptional Control Flow

files that can be read by user programs. For example, you can use the /proc filesys-
tem to find out general system attributes such as CPU type (/proc/cpuinfo), or
the memory segments used by a particular process (/proc/process-id/maps). The
2.6 version of the Linux kernel introduced a /sys filesystem, which exports addi-
tional low-level information about system buses and devices.

8.2.5 Context Switches

The operating system kernel implements multitasking using a higher-level form
of exceptional control flow known as a context switch. The context switch mecha-
nism is built on top of the lower-level exception mechanism that we discussed in
Section 8.1.

The kernel maintains a context for each process. The context is the state
that the kernel needs to restart a preempted process. It consists of the values
of objects such as the general-purpose registers, the floating-point registers, the
program counter, user’s stack, status registers, kernel’s stack, and various kernel
data structures such as a page table that characterizes the address space, a process
table that contains information about the current process, and a file table that
contains information about the files that the process has opened.

At certain points during the execution of a process, the kernel can decide
to preempt the current process and restart a previously preempted process. This
decision is known as scheduling and is handled by code in the kernel, called the
scheduler. When the kernel selects a new process to run, we say that the kernel
has scheduled that process. After the kernel has scheduled a new process to run,
it preempts the current process and transfers control to the new process using a
mechanism called a context switch that (1) saves the context of the current process,
(2) restores the saved context of some previously preempted process, and (3)
passes control to this newly restored process.

A context switch can occur while the kernel is executing a system call on behalf
of the user. If the system call blocks because it is waiting for some event to occur,
then the kernel can put the current process to sleep and switch to another process.
For example, if a read system call requires a disk access, the kernel can opt to
perform a context switch and run another process instead of waiting for the data
to arrive from the disk. Another example is the sleep system call, which is an
explicit request to put the calling process to sleep. In general, even if a system
call does not block, the kernel can decide to perform a context switch rather than
return control to the calling process.

A context switch can also occur as a result of an interrupt. For example, all
systems have some mechanism for generating periodic timer interrupts, typically
every 1 ms or 10 ms. Each time a timer interrupt occurs, the kernel can decide that
the current process has run long enough and switch to a new process.

Figure 8.14 shows an example of context switching between a pair of processes
A and B. In this example, initially process A is running in user mode until it traps to
the kernel by executing a read system call. The trap handler in the kernel requests
a DMA transfer from the disk controller and arranges for the disk to interrupt the

Section 8.3 System Call Error Handling 773

Figure 8.14
Anatomy of a process
context switch.

Process A Process B

User code

Kernel code

Kernel code

User code

User code

Context
switch

Context
switch

Time

read

Disk interrupt

Return
from read

processor after the disk controller has finished transferring the data from disk to
memory.

The disk will take a relatively long time to fetch the data (on the order of tens
of milliseconds), so instead of waiting and doing nothing in the interim, the kernel
performs a context switch from process A to B. Note that, before the switch, the
kernel is executing instructions in user mode on behalf of process A (i.e., there
is no separate kernel process). During the first part of the switch, the kernel is
executing instructions in kernel mode on behalf of process A. Then at some point
it begins executing instructions (still in kernel mode) on behalf of process B. And
after the switch, the kernel is executing instructions in user mode on behalf of
process B.

Process B then runs for a while in user mode until the disk sends an interrupt
to signal that data have been transferred from disk to memory. The kernel decides
that process B has run long enough and performs a context switch from process B
to A, returning control in process A to the instruction immediately following the
read system call. Process A continues to run until the next exception occurs, and
so on.

8.3 System Call Error Handling

When Unix system-level functions encounter an error, they typically return −1
and set the global integer variable errno to indicate what went wrong. Program-
mers should always check for errors, but unfortunately, many skip error checking
because it bloats the code and makes it harder to read. For example, here is how
we might check for errors when we call the Linux fork function:

1 if ((pid = fork()) < 0) {

2 fprintf(stderr, "fork error: %s\n", strerror(errno));

3 exit(0);

4 }

The strerror function returns a text string that describes the error associated
with a particular value of errno. We can simplify this code somewhat by defining
the following error-reporting function:

774 Chapter 8 Exceptional Control Flow

1 void unix_error(char *msg) /* Unix-style error */

2 {

3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

4 exit(0);

5 }

Given this function, our call to fork reduces from four lines to two lines:

1 if ((pid = fork()) < 0)

2 unix_error("fork error");

We can simplify our code even further by using error-handling wrappers,
as pioneered by Stevens in [110]. For a given base function foo, we define a
wrapper function Foowith identical arguments but with the first letter of the name
capitalized. The wrapper calls the base function, checks for errors, and terminates
if there are any problems. For example, here is the error-handling wrapper for the
fork function:

1 pid_t Fork(void)

2 {

3 pid_t pid;

4

5 if ((pid = fork()) < 0)

6 unix_error("Fork error");

7 return pid;

8 }

Given this wrapper, our call to fork shrinks to a single compact line:

1 pid = Fork();

We will use error-handling wrappers throughout the remainder of this book.
They allow us to keep our code examples concise without giving you the mistaken
impression that it is permissible to ignore error checking. Note that when we
discuss system-level functions in the text, we will always refer to them by their
lowercase base names, rather than by their uppercase wrapper names.

See Appendix A for a discussion of Unix error handling and the error-
handling wrappers used throughout this book. The wrappers are defined in a file
called csapp.c, and their prototypes are defined in a header file called csapp.h.
These are available online from the CS:APP Web site.

8.4 Process Control

Unix provides a number of system calls for manipulating processes from C pro-
grams. This section describes the important functions and gives examples of how
they are used.

Section 8.4 Process Control 775

8.4.1 Obtaining Process IDs

Each process has a unique positive (nonzero) process ID (PID). The getpid
function returns the PID of the calling process. The getppid function returns the
PID of its parent (i.e., the process that created the calling process).

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

Returns: PID of either the caller or the parent

The getpid and getppid routines return an integer value of type pid_t, which on
Linux systems is defined in types.h as an int.

8.4.2 Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as being in one of
three states:

Running. The process is either executing on the CPU or waiting to be executed
and will eventually be scheduled by the kernel.

Stopped. The execution of the process is suspended and will not be scheduled.
A process stops as a result of receiving a SIGSTOP, SIGTSTP, SIGTTIN,
or SIGTTOU signal, and it remains stopped until it receives a SIGCONT
signal, at which point it becomes running again. (A signal is a form of
software interrupt that we will describe in detail in Section 8.5.)

Terminated. The process is stopped permanently. A process becomes termi-
nated for one of three reasons: (1) receiving a signal whose default action
is to terminate the process, (2) returning from the main routine, or (3)
calling the exit function.

#include <stdlib.h>

void exit(int status);

This function does not return

The exit function terminates the process with an exit status of status. (The other
way to set the exit status is to return an integer value from the main routine.)

776 Chapter 8 Exceptional Control Flow

A parent process creates a new running child process by calling the fork
function.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Returns: 0 to child, PID of child to parent, −1 on error

The newly created child process is almost, but not quite, identical to the parent.
The child gets an identical (but separate) copy of the parent’s user-level virtual
address space, including the code and data segments, heap, shared libraries, and
user stack. The child also gets identical copies of any of the parent’s open file
descriptors, which means the child can read and write any files that were open in
the parent when it called fork. The most significant difference between the parent
and the newly created child is that they have different PIDs.

The fork function is interesting (and often confusing) because it is called once
but it returns twice: once in the calling process (the parent), and once in the newly
created child process. In the parent, fork returns the PID of the child. In the child,
fork returns a value of 0. Since the PID of the child is always nonzero, the return
value provides an unambiguous way to tell whether the program is executing in
the parent or the child.

Figure 8.15 shows a simple example of a parent process that usesfork to create
a child process. When the fork call returns in line 6, x has a value of 1 in both the
parent and child. The child increments and prints its copy of x in line 8. Similarly,
the parent decrements and prints its copy of x in line 13.

When we run the program on our Unix system, we get the following result:

linux> ./fork

parent: x=0

child : x=2

There are some subtle aspects to this simple example.

Call once, return twice. The fork function is called once by the parent, but it
returns twice: once to the parent and once to the newly created child.
This is fairly straightforward for programs that create a single child. But
programs with multiple instances of fork can be confusing and need to
be reasoned about carefully.

Concurrent execution. The parent and the child are separate processes that
run concurrently. The instructions in their logical control flows can be
interleaved by the kernel in an arbitrary way. When we run the program
on our system, the parent process completes its printf statement first,
followed by the child. However, on another system the reverse might be
true. In general, as programmers we can never make assumptions about
the interleaving of the instructions in different processes.

Section 8.4 Process Control 777

code/ecf/fork.c
1 int main()

2 {

3 pid_t pid;

4 int x = 1;

5

6 pid = Fork();

7 if (pid == 0) { /* Child */

8 printf("child : x=%d\n", ++x);

9 exit(0);

10 }

11

12 /* Parent */

13 printf("parent: x=%d\n", --x);

14 exit(0);

15 }

code/ecf/fork.c

Figure 8.15 Using fork to create a new process.

Duplicate but separate address spaces. If we could halt both the parent and the
child immediately after the fork function returned in each process, we
would see that the address space of each process is identical. Each process
has the same user stack, the same local variable values, the same heap,
the same global variable values, and the same code. Thus, in our example
program, local variable x has a value of 1 in both the parent and the child
when the fork function returns in line 6. However, since the parent and
the child are separate processes, they each have their own private address
spaces. Any subsequent changes that a parent or child makes to x are
private and are not reflected in the memory of the other process. This is
why the variable x has different values in the parent and child when they
call their respective printf statements.

Shared files. When we run the example program, we notice that both parent and
child print their output on the screen. The reason is that the child inherits
all of the parent’s open files. When the parent calls fork, the stdout file
is open and directed to the screen. The child inherits this file, and thus its
output is also directed to the screen.

When you are first learning about the fork function, it is often helpful to
sketch the process graph, which is a simple kind of precedence graph that captures
the partial ordering of program statements. Each vertex a corresponds to the
execution of a program statement. A directed edge a → b denotes that statement
a “happens before” statement b. Edges can be labeled with information such as
the current value of a variable. Vertices corresponding to printf statements can
be labeled with the output of the printf. Each graph begins with a vertex that

778 Chapter 8 Exceptional Control Flow

Figure 8.16
Process graph for the
example program in
Figure 8.15.

forkforkmainmain printfprintf exitexit

child: x=2
Child

Parent
x==1 parent: x=0

printfprintf exitexit

1 int main()

2 {

3 Fork();

4 Fork();

5 printf("hello\n");

6 exit(0);

7 }

forkforkforkfork printfprintf exitexit

hello

hello

mainmain

printfprintf exitexit

forkfork printfprintf exitexit

hello

hello

printfprintf exitexit

Figure 8.17 Process graph for a nested fork.

corresponds to the parent process calling main. This vertex has no inedges and
exactly one outedge. The sequence of vertices for each process ends with a vertex
corresponding to a call to exit. This vertex has one inedge and no outedges.

For example, Figure 8.16 shows the process graph for the example program in
Figure 8.15. Initially, the parent sets variable x to 1. The parent calls fork, which
creates a child process that runs concurrently with the parent in its own private
address space.

For a program running on a single processor, any topological sort of the
vertices in the corresponding process graph represents a feasible total ordering
of the statements in the program. Here’s a simple way to understand the idea of
a topological sort: Given some permutation of the vertices in the process graph,
draw the sequence of vertices in a line from left to right, and then draw each of the
directed edges. The permutation is a topological sort if and only if each edge in
the drawing goes from left to right. Thus, in our example program in Figure 8.15,
the printf statements in the parent and child can occur in either order because
each of the orderings corresponds to some topological sort of the graph vertices.

The process graph can be especially helpful in understanding programs with
nested fork calls. For example, Figure 8.17 shows a program with two calls to fork
in the source code. The corresponding process graph helps us see that this program
runs four processes, each of which makes a call to printf and which can execute
in any order.

Section 8.4 Process Control 779

Practice Problem 8.2 (solution page 831)

Consider the following program:

code/ecf/global-forkprob0.c
1 int main()

2 {

3 int a = 9;

4

5 if (Fork() == 0)

6 printf("p1: a=%d\n", a--);

7 printf("p2: a=%d\n", a++);

8 exit(0);

9 }

code/ecf/global-forkprob0.c

A. What is the output of the child process?

B. What is the output of the parent process?

8.4.3 Reaping Child Processes

When a process terminates for any reason, the kernel does not remove it from
the system immediately. Instead, the process is kept around in a terminated state
until it is reaped by its parent. When the parent reaps the terminated child, the
kernel passes the child’s exit status to the parent and then discards the terminated
process, at which point it ceases to exist. A terminated process that has not yet
been reaped is called a zombie.

When a parent process terminates, the kernel arranges for the init process
to become the adopted parent of any orphaned children. The init process, which
has a PID of 1, is created by the kernel during system start-up, never terminates,
and is the ancestor of every process. If a parent process terminates without reaping
its zombie children, then the kernel arranges for the init process to reap them.
However, long-running programs such as shells or servers should always reap their
zombie children. Even though zombies are not running, they still consume system
memory resources.

A process waits for its children to terminate or stop by calling the waitpid
function.

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *statusp, int options);

Returns: PID of child if OK, 0 (if WNOHANG), or −1 on error

780 Chapter 8 Exceptional Control Flow

Aside Why are terminated children called zombies?

In folklore, a zombie is a living corpse, an entity that is half alive and half dead. A zombie process is
similar in the sense that although it has already terminated, the kernel maintains some of its state until
it can be reaped by the parent.

The waitpid function is complicated. By default (when options = 0),
waitpid suspends execution of the calling process until a child process in its wait
set terminates. If a process in the wait set has already terminated at the time of the
call, then waitpid returns immediately. In either case, waitpid returns the PID of
the terminated child that caused waitpid to return. At this point, the terminated
child has been reaped and the kernel removes all traces of it from the system.

Determining the Members of the Wait Set

The members of the wait set are determined by the pid argument:

. If pid > 0, then the wait set is the singleton child process whose process ID is
equal to pid.

. If pid = -1, then the wait set consists of all of the parent’s child processes.

The waitpid function also supports other kinds of wait sets, involving Unix pro-
cess groups, which we will not discuss.

Modifying the Default Behavior

The default behavior can be modified by setting options to various combinations
of the WNOHANG, WUNTRACED, and WCONTINUED constants:

WNOHANG. Return immediately (with a return value of 0) if none of the
child processes in the wait set has terminated yet. The default behavior
suspends the calling process until a child terminates; this option is useful
in those cases where you want to continue doing useful work while waiting
for a child to terminate.

WUNTRACED. Suspend execution of the calling process until a process in the
wait set becomes either terminated or stopped. Return the PID of the
terminated or stopped child that caused the return. The default behavior
returns only for terminated children; this option is useful when you want
to check for both terminated and stopped children.

WCONTINUED. Suspend execution of the calling process until a running
process in the wait set is terminated or until a stopped process in the wait
set has been resumed by the receipt of a SIGCONT signal. (Signals are
explained in Section 8.5.)

You can combine options by oring them together. For example:

Section 8.4 Process Control 781

. WNOHANG | WUNTRACED: Return immediately, with a return value of
0, if none of the children in the wait set has stopped or terminated, or with a
return value equal to the PID of one of the stopped or terminated children.

Checking the Exit Status of a Reaped Child

If the statusp argument is non-NULL, then waitpid encodes status information
about the child that caused the return in status, which is the value pointed to
by statusp. The wait.h include file defines several macros for interpreting the
status argument:

WIFEXITED(status). Returns true if the child terminated normally, via a call
to exit or a return.

WEXITSTATUS(status). Returns the exit status of a normally terminated
child. This status is only defined if WIFEXITED() returned true.

WIFSIGNALED(status). Returns true if the child process terminated be-
cause of a signal that was not caught.

WTERMSIG(status). Returns the number of the signal that caused the child
process to terminate. This status is only defined if WIFSIGNALED()
returned true.

WIFSTOPPED(status). Returns true if the child that caused the return is
currently stopped.

WSTOPSIG(status). Returns the number of the signal that caused the child
to stop. This status is only defined if WIFSTOPPED() returned true.

WIFCONTINUED(status). Returns true if the child process was restarted by
receipt of a SIGCONT signal.

Error Conditions

If the calling process has no children, then waitpid returns −1 and sets errno to
ECHILD. If the waitpid function was interrupted by a signal, then it returns −1
and sets errno to EINTR.

Practice Problem 8.3 (solution page 833)

List all of the possible output sequences for the following program:

code/ecf/global-waitprob0.c
1 int main()

2 {

3 if (Fork() == 0) {

4 printf("9"); fflush(stdout);

5 }

6 else {

782 Chapter 8 Exceptional Control Flow

7 printf("0"); fflush(stdout);

8 waitpid(-1, NULL, 0);

9 }

10 printf("3"); fflush(stdout);

11 printf("6"); exit(0);

12 }

code/ecf/global-waitprob0.c

The wait Function

The wait function is a simpler version of waitpid.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *statusp);

Returns: PID of child if OK or −1 on error

Calling wait(&status) is equivalent to calling waitpid(-1, &status, 0).

Examples of Using waitpid

Because the waitpid function is somewhat complicated, it is helpful to look at
a few examples. Figure 8.18 shows a program that uses waitpid to wait, in no
particular order, for all of its N children to terminate. In line 11, the parent creates
each of the N children, and in line 12, each child exits with a unique exit status.

Aside Constants associated with Unix functions

Constants such as WNOHANG and WUNTRACED are defined by system header files. For example,
WNOHANG and WUNTRACED are defined (indirectly) by the wait.h header file:

/* Bits in the third argument to ‘waitpid’. */

#define WNOHANG 1 /* Don’t block waiting. */

#define WUNTRACED 2 /* Report status of stopped children. */

In order to use these constants, you must include the wait.h header file in your code:

#include <sys/wait.h>

The man page for each Unix function lists the header files to include whenever you use that function
in your code. Also, in order to check return codes such as ECHILD and EINTR, you must include
errno.h. To simplify our code examples, we include a single header file called csapp.h that includes
the header files for all of the functions used in the book. The csapp.h header file is available online
from the CS:APP Web site.

Section 8.4 Process Control 783

code/ecf/waitpid1.c
1 #include "csapp.h"

2 #define N 2

3

4 int main()

5 {

6 int status, i;

7 pid_t pid;

8

9 /* Parent creates N children */

10 for (i = 0; i < N; i++)

11 if ((pid = Fork()) == 0) /* Child */

12 exit(100+i);

13

14 /* Parent reaps N children in no particular order */

15 while ((pid = waitpid(-1, &status, 0)) > 0) {

16 if (WIFEXITED(status))

17 printf("child %d terminated normally with exit status=%d\n",

18 pid, WEXITSTATUS(status));

19 else

20 printf("child %d terminated abnormally\n", pid);

21 }

22

23 /* The only normal termination is if there are no more children */

24 if (errno != ECHILD)

25 unix_error("waitpid error");

26

27 exit(0);

28 }

code/ecf/waitpid1.c

Figure 8.18 Using the waitpid function to reap zombie children in no particular order.

Before moving on, make sure you understand why line 12 is executed by each of
the children, but not the parent.

In line 15, the parent waits for all of its children to terminate by using waitpid
as the test condition of a while loop. Because the first argument is −1, the call to
waitpid blocks until an arbitrary child has terminated. As each child terminates,
the call to waitpid returns with the nonzero PID of that child. Line 16 checks the
exit status of the child. If the child terminated normally—in this case, by calling
the exit function—then the parent extracts the exit status and prints it on stdout.

When all of the children have been reaped, the next call to waitpid returns −1
and sets errno to ECHILD. Line 24 checks that the waitpid function terminated
normally, and prints an error message otherwise. When we run the program on
our Linux system, it produces the following output:

784 Chapter 8 Exceptional Control Flow

linux> ./waitpid1

child 22966 terminated normally with exit status=100

child 22967 terminated normally with exit status=101

Notice that the program reaps its children in no particular order. The order that
they were reaped is a property of this specific computer system. On another
system, or even another execution on the same system, the two children might
have been reaped in the opposite order. This is an example of the nondeterministic
behavior that can make reasoning about concurrency so difficult. Either of the two
possible outcomes is equally correct, and as a programmer you may never assume
that one outcome will always occur, no matter how unlikely the other outcome
appears to be. The only correct assumption is that each possible outcome is equally
likely.

Figure 8.19 shows a simple change that eliminates this nondeterminism in the
output order by reaping the children in the same order that they were created by
the parent. In line 11, the parent stores the PIDs of its children in order and then
waits for each child in this same order by calling waitpid with the appropriate
PID in the first argument.

Practice Problem 8.4 (solution page 833)

Consider the following program:

code/ecf/global-waitprob1.c
1 int main()

2 {

3 int status;

4 pid_t pid;

5

6 printf("Start\n");

7 pid = Fork();

8 printf("%d\n", !pid);

9 if (pid == 0) {

10 printf("Child\n");

11 }

12 else if ((waitpid(-1, &status, 0) > 0) &&

(WIFEXITED(status) != 0)) {

13 printf("%d\n", WEXITSTATUS(status));

14 }

15 printf("Stop\n");

16 exit(2);

17 }

code/ecf/global-waitprob1.c

A. How many output lines does this program generate?

B. What is one possible ordering of these output lines?

Section 8.4 Process Control 785

code/ecf/waitpid2.c
1 #include "csapp.h"

2 #define N 2

3

4 int main()

5 {

6 int status, i;

7 pid_t pid[N], retpid;

8

9 /* Parent creates N children */

10 for (i = 0; i < N; i++)

11 if ((pid[i] = Fork()) == 0) /* Child */

12 exit(100+i);

13

14 /* Parent reaps N children in order */

15 i = 0;

16 while ((retpid = waitpid(pid[i++], &status, 0)) > 0) {

17 if (WIFEXITED(status))

18 printf("child %d terminated normally with exit status=%d\n",

19 retpid, WEXITSTATUS(status));

20 else

21 printf("child %d terminated abnormally\n", retpid);

22 }

23

24 /* The only normal termination is if there are no more children */

25 if (errno != ECHILD)

26 unix_error("waitpid error");

27

28 exit(0);

29 }

code/ecf/waitpid2.c

Figure 8.19 Using waitpid to reap zombie children in the order they were created.

8.4.4 Putting Processes to Sleep

The sleep function suspends a process for a specified period of time.

#include <unistd.h>

unsigned int sleep(unsigned int secs);

Returns: seconds left to sleep

Sleep returns zero if the requested amount of time has elapsed, and the number of
seconds still left to sleep otherwise. The latter case is possible if the sleep function

786 Chapter 8 Exceptional Control Flow

returns prematurely because it was interrupted by a signal. We will discuss signals
in detail in Section 8.5.

Another function that we will find useful is the pause function, which puts the
calling function to sleep until a signal is received by the process.

#include <unistd.h>

int pause(void);

Always returns −1

Practice Problem 8.5 (solution page 833)

Write a wrapper function for sleep, called wakeup, with the following interface:

unsigned int wakeup(unsigned int secs);

The wakeup function behaves exactly as the sleep function, except that it prints
a message describing when the process actually woke up:

Woke up at 4 secs.

8.4.5 Loading and Running Programs

The execve function loads and runs a new program in the context of the current
process.

#include <unistd.h>

int execve(const char *filename, const char *argv[],

const char *envp[]);

Does not return if OK; returns −1 on error

The execve function loads and runs the executable object file filename with the
argument list argv and the environment variable list envp. Execve returns to the
calling program only if there is an error, such as not being able to find filename.
So unlike fork, which is called once but returns twice, execve is called once and
never returns.

The argument list is represented by the data structure shown in Figure 8.20.
The argv variable points to a null-terminated array of pointers, each of which
points to an argument string. By convention, argv[0] is the name of the executable
object file. The list of environment variables is represented by a similar data
structure, shown in Figure 8.21. Theenvp variable points to a null-terminated array
of pointers to environment variable strings, each of which is a name-value pair of
the form name=value.

Section 8.4 Process Control 787

Figure 8.20
Organization of an
argument list. …

argv[]argv[]

argv[0] "ls"

"-lt"

"/user/include"

argv

argv[1]

argv[argc ! 1]

NULL

Figure 8.21
Organization of an
environment variable list.

…

envp[]envp[]

envp[0] "PWD"/usr/droh"

"PRINTER"iron"

"USER"droh"

envp

envp[1]

envp[n ! 1]

NULL

After execve loads filename, it calls the start-up code described in Sec-
tion 7.9. The start-up code sets up the stack and passes control to the main routine
of the new program, which has a prototype of the form

int main(int argc, char **argv, char **envp);

or equivalently,

int main(int argc, char *argv[], char *envp[]);

When main begins executing, the user stack has the organization shown in Fig-
ure 8.22. Let’s work our way from the bottom of the stack (the highest address)
to the top (the lowest address). First are the argument and environment strings.
These are followed further up the stack by a null-terminated array of pointers,
each of which points to an environment variable string on the stack. The global
variable environ points to the first of these pointers, envp[0]. The environment
array is followed by the null-terminated argv[] array, with each element pointing
to an argument string on the stack. At the top of the stack is the stack frame for
the system start-up function, libc_start_main (Section 7.9).

There are three arguments to function main, each stored in a register accord-
ing to the x86-64 stack discipline: (1) argc, which gives the number of non-null
pointers in the argv[] array; (2) argv, which points to the first entry in the argv[]
array; and (3) envp, which points to the first entry in the envp[] array.

Linux provides several functions for manipulating the environment array:

#include <stdlib.h>

char *getenv(const char *name);

Returns: pointer to name if it exists, NULL if no match

788 Chapter 8 Exceptional Control Flow

Figure 8.22
Typical organization of
the user stack when a
new program starts.

Bottom of stack

Top of stack

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

Stack frame for
libc_start_main

Future stack frame for
main

envp[n] == NULL

envp[n-1]

…

…

envp[0]

argv[argc] = NULL

argv[argc-1]

argv[0]

environ
(global var)

envp
(in %rdx)

argv
(in %rsi)

argc
(in %rdi)

The getenv function searches the environment array for a string name=value. If
found, it returns a pointer to value; otherwise, it returns NULL.

#include <stdlib.h>

int setenv(const char *name, const char *newvalue, int overwrite);

Returns: 0 on success, −1 on error

void unsetenv(const char *name);

Returns: nothing

If the environment array contains a string of the form name=oldvalue, then
unsetenv deletes it and setenv replaces oldvalue with newvalue, but only if
overwrite is nonzero. If name does not exist, then setenv adds name=newvalue
to the array.

Practice Problem 8.6 (solution page 833)

Write a program called myecho that prints its command-line arguments and envi-
ronment variables. For example:

linux> ./myecho arg1 arg2

Command-ine arguments:

argv[0]: myecho

argv[1]: arg1

argv[2]: arg2

Section 8.4 Process Control 789

Environment variables:

envp[0]: PWD=/usr0/droh/ics/code/ecf

envp[1]: TERM=emacs
.
.
.

envp[25]: USER=droh

envp[26]: SHELL=/usr/local/bin/tcsh

envp[27]: HOME=/usr0/droh

8.4.6 Using fork and execve to Run Programs

Programs such as Unix shells and Web servers make heavy use of the fork and
execve functions. A shell is an interactive application-level program that runs
other programs on behalf of the user. The original shell was the sh program,
which was followed by variants such as csh, tcsh, ksh, and bash. A shell performs
a sequence of read/evaluate steps and then terminates. The read step reads a
command line from the user. The evaluate step parses the command line and runs
programs on behalf of the user.

Figure 8.23 shows the main routine of a simple shell. The shell prints a
command-line prompt, waits for the user to type a command line on stdin, and
then evaluates the command line.

Figure 8.24 shows the code that evaluates the command line. Its first task is
to call the parseline function (Figure 8.25), which parses the space-separated
command-line arguments and builds the argv vector that will eventually be passed
to execve. The first argument is assumed to be either the name of a built-in shell
command that is interpreted immediately, or an executable object file that will be
loaded and run in the context of a new child process.

If the last argument is an ‘&’ character, then parseline returns 1, indicating
that the program should be executed in the background (the shell does not wait
for it to complete). Otherwise, it returns 0, indicating that the program should be
run in the foreground (the shell waits for it to complete).

Aside Programs versus processes

This is a good place to pause and make sure you understand the distinction between a program and
a process. A program is a collection of code and data; programs can exist as object files on disk or as
segments in an address space. A process is a specific instance of a program in execution; a program
always runs in the context of some process. Understanding this distinction is important if you want to
understand the fork and execve functions. The fork function runs the same program in a new child
process that is a duplicate of the parent. The execve function loads and runs a new program in the
context of the current process. While it overwrites the address space of the current process, it does not
create a new process. The new program still has the same PID, and it inherits all of the file descriptors
that were open at the time of the call to the execve function.

790 Chapter 8 Exceptional Control Flow

code/ecf/shellex.c
1 #include "csapp.h"

2 #define MAXARGS 128

3

4 /* Function prototypes */

5 void eval(char *cmdline);

6 int parseline(char *buf, char **argv);

7 int builtin_command(char **argv);

8

9 int main()

10 {

11 char cmdline[MAXLINE]; /* Command line */

12

13 while (1) {

14 /* Read */

15 printf("> ");

16 Fgets(cmdline, MAXLINE, stdin);

17 if (feof(stdin))

18 exit(0);

19

20 /* Evaluate */

21 eval(cmdline);

22 }

23 }

code/ecf/shellex.c

Figure 8.23 The main routine for a simple shell program.

After parsing the command line, the eval function calls the builtin_command
function, which checks whether the first command-line argument is a built-in shell
command. If so, it interprets the command immediately and returns 1. Otherwise,
it returns 0. Our simple shell has just one built-in command, the quit command,
which terminates the shell. Real shells have numerous commands, such as pwd,
jobs, and fg.

If builtin_command returns 0, then the shell creates a child process and
executes the requested program inside the child. If the user has asked for the
program to run in the background, then the shell returns to the top of the loop and
waits for the next command line. Otherwise the shell uses the waitpid function
to wait for the job to terminate. When the job terminates, the shell goes on to the
next iteration.

Notice that this simple shell is flawed because it does not reap any of its
background children. Correcting this flaw requires the use of signals, which we
describe in the next section.

Section 8.4 Process Control 791

code/ecf/shellex.c
1 /* eval - Evaluate a command line */

2 void eval(char *cmdline)

3 {

4 char *argv[MAXARGS]; /* Argument list execve() */

5 char buf[MAXLINE]; /* Holds modified command line */

6 int bg; /* Should the job run in bg or fg? */

7 pid_t pid; /* Process id */

8

9 strcpy(buf, cmdline);

10 bg = parseline(buf, argv);

11 if (argv[0] == NULL)

12 return; /* Ignore empty lines */

13

14 if (!builtin_command(argv)) {

15 if ((pid = Fork()) == 0) { /* Child runs user job */

16 if (execve(argv[0], argv, environ) < 0) {

17 printf("%s: Command not found.\n", argv[0]);

18 exit(0);

19 }

20 }

21

22 /* Parent waits for foreground job to terminate */

23 if (!bg) {

24 int status;

25 if (waitpid(pid, &status, 0) < 0)

26 unix_error("waitfg: waitpid error");

27 }

28 else

29 printf("%d %s", pid, cmdline);

30 }

31 return;

32 }

33

34 /* If first arg is a builtin command, run it and return true */

35 int builtin_command(char **argv)

36 {

37 if (!strcmp(argv[0], "quit")) /* quit command */

38 exit(0);

39 if (!strcmp(argv[0], "&")) /* Ignore singleton & */

40 return 1;

41 return 0; /* Not a builtin command */

42 }

code/ecf/shellex.c

Figure 8.24 eval evaluates the shell command line.

792 Chapter 8 Exceptional Control Flow

code/ecf/shellex.c
1 /* parseline - Parse the command line and build the argv array */

2 int parseline(char *buf, char **argv)

3 {

4 char *delim; /* Points to first space delimiter */

5 int argc; /* Number of args */

6 int bg; /* Background job? */

7

8 buf[strlen(buf)-1] = ’ ’; /* Replace trailing ’\n’ with space */

9 while (*buf && (*buf == ’ ’)) /* Ignore leading spaces */

10 buf++;

11

12 /* Build the argv list */

13 argc = 0;

14 while ((delim = strchr(buf, ’ ’))) {

15 argv[argc++] = buf;

16 *delim = ’\0’;

17 buf = delim + 1;

18 while (*buf && (*buf == ’ ’)) /* Ignore spaces */

19 buf++;

20 }

21 argv[argc] = NULL;

22

23 if (argc == 0) /* Ignore blank line */

24 return 1;

25

26 /* Should the job run in the background? */

27 if ((bg = (*argv[argc-1] == ’&’)) != 0)

28 argv[--argc] = NULL;

29

30 return bg;

31 }

code/ecf/shellex.c

Figure 8.25 parseline parses a line of input for the shell.

8.5 Signals

To this point in our study of exceptional control flow, we have seen how hardware
and software cooperate to provide the fundamental low-level exception mecha-
nism. We have also seen how the operating system uses exceptions to support a
form of exceptional control flow known as the process context switch. In this sec-
tion, we will study a higher-level software form of exceptional control flow, known
as a Linux signal, that allows processes and the kernel to interrupt other processes.

Section 8.5 Signals 793

Number Name Default action Corresponding event

1 SIGHUP Terminate Terminal line hangup
2 SIGINT Terminate Interrupt from keyboard
3 SIGQUIT Terminate Quit from keyboard
4 SIGILL Terminate Illegal instruction
5 SIGTRAP Terminate and dump core a Trace trap
6 SIGABRT Terminate and dump core a Abort signal from abort function
7 SIGBUS Terminate Bus error
8 SIGFPE Terminate and dump core a Floating-point exception
9 SIGKILL Terminate b Kill program

10 SIGUSR1 Terminate User-defined signal 1
11 SIGSEGV Terminate and dump core a Invalid memory reference (seg fault)
12 SIGUSR2 Terminate User-defined signal 2
13 SIGPIPE Terminate Wrote to a pipe with no reader
14 SIGALRM Terminate Timer signal from alarm function
15 SIGTERM Terminate Software termination signal
16 SIGSTKFLT Terminate Stack fault on coprocessor
17 SIGCHLD Ignore A child process has stopped or terminated
18 SIGCONT Ignore Continue process if stopped
19 SIGSTOP Stop until next SIGCONT b Stop signal not from terminal
20 SIGTSTP Stop until next SIGCONT Stop signal from terminal
21 SIGTTIN Stop until next SIGCONT Background process read from terminal
22 SIGTTOU Stop until next SIGCONT Background process wrote to terminal
23 SIGURG Ignore Urgent condition on socket
24 SIGXCPU Terminate CPU time limit exceeded
25 SIGXFSZ Terminate File size limit exceeded
26 SIGVTALRM Terminate Virtual timer expired
27 SIGPROF Terminate Profiling timer expired
28 SIGWINCH Ignore Window size changed
29 SIGIO Terminate I/O now possible on a descriptor
30 SIGPWR Terminate Power failure

Figure 8.26 Linux signals. Notes: (a) Years ago, main memory was implemented with a technology known
as core memory . “Dumping core” is a historical term that means writing an image of the code and data
memory segments to disk. (b) This signal can be neither caught nor ignored. (Source: man 7 signal. Data
from the Linux Foundation.)

A signal is a small message that notifies a process that an event of some type
has occurred in the system. Figure 8.26 shows the 30 different types of signals that
are supported on Linux systems.

Each signal type corresponds to some kind of system event. Low-level hard-
ware exceptions are processed by the kernel’s exception handlers and would not
normally be visible to user processes. Signals provide a mechanism for exposing

794 Chapter 8 Exceptional Control Flow

the occurrence of such exceptions to user processes. For example, if a process at-
tempts to divide by zero, then the kernel sends it a SIGFPE signal (number 8).
If a process executes an illegal instruction, the kernel sends it a SIGILL signal
(number 4). If a process makes an illegal memory reference, the kernel sends it a
SIGSEGV signal (number 11). Other signals correspond to higher-level software
events in the kernel or in other user processes. For example, if you type Ctrl+C
(i.e., press the Ctrl key and the ‘c’ key at the same time) while a process is running
in the foreground, then the kernel sends a SIGINT (number 2) to each process in
the foreground process group. A process can forcibly terminate another process
by sending it a SIGKILL signal (number 9). When a child process terminates or
stops, the kernel sends a SIGCHLD signal (number 17) to the parent.

8.5.1 Signal Terminology

The transfer of a signal to a destination process occurs in two distinct steps:

Sending a signal. The kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process. The signal
is delivered for one of two reasons: (1) The kernel has detected a system
event such as a divide-by-zero error or the termination of a child process.
(2) A process has invoked thekill function (discussed in the next section)
to explicitly request the kernel to send a signal to the destination process.
A process can send a signal to itself.

Receiving a signal. A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal. The process
can either ignore the signal, terminate, or catch the signal by executing
a user-level function called a signal handler. Figure 8.27 shows the basic
idea of a handler catching a signal.

A signal that has been sent but not yet received is called a pending signal. At
any point in time, there can be at most one pending signal of a particular type.
If a process has a pending signal of type k, then any subsequent signals of type
k sent to that process are not queued; they are simply discarded. A process can
selectively block the receipt of certain signals. When a signal is blocked, it can be

Figure 8.27
Signal handling. Receipt
of a signal triggers a
control transfer to a signal
handler. After it finishes
processing, the handler
returns control to the
interrupted program.

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to

next instruction

(1) Signal received
by process Icurr

Inext

Section 8.5 Signals 795

delivered, but the resulting pending signal will not be received until the process
unblocks the signal.

A pending signal is received at most once. For each process, the kernel main-
tains the set of pending signals in the pending bit vector, and the set of blocked
signals in the blocked bit vector.1 The kernel sets bit k in pending whenever a
signal of type k is delivered and clears bit k in pending whenever a signal of type
k is received.

8.5.2 Sending Signals

Unix systems provide a number of mechanisms for sending signals to processes.
All of the mechanisms rely on the notion of a process group.

Process Groups

Every process belongs to exactly one process group, which is identified by a
positive integer process group ID. The getpgrp function returns the process group
ID of the current process.

#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

By default, a child process belongs to the same process group as its parent. A
process can change the process group of itself or another process by using the
setpgid function:

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 on success, −1 on error

The setpgid function changes the process group of process pid to pgid. If pid is
zero, the PID of the current process is used. If pgid is zero, the PID of the process
specified by pid is used for the process group ID. For example, if process 15213 is
the calling process, then

setpgid(0, 0);

creates a new process group whose process group ID is 15213, and adds process
15213 to this new group.

1. Also known as the signal mask.

796 Chapter 8 Exceptional Control Flow

Sending Signals with the /bin/kill Program

The /bin/killprogram sends an arbitrary signal to another process. For example,
the command

linux> /bin/kill -9 15213

sends signal 9 (SIGKILL) to process 15213. A negative PID causes the signal to
be sent to every process in process group PID. For example, the command

linux> /bin/kill -9 -15213

sends a SIGKILL signal to every process in process group 15213. Note that we
use the complete path /bin/kill here because some Unix shells have their own
built-in kill command.

Sending Signals from the Keyboard

Unix shells use the abstraction of a job to represent the processes that are created
as a result of evaluating a single command line. At any point in time, there is at
most one foreground job and zero or more background jobs. For example, typing

linux> ls | sort

creates a foreground job consisting of two processes connected by a Unix pipe: one
running the ls program, the other running the sort program. The shell creates
a separate process group for each job. Typically, the process group ID is taken
from one of the parent processes in the job. For example, Figure 8.28 shows a
shell with one foreground job and two background jobs. The parent process in the
foreground job has a PID of 20 and a process group ID of 20. The parent process
has created two children, each of which are also members of process group 20.

Figure 8.28
Foreground and
background process
groups.

Back-
ground
job #1

Fore-
ground

job

Background
process group 32

Foreground
process group 20

Shell

ChildChild

Back-
ground
job #2

Background
process group 40

pid"20
pgid"20

pid"10
pgid"10

pid"21
pgid"20

pid"22
pgid"20

pid"32
pgid"32

pid"40
pgid"40

Section 8.5 Signals 797

Typing Ctrl+C at the keyboard causes the kernel to send a SIGINT signal to
every process in the foreground process group. In the default case, the result is to
terminate the foreground job. Similarly, typing Ctrl+Z causes the kernel to send a
SIGTSTP signal to every process in the foreground process group. In the default
case, the result is to stop (suspend) the foreground job.

Sending Signals with the kill Function

Processes send signals to other processes (including themselves) by calling the
kill function.

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

Returns: 0 if OK, −1 on error

If pid is greater than zero, then the kill function sends signal number sig to
process pid. If pid is equal to zero, then kill sends signal sig to every process
in the process group of the calling process, including the calling process itself. If
pid is less than zero, then kill sends signal sig to every process in process group
|pid| (the absolute value of pid). Figure 8.29 shows an example of a parent that
uses the kill function to send a SIGKILL signal to its child.

code/ecf/kill.c
1 #include "csapp.h"

2

3 int main()

4 {

5 pid_t pid;

6

7 /* Child sleeps until SIGKILL signal received, then dies */

8 if ((pid = Fork()) == 0) {

9 Pause(); /* Wait for a signal to arrive */

10 printf("control should never reach here!\n");

11 exit(0);

12 }

13

14 /* Parent sends a SIGKILL signal to a child */

15 Kill(pid, SIGKILL);

16 exit(0);

17 }

code/ecf/kill.c

Figure 8.29 Using the kill function to send a signal to a child.

798 Chapter 8 Exceptional Control Flow

Sending Signals with the alarm Function

A process can send SIGALRM signals to itself by calling the alarm function.

#include <unistd.h>

unsigned int alarm(unsigned int secs);

Returns: remaining seconds of previous alarm, or 0 if no previous alarm

The alarm function arranges for the kernel to send a SIGALRM signal to the
calling process in secs seconds. If secs is 0, then no new alarm is scheduled. In
any event, the call to alarm cancels any pending alarms and returns the number
of seconds remaining until any pending alarm was due to be delivered (had not
this call to alarm canceled it), or 0 if there were no pending alarms.

8.5.3 Receiving Signals

When the kernel switches a process p from kernel mode to user mode (e.g.,
returning from a system call or completing a context switch), it checks the set of
unblocked pending signals (pending & ~blocked) for p. If this set is empty (the
usual case), then the kernel passes control to the next instruction (Inext) in the
logical control flow of p. However, if the set is nonempty, then the kernel chooses
some signal k in the set (typically the smallest k) and forces p to receive signal
k. The receipt of the signal triggers some action by the process. Once the process
completes the action, then control passes back to the next instruction (Inext) in the
logical control flow of p. Each signal type has a predefined default action, which
is one of the following:

. The process terminates.

. The process terminates and dumps core.

. The process stops (suspends) until restarted by a SIGCONT signal.

. The process ignores the signal.

Figure 8.26 shows the default actions associated with each type of signal.
For example, the default action for the receipt of a SIGKILL is to terminate
the receiving process. On the other hand, the default action for the receipt of
a SIGCHLD is to ignore the signal. A process can modify the default action
associated with a signal by using the signal function. The only exceptions are
SIGSTOP and SIGKILL, whose default actions cannot be changed.

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

Returns: pointer to previous handler if OK, SIG_ERR on error (does not set errno)

Section 8.5 Signals 799

The signal function can change the action associated with a signal signum in
one of three ways:

. If handler is SIG_IGN, then signals of type signum are ignored.

. If handler is SIG_DFL, then the action for signals of type signum reverts to
the default action.

. Otherwise, handler is the address of a user-defined function, called a signal
handler, that will be called whenever the process receives a signal of type
signum. Changing the default action by passing the address of a handler to
the signal function is known as installing the handler. The invocation of the
handler is called catching the signal. The execution of the handler is referred
to as handling the signal.

When a process catches a signal of type k, the handler installed for signal k is
invoked with a single integer argument set to k. This argument allows the same
handler function to catch different types of signals.

When the handler executes itsreturn statement, control (usually) passes back
to the instruction in the control flow where the process was interrupted by the
receipt of the signal. We say “usually” because in some systems, interrupted system
calls return immediately with an error.

Figure 8.30 shows a program that catches the SIGINT signal that is sent
whenever the user types Ctrl+C at the keyboard. The default action for SIGINT

code/ecf/sigint.c
1 #include "csapp.h"

2

3 void sigint_handler(int sig) /* SIGINT handler */

4 {

5 printf("Caught SIGINT!\n");

6 exit(0);

7 }

8

9 int main()

10 {

11 /* Install the SIGINT handler */

12 if (signal(SIGINT, sigint_handler) == SIG_ERR)

13 unix_error("signal error");

14

15 pause(); /* Wait for the receipt of a signal */

16

17 return 0;

18 }

code/ecf/sigint.c

Figure 8.30 A program that uses a signal handler to catch a SIGINT signal.

800 Chapter 8 Exceptional Control Flow

(4) Control passes
to handler T

(1) Program
catches signal s

(3) Program
catches signal t

(7) Main program
resumes (5) Handler T

returns to
handler S

(2) Control passes
to handler S

Main program Handler S Handler T

(6) Handler S returns
to main program

Icurr

Inext

Figure 8.31 Handlers can be interrupted by other handlers.

is to immediately terminate the process. In this example, we modify the default
behavior to catch the signal, print a message, and then terminate the process.

Signal handlers can be interrupted by other handlers, as shown in Figure 8.31.
In this example, the main program catches signal s, which interrupts the main
program and transfers control to handler S. While S is running, the program
catches signal t #= s, which interrupts S and transfers control to handler T . When
T returns, S resumes where it was interrupted. Eventually, S returns, transferring
control back to the main program, which resumes where it left off.

Practice Problem 8.7 (solution page 834)

Write a program called snooze that takes a single command-line argument, calls
the snooze function from Problem 8.5 with this argument, and then terminates.
Write your program so that the user can interrupt the snooze function by typing
Ctrl+C at the keyboard. For example:

linux> ./snooze 5

CTRL+C User hits Crtl+C after 3 seconds

Slept for 3 of 5 secs.

linux>

8.5.4 Blocking and Unblocking Signals

Linux provides implicit and explicit mechanisms for blocking signals:

Implicit blocking mechanism. By default, the kernel blocks any pending sig-
nals of the type currently being processed by a handler. For example, in
Figure 8.31, suppose the program has caught signal s and is currently run-
ning handler S. If another signal s is sent to the process, then s will become
pending but will not be received until after handler S returns.

Explicit blocking mechanism. Applications can explicitly block and unblock
selected signals using the sigprocmask function and its helpers.

Section 8.5 Signals 801

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

Returns: 0 if OK, −1 on error

int sigismember(const sigset_t *set, int signum);

Returns: 1 if member, 0 if not, −1 on error

The sigprocmask function changes the set of currently blocked signals (the
blocked bit vector described in Section 8.5.1). The specific behavior depends on
the value of how:

SIG_BLOCK. Add the signals in set to blocked (blocked = blocked | set).

SIG_UNBLOCK. Remove the signals in set from blocked (blocked =
blocked & ~set).

SIG_SETMASK. blocked = set.

If oldset is non-NULL, the previous value of the blocked bit vector is stored in
oldset.

Signal sets such as set are manipulated using the following functions: The
sigemptyset initializes set to the empty set. The sigfillset function adds every
signal to set. The sigaddset function adds signum to set, sigdelset deletes
signum from set, and sigismember returns 1 if signum is a member of set, and
0 if not.

For example, Figure 8.32 shows how you would use sigprocmask to tempo-
rarily block the receipt of SIGINT signals.

1 sigset_t mask, prev_mask;

2

3 Sigemptyset(&mask);

4 Sigaddset(&mask, SIGINT);

5

6 /* Block SIGINT and save previous blocked set */

7 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

8
.
.
. // Code region that will not be interrupted by SIGINT

9 /* Restore previous blocked set, unblocking SIGINT */

10 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

11

Figure 8.32 Temporarily blocking a signal from being received.

802 Chapter 8 Exceptional Control Flow

8.5.5 Writing Signal Handlers

Signal handling is one of the thornier aspects of Linux system-level programming.
Handlers have several attributes that make them difficult to reason about: (1) Han-
dlers run concurrently with the main program and share the same global variables,
and thus can interfere with the main program and with other handlers. (2) The
rules for how and when signals are received is often counterintuitive. (3) Different
systems can have different signal-handling semantics.

In this section, we address these issues and give you some basic guidelines for
writing safe, correct, and portable signal handlers.

Safe Signal Handling

Signal handlers are tricky because they can run concurrently with the main pro-
gram and with each other, as we saw in Figure 8.31. If a handler and the main
program access the same global data structure concurrently, then the results can
be unpredictable and often fatal.

We will explore concurrent programming in detail in Chapter 12. Our aim
here is to give you some conservative guidelines for writing handlers that are
safe to run concurrently. If you ignore these guidelines, you run the risk of in-
troducing subtle concurrency errors. With such errors, your program works cor-
rectly most of the time. However, when it fails, it fails in unpredictable and
unrepeatable ways that are horrendously difficult to debug. Forewarned is fore-
armed!

G0. Keep handlers as simple as possible. The best way to avoid trouble is to keep
your handlers as small and simple as possible. For example, the handler
might simply set a global flag and return immediately; all processing
associated with the receipt of the signal is performed by the main program,
which periodically checks (and resets) the flag.

G1. Call only async-signal-safe functions in your handlers. A function that is
async-signal-safe, or simply safe, has the property that it can be safely
called from a signal handler, either because it is reentrant (e.g., ac-
cesses only local variables; see Section 12.7.2), or because it cannot
be interrupted by a signal handler. Figure 8.33 lists the system-level
functions that Linux guarantees to be safe. Notice that many popu-
lar functions, such as printf, sprintf, malloc, and exit, are not on
this list.

The only safe way to generate output from a signal handler is to use
the write function (see Section 10.1). In particular, calling printf or
sprintf is unsafe. To work around this unfortunate restriction, we have
developed some safe functions, called the Sio (Safe I/O) package, that
you can use to print simple messages from signal handlers.

Section 8.5 Signals 803

_Exit fexecve poll sigqueue

_exit fork posix_trace_event sigset

abort fstat pselect sigsuspend

accept fstatat raise sleep

access fsync read sockatmark

aio_error ftruncate readlink socket

aio_return futimens readlinkat socketpair

aio_suspend getegid recv stat

alarm geteuid recvfrom symlink

bind getgid recvmsg symlinkat

cfgetispeed getgroups rename tcdrain

cfgetospeed getpeername renameat tcflow

cfsetispeed getpgrp rmdir tcflush

cfsetospeed getpid select tcgetattr

chdir getppid sem_post tcgetpgrp

chmod getsockname send tcsendbreak

chown getsockopt sendmsg tcsetattr

clock_gettime getuid sendto tcsetpgrp

close kill setgid time

connect link setpgid timer_getoverrun

creat linkat setsid timer_gettime

dup listen setsockopt timer_settime

dup2 lseek setuid times

execl lstat shutdown umask

execle mkdir sigaction uname

execv mkdirat sigaddset unlink

execve mkfifo sigdelset unlinkat

faccessat mkfifoat sigemptyset utime

fchmod mknod sigfillset utimensat

fchmodat mknodat sigismember utimes

fchown open signal wait

fchownat openat sigpause waitpid

fcntl pause sigpending write

fdatasync pipe sigprocmask

Figure 8.33 Async-signal-safe functions. (Source: man 7 signal. Data from the Linux
Foundation.)

804 Chapter 8 Exceptional Control Flow

#include "csapp.h"

ssize_t sio_putl(long v);

ssize_t sio_puts(char s[]);

Returns: number of bytes transferred if OK, −1 on error

void sio_error(char s[]);

Returns: nothing

The sio_putl and sio_puts functions emit a long and a string, respec-
tively, to standard output. The sio_error function prints an error mes-
sage and terminates.

Figure 8.34 shows the implementation of the Sio package, which uses
two private reentrant functions from csapp.c. The sio_strlen function
in line 3 returns the length of string s. The sio_ltoa function in line 10,
which is based on the itoa function from [61], converts v to its base b
string representation in s. The _exit function in line 17 is an async-signal-
safe variant of exit.

Figure 8.35 shows a safe version of the SIGINT handler from Fig-
ure 8.30.

G2. Save and restore errno. Many of the Linux async-signal-safe functions set
errno when they return with an error. Calling such functions inside a
handler might interfere with other parts of the program that rely onerrno.

code/src/csapp.c
1 ssize_t sio_puts(char s[]) /* Put string */

2 {

3 return write(STDOUT_FILENO, s, sio_strlen(s));

4 }

5
6 ssize_t sio_putl(long v) /* Put long */

7 {

8 char s[128];

9
10 sio_ltoa(v, s, 10); /* Based on K&R itoa() */

11 return sio_puts(s);

12 }

13
14 void sio_error(char s[]) /* Put error message and exit */

15 {

16 sio_puts(s);

17 _exit(1);

18 }

code/src/csapp.c

Figure 8.34 The Sio (Safe I/O) package for signal handlers.

Section 8.5 Signals 805

code/ecf/sigintsafe.c
1 #include "csapp.h"

2

3 void sigint_handler(int sig) /* Safe SIGINT handler */

4 {

5 Sio_puts("Caught SIGINT!\n"); /* Safe output */

6 _exit(0); /* Safe exit */

7 }

code/ecf/sigintsafe.c

Figure 8.35 A safe version of the SIGINT handler from Figure 8.30.

The workaround is to saveerrno to a local variable on entry to the handler
and restore it before the handler returns. Note that this is only necessary
if the handler returns. It is not necessary if the handler terminates the
process by calling _exit.

G3. Protect accesses to shared global data structures by blocking all signals. If
a handler shares a global data structure with the main program or with
other handlers, then your handlers and main program should temporarily
block all signals while accessing (reading or writing) that data structure.
The reason for this rule is that accessing a data structure d from the main
program typically requires a sequence of instructions. If this instruction
sequence is interrupted by a handler that accesses d, then the handler
might find d in an inconsistent state, with unpredictable results. Tempo-
rarily blocking signals while you access d guarantees that a handler will
not interrupt the instruction sequence.

G4. Declare global variables with volatile. Consider a handler and main rou-
tine that share a global variable g. The handler updates g, and main pe-
riodically reads g. To an optimizing compiler, it would appear that the
value of g never changes in main, and thus it would be safe to use a copy
of g that is cached in a register to satisfy every reference to g. In this case,
the main function would never see the updated values from the handler.

You can tell the compiler not to cache a variable by declaring it with
the volatile type qualifier. For example:

volatile int g;

The volatile qualifier forces the compiler to read the value of g from
memory each time it is referenced in the code. In general, as with any
shared data structure, each access to a global variable should be protected
by temporarily blocking signals.

G5. Declare flags with sig_atomic_t. In one common handler design, the
handler records the receipt of the signal by writing to a global flag. The
main program periodically reads the flag, responds to the signal, and

806 Chapter 8 Exceptional Control Flow

clears the flag. For flags that are shared in this way, C provides an integer
data type, sig_atomic_t, for which reads and writes are guaranteed to be
atomic (uninterruptible) because they can be implemented with a single
instruction:

volatile sig_atomic_t flag;

Since they can’t be interrupted, you can safely read from and write to
sig_atomic_t variables without temporarily blocking signals. Note that
the guarantee of atomicity only applies to individual reads and writes.
It does not apply to updates such as flag++ or flag = flag + 10, which
might require multiple instructions.

Keep in mind that the guidelines we have presented are conservative, in
the sense that they are not always strictly necessary. For example, if you know
that a handler can never modify errno, then you don’t need to save and restore
errno. Or if you can prove that no instance of printf can ever be interrupted
by a handler, then it is safe to call printf from the handler. The same holds for
accesses to shared global data structures. However, it is very difficult to prove such
assertions in general. So we recommend that you take the conservative approach
and follow the guidelines by keeping your handlers as simple as possible, calling
safe functions, saving and restoring errno, protecting accesses to shared data
structures, and using volatile and sig_atomic_t.

Correct Signal Handling

One of the nonintuitive aspects of signals is that pending signals are not queued.
Because the pending bit vector contains exactly one bit for each type of signal,
there can be at most one pending signal of any particular type. Thus, if two signals
of type k are sent to a destination process while signal k is blocked because the
destination process is currently executing a handler for signal k, then the second
signal is simply discarded; it is not queued. The key idea is that the existence of a
pending signal merely indicates that at least one signal has arrived.

To see how this affects correctness, let’s look at a simple application that
is similar in nature to real programs such as shells and Web servers. The basic
structure is that a parent process creates some children that run independently for
a while and then terminate. The parent must reap the children to avoid leaving
zombies in the system. But we also want the parent to be free to do other work
while the children are running. So we decide to reap the children with a SIGCHLD
handler, instead of explicitly waiting for the children to terminate. (Recall that
the kernel sends a SIGCHLD signal to the parent whenever one of its children
terminates or stops.)

Figure 8.36 shows our first attempt. The parent installs a SIGCHLD handler
and then creates three children. In the meantime, the parent waits for a line of
input from the terminal and then processes it. This processing is modeled by
an infinite loop. When each child terminates, the kernel notifies the parent by
sending it a SIGCHLD signal. The parent catches the SIGCHLD, reaps one child,

Section 8.5 Signals 807

code/ecf/signal1.c
1 /* WARNING: This code is buggy! */

2

3 void handler1(int sig)

4 {

5 int olderrno = errno;

6

7 if ((waitpid(-1, NULL, 0)) < 0)

8 sio_error("waitpid error");

9 Sio_puts("Handler reaped child\n");

10 Sleep(1);

11 errno = olderrno;

12 }

13

14 int main()

15 {

16 int i, n;

17 char buf[MAXBUF];

18

19 if (signal(SIGCHLD, handler1) == SIG_ERR)

20 unix_error("signal error");

21

22 /* Parent creates children */

23 for (i = 0; i < 3; i++) {

24 if (Fork() == 0) {

25 printf("Hello from child %d\n", (int)getpid());

26 exit(0);

27 }

28 }

29

30 /* Parent waits for terminal input and then processes it */

31 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

32 unix_error("read");

33

34 printf("Parent processing input\n");

35 while (1)

36 ;

37

38 exit(0);

39 }

code/ecf/signal1.c

Figure 8.36 signal1. This program is flawed because it assumes that signals are
queued.

808 Chapter 8 Exceptional Control Flow

does some additional cleanup work (modeled by the sleep statement), and then
returns.

The signal1 program in Figure 8.36 seems fairly straightforward. When we
run it on our Linux system, however, we get the following output:

linux> ./signal1

Hello from child 14073

Hello from child 14074

Hello from child 14075

Handler reaped child

Handler reaped child

CR

Parent processing input

From the output, we note that although three SIGCHLD signals were sent to the
parent, only two of these signals were received, and thus the parent only reaped
two children. If we suspend the parent process, we see that, indeed, child process
14075 was never reaped and remains a zombie (indicated by the string <defunct>
in the output of the ps command):

Ctrl+Z

Suspended

linux> ps t

PID TTY STAT TIME COMMAND
.
.
.

14072 pts/3 T 0:02 ./signal1

14075 pts/3 Z 0:00 [signal1] <defunct>

14076 pts/3 R+ 0:00 ps t

What went wrong? The problem is that our code failed to account for the fact
that signals are not queued. Here’s what happened: The first signal is received
and caught by the parent. While the handler is still processing the first signal, the
second signal is delivered and added to the set of pending signals. However, since
SIGCHLD signals are blocked by the SIGCHLD handler, the second signal is not
received. Shortly thereafter, while the handler is still processing the first signal,
the third signal arrives. Since there is already a pending SIGCHLD, this third
SIGCHLD signal is discarded. Sometime later, after the handler has returned,
the kernel notices that there is a pending SIGCHLD signal and forces the parent
to receive the signal. The parent catches the signal and executes the handler a
second time. After the handler finishes processing the second signal, there are no
more pending SIGCHLD signals, and there never will be, because all knowledge
of the third SIGCHLD has been lost. The crucial lesson is that signals cannot be
used to count the occurrence of events in other processes.

To fix the problem, we must recall that the existence of a pending signal only
implies that at least one signal has been delivered since the last time the process
received a signal of that type. So we must modify the SIGCHLD handler to reap

Section 8.5 Signals 809

code/ecf/signal2.c
1 void handler2(int sig)

2 {

3 int olderrno = errno;

4

5 while (waitpid(-1, NULL, 0) > 0) {

6 Sio_puts("Handler reaped child\n");

7 }

8 if (errno != ECHILD)

9 Sio_error("waitpid error");

10 Sleep(1);

11 errno = olderrno;

12 }

code/ecf/signal2.c

Figure 8.37 signal2. An improved version of Figure 8.36 that correctly accounts for
the fact that signals are not queued.

as many zombie children as possible each time it is invoked. Figure 8.37 shows the
modified SIGCHLD handler.

When we run signal2 on our Linux system, it now correctly reaps all of the
zombie children:

linux> ./signal2

Hello from child 15237

Hello from child 15238

Hello from child 15239

Handler reaped child

Handler reaped child

Handler reaped child

CR

Parent processing input

Practice Problem 8.8 (solution page 835)

What is the output of the following program?

code/ecf/signalprob0.c
1 volatile long counter = 2;

2

3 void handler1(int sig)

4 {

5 sigset_t mask, prev_mask;

6

7 Sigfillset(&mask);

8 Sigprocmask(SIG_BLOCK, &mask, &prev_mask); /* Block sigs */

810 Chapter 8 Exceptional Control Flow

9 Sio_putl(--counter);

10 Sigprocmask(SIG_SETMASK, &prev_mask, NULL); /* Restore sigs */

11

12 _exit(0);

13 }

14

15 int main()

16 {

17 pid_t pid;

18 sigset_t mask, prev_mask;

19

20 printf("%ld", counter);

21 fflush(stdout);

22

23 signal(SIGUSR1, handler1);

24 if ((pid = Fork()) == 0) {

25 while(1) {};

26 }

27 Kill(pid, SIGUSR1);

28 Waitpid(-1, NULL, 0);

29

30 Sigfillset(&mask);

31 Sigprocmask(SIG_BLOCK, &mask, &prev_mask); /* Block sigs */

32 printf("%ld", ++counter);

33 Sigprocmask(SIG_SETMASK, &prev_mask, NULL); /* Restore sigs */

34

35 exit(0);

36 }

code/ecf/signalprob0.c

Portable Signal Handling

Another ugly aspect of Unix signal handling is that different systems have different
signal-handling semantics. For example:

. The semantics of the signal function varies. Some older Unix systems restore
the action for signal k to its default after signal k has been caught by a handler.
On these systems, the handler must explicitly reinstall itself, by calling signal,
each time it runs.

. System calls can be interrupted. System calls such as read, wait, and accept
that can potentially block the process for a long period of time are called
slow system calls. On some older versions of Unix, slow system calls that are
interrupted when a handler catches a signal do not resume when the signal
handler returns but instead return immediately to the user with an error
condition and errno set to EINTR. On these systems, programmers must
include code that manually restarts interrupted system calls.

Section 8.5 Signals 811

code/src/csapp.c
1 handler_t *Signal(int signum, handler_t *handler)

2 {

3 struct sigaction action, old_action;

4

5 action.sa_handler = handler;

6 sigemptyset(&action.sa_mask); /* Block sigs of type being handled */

7 action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

8

9 if (sigaction(signum, &action, &old_action) < 0)

10 unix_error("Signal error");

11 return (old_action.sa_handler);

12 }

code/src/csapp.c

Figure 8.38 Signal. A wrapper for sigaction that provides portable signal handling on Posix-compliant
systems.

To deal with these issues, the Posix standard defines the sigaction function, which
allows users to clearly specify the signal-handling semantics they want when they
install a handler.

#include <signal.h>

int sigaction(int signum, struct sigaction *act,

struct sigaction *oldact);

Returns: 0 if OK, −1 on error

The sigaction function is unwieldy because it requires the user to set the entries
of a complicated structure. A cleaner approach, originally proposed by W. Richard
Stevens [110], is to define a wrapper function, called Signal, that calls sigaction
for us. Figure 8.38 shows the definition of Signal, which is invoked in the same
way as the signal function.

The Signal wrapper installs a signal handler with the following signal-
handling semantics:

. Only signals of the type currently being processed by the handler are blocked.

. As with all signal implementations, signals are not queued.

. Interrupted system calls are automatically restarted whenever possible.

. Once the signal handler is installed, it remains installed until Signal is called
with a handler argument of either SIG_IGN or SIG_DFL.

We will use the Signal wrapper in all of our code.

812 Chapter 8 Exceptional Control Flow

8.5.6 Synchronizing Flows to Avoid Nasty Concurrency Bugs

The problem of how to program concurrent flows that read and write the same
storage locations has challenged generations of computer scientists. In general,
the number of potential interleavings of the flows is exponential in the number of
instructions. Some of those interleavings will produce correct answers, and others
will not. The fundamental problem is to somehow synchronize the concurrent
flows so as to allow the largest set of feasible interleavings such that each of the
feasible interleavings produces a correct answer.

Concurrent programming is a deep and important problem that we will discuss
in more detail in Chapter 12. However, we can use what you’ve learned about
exceptional control flow in this chapter to give you a sense of the interesting
intellectual challenges associated with concurrency. For example, consider the
program in Figure 8.39, which captures the structure of a typical Unix shell. The
parent keeps track of its current children using entries in a global job list, with one
entry per job. The addjob and deletejob functions add and remove entries from
the job list.

After the parent creates a new child process, it adds the child to the job
list. When the parent reaps a terminated (zombie) child in the SIGCHLD signal
handler, it deletes the child from the job list.

At first glance, this code appears to be correct. Unfortunately, the following
sequence of events is possible:

1. The parent executes the fork function and the kernel schedules the newly
created child to run instead of the parent.

2. Before the parent is able to run again, the child terminates and becomes a
zombie, causing the kernel to deliver a SIGCHLD signal to the parent.

3. Later, when the parent becomes runnable again but before it is executed, the
kernel notices the pending SIGCHLD and causes it to be received by running
the signal handler in the parent.

4. The signal handler reaps the terminated child and calls deletejob, which does
nothing because the parent has not added the child to the list yet.

5. After the handler completes, the kernel then runs the parent, which returns
from fork and incorrectly adds the (nonexistent) child to the job list by calling
addjob.

Thus, for some interleavings of the parent’s main routine and signal-handling
flows, it is possible for deletejob to be called before addjob. This results in an
incorrect entry on the job list, for a job that no longer exists and that will never be
removed. On the other hand, there are also interleavings where events occur in
the correct order. For example, if the kernel happens to schedule the parent to run
when the fork call returns instead of the child, then the parent will correctly add
the child to the job list before the child terminates and the signal handler removes
the job from the list.

This is an example of a classic synchronization error known as a race. In this
case, the race is between the call to addjob in the main routine and the call to

Section 8.5 Signals 813

code/ecf/procmask1.c
1 /* WARNING: This code is buggy! */

2 void handler(int sig)

3 {

4 int olderrno = errno;

5 sigset_t mask_all, prev_all;

6 pid_t pid;

7

8 Sigfillset(&mask_all);

9 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap a zombie child */

10 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

11 deletejob(pid); /* Delete the child from the job list */

12 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

13 }

14 if (errno != ECHILD)

15 Sio_error("waitpid error");

16 errno = olderrno;

17 }

18

19 int main(int argc, char **argv)

20 {

21 int pid;

22 sigset_t mask_all, prev_all;

23

24 Sigfillset(&mask_all);

25 Signal(SIGCHLD, handler);

26 initjobs(); /* Initialize the job list */

27

28 while (1) {

29 if ((pid = Fork()) == 0) { /* Child process */

30 Execve("/bin/date", argv, NULL);

31 }

32 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent process */

33 addjob(pid); /* Add the child to the job list */

34 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

35 }

36 exit(0);

37 }

code/ecf/procmask1.c

Figure 8.39 A shell program with a subtle synchronization error. If the child terminates before the parent
is able to run, then addjob and deletejob will be called in the wrong order.

814 Chapter 8 Exceptional Control Flow

deletejob in the handler. If addjob wins the race, then the answer is correct. If
not, the answer is incorrect. Such errors are enormously difficult to debug because
it is often impossible to test every interleaving. You might run the code a billion
times without a problem, but then the next test results in an interleaving that
triggers the race.

Figure 8.40 shows one way to eliminate the race in Figure 8.39. By blocking
SIGCHLD signals before the call to fork and then unblocking them only after we
have called addjob, we guarantee that the child will be reaped after it is added to
the job list. Notice that children inherit the blocked set of their parents, so we must
be careful to unblock the SIGCHLD signal in the child before calling execve.

8.5.7 Explicitly Waiting for Signals

Sometimes a main program needs to explicitly wait for a certain signal handler to
run. For example, when a Linux shell creates a foreground job, it must wait for
the job to terminate and be reaped by the SIGCHLD handler before accepting
the next user command.

Figure 8.41 shows the basic idea. The parent installs handlers for SIGINT and
SIGCHLD and then enters an infinite loop. It blocks SIGCHLD to avoid the race
between parent and child that we discussed in Section 8.5.6. After creating the
child, it resets pid to zero, unblocks SIGCHLD, and then waits in a spin loop for
pid to become nonzero. After the child terminates, the handler reaps it and assigns
its nonzero PID to the global pid variable. This terminates the spin loop, and the
parent continues with additional work before starting the next iteration.

While this code is correct, the spin loop is wasteful of processor resources. We
might be tempted to fix this by inserting a pause in the body of the spin loop:

while (!pid) /* Race! */

pause();

Notice that we still need a loop because pause might be interrupted by the
receipt of one or more SIGINT signals. However, this code has a serious race
condition: if the SIGCHLD is received after the while test but before the pause,
the pause will sleep forever.

Another option is to replace the pause with sleep:

while (!pid) /* Too slow! */

sleep(1);

While correct, this code is too slow. If the signal is received after the while
and before the sleep, the program must wait a (relatively) long time before it
can check the loop termination condition again. Using a higher-resolution sleep
function such as nanosleep isn’t acceptable, either, because there is no good rule
for determining the sleep interval. Make it too small and the loop is too wasteful.
Make it too high and the program is too slow.

Section 8.5 Signals 815

code/ecf/procmask2.c
1 void handler(int sig)

2 {

3 int olderrno = errno;

4 sigset_t mask_all, prev_all;

5 pid_t pid;

6

7 Sigfillset(&mask_all);

8 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap a zombie child */

9 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

10 deletejob(pid); /* Delete the child from the job list */

11 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

12 }

13 if (errno != ECHILD)

14 Sio_error("waitpid error");

15 errno = olderrno;

16 }

17

18 int main(int argc, char **argv)

19 {

20 int pid;

21 sigset_t mask_all, mask_one, prev_one;

22

23 Sigfillset(&mask_all);

24 Sigemptyset(&mask_one);

25 Sigaddset(&mask_one, SIGCHLD);

26 Signal(SIGCHLD, handler);

27 initjobs(); /* Initialize the job list */

28

29 while (1) {

30 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

31 if ((pid = Fork()) == 0) { /* Child process */

32 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

33 Execve("/bin/date", argv, NULL);

34 }

35 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

36 addjob(pid); /* Add the child to the job list */

37 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

38 }

39 exit(0);

40 }

code/ecf/procmask2.c

Figure 8.40 Using sigprocmask to synchronize processes. In this example, the parent ensures that
addjob executes before the corresponding deletejob.

816 Chapter 8 Exceptional Control Flow

code/ecf/waitforsignal.c
1 #include "csapp.h"

2

3 volatile sig_atomic_t pid;

4

5 void sigchld_handler(int s)

6 {

7 int olderrno = errno;

8 pid = waitpid(-1, NULL, 0);

9 errno = olderrno;

10 }

11

12 void sigint_handler(int s)

13 {

14 }

15

16 int main(int argc, char **argv)

17 {

18 sigset_t mask, prev;

19

20 Signal(SIGCHLD, sigchld_handler);

21 Signal(SIGINT, sigint_handler);

22 Sigemptyset(&mask);

23 Sigaddset(&mask, SIGCHLD);

24

25 while (1) {

26 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

27 if (Fork() == 0) /* Child */

28 exit(0);

29

30 /* Parent */

31 pid = 0;

32 Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

33

34 /* Wait for SIGCHLD to be received (wasteful) */

35 while (!pid)

36 ;

37

38 /* Do some work after receiving SIGCHLD */

39 printf(".");

40 }

41 exit(0);

42 }

code/ecf/waitforsignal.c

Figure 8.41 Waiting for a signal with a spin loop. This code is correct, but the spin loop is wasteful.

Section 8.6 Nonlocal Jumps 817

The proper solution is to use sigsuspend.

#include <signal.h>

int sigsuspend(const sigset_t *mask);

Returns: −1

The sigsuspend function temporarily replaces the current blocked set with mask
and then suspends the process until the receipt of a signal whose action is either
to run a handler or to terminate the process. If the action is to terminate, then the
process terminates without returning from sigsuspend. If the action is to run a
handler, then sigsuspend returns after the handler returns, restoring the blocked
set to its state when sigsuspend was called.

The sigsuspend function is equivalent to an atomic (uninterruptible) version
of the following:

1 sigprocmask(SIG_BLOCK, &mask, &prev);

2 pause();

3 sigprocmask(SIG_SETMASK, &prev, NULL);

The atomic property guarantees that the calls to sigprocmask (line 1) and pause
(line 2) occur together, without being interrupted. This eliminates the potential
race where a signal is received after the call to sigprocmask and before the call
to pause.

Figure 8.42 shows how we would use sigsuspend to replace the spin loop
in Figure 8.41. Before each call to sigsuspend, SIGCHLD is blocked. The
sigsuspend temporarily unblocks SIGCHLD, and then sleeps until the parent
catches a signal. Before returning, it restores the original blocked set, which blocks
SIGCHLD again. If the parent caught a SIGINT, then the loop test succeeds and
the next iteration calls sigsuspend again. If the parent caught a SIGCHLD, then
the loop test fails and we exit the loop. At this point, SIGCHLD is blocked, and
so we can optionally unblock SIGCHLD. This might be useful in a real shell with
background jobs that need to be reaped.

The sigsuspend version is less wasteful than the original spin loop, avoids the
race introduced by pause, and is more efficient than sleep.

8.6 Nonlocal Jumps

C provides a form of user-level exceptional control flow, called a nonlocal jump,
that transfers control directly from one function to another currently executing
function without having to go through the normal call-and-return sequence. Non-
local jumps are provided by the setjmp and longjmp functions.

818 Chapter 8 Exceptional Control Flow

code/ecf/sigsuspend.c
1 #include "csapp.h"

2

3 volatile sig_atomic_t pid;

4

5 void sigchld_handler(int s)

6 {

7 int olderrno = errno;

8 pid = Waitpid(-1, NULL, 0);

9 errno = olderrno;

10 }

11

12 void sigint_handler(int s)

13 {

14 }

15

16 int main(int argc, char **argv)

17 {

18 sigset_t mask, prev;

19

20 Signal(SIGCHLD, sigchld_handler);

21 Signal(SIGINT, sigint_handler);

22 Sigemptyset(&mask);

23 Sigaddset(&mask, SIGCHLD);

24

25 while (1) {

26 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

27 if (Fork() == 0) /* Child */

28 exit(0);

29

30 /* Wait for SIGCHLD to be received */

31 pid = 0;

32 while (!pid)

33 sigsuspend(&prev);

34

35 /* Optionally unblock SIGCHLD */

36 Sigprocmask(SIG_SETMASK, &prev, NULL);

37

38 /* Do some work after receiving SIGCHLD */

39 printf(".");

40 }

41 exit(0);

42 }

code/ecf/sigsuspend.c

Figure 8.42 Waiting for a signal with sigsuspend.

Section 8.6 Nonlocal Jumps 819

#include <setjmp.h>

int setjmp(jmp_buf env);

int sigsetjmp(sigjmp_buf env, int savesigs);

Returns: 0 from setjmp, nonzero from longjmps

The setjmp function saves the current calling environment in the env buffer, for
later use by longjmp, and returns 0. The calling environment includes the program
counter, stack pointer, and general-purpose registers. For subtle reasons beyond
our scope, the value that setjmp returns should not be assigned to a variable:

rc = setjmp(env); /* Wrong! */

However, it can be safely used as a test in a switch or conditional statement [62].

#include <setjmp.h>

void longjmp(jmp_buf env, int retval);

void siglongjmp(sigjmp_buf env, int retval);

Never returns

The longjmp function restores the calling environment from the env buffer and
then triggers a return from the most recent setjmp call that initialized env. The
setjmp then returns with the nonzero return value retval.

The interactions between setjmp and longjmp can be confusing at first glance.
The setjmp function is called once but returns multiple times: once when the
setjmp is first called and the calling environment is stored in the env buffer,
and once for each corresponding longjmp call. On the other hand, the longjmp
function is called once but never returns.

An important application of nonlocal jumps is to permit an immediate return
from a deeply nested function call, usually as a result of detecting some error
condition. If an error condition is detected deep in a nested function call, we can
use a nonlocal jump to return directly to a common localized error handler instead
of laboriously unwinding the call stack.

Figure 8.43 shows an example of how this might work. The main routine first
calls setjmp to save the current calling environment, and then calls function foo,
which in turn calls function bar. If foo or bar encounter an error, they return
immediately from the setjmp via a longjmp call. The nonzero return value of the
setjmp indicates the error type, which can then be decoded and handled in one
place in the code.

The feature of longjmp that allows it to skip up through all intermediate calls
can have unintended consequences. For example, if some data structures were
allocated in the intermediate function calls with the intention to deallocate them
at the end of the function, the deallocation code gets skipped, thus creating a
memory leak.

820 Chapter 8 Exceptional Control Flow

code/ecf/setjmp.c
1 #include "csapp.h"

2

3 jmp_buf buf;

4

5 int error1 = 0;

6 int error2 = 1;

7

8 void foo(void), bar(void);

9

10 int main()

11 {

12 switch(setjmp(buf)) {

13 case 0:

14 foo();

15 break;

16 case 1:

17 printf("Detected an error1 condition in foo\n");

18 break;

19 case 2:

20 printf("Detected an error2 condition in foo\n");

21 break;

22 default:

23 printf("Unknown error condition in foo\n");

24 }

25 exit(0);

26 }

27

28 /* Deeply nested function foo */

29 void foo(void)

30 {

31 if (error1)

32 longjmp(buf, 1);

33 bar();

34 }

35

36 void bar(void)

37 {

38 if (error2)

39 longjmp(buf, 2);

40 }

code/ecf/setjmp.c

Figure 8.43 Nonlocal jump example. This example shows the framework for using
nonlocal jumps to recover from error conditions in deeply nested functions without
having to unwind the entire stack.

Section 8.6 Nonlocal Jumps 821

code/ecf/restart.c
1 #include "csapp.h"

2

3 sigjmp_buf buf;

4

5 void handler(int sig)

6 {

7 siglongjmp(buf, 1);

8 }

9

10 int main()

11 {

12 if (!sigsetjmp(buf, 1)) {

13 Signal(SIGINT, handler);

14 Sio_puts("starting\n");

15 }

16 else

17 Sio_puts("restarting\n");

18

19 while(1) {

20 Sleep(1);

21 Sio_puts("processing...\n");

22 }

23 exit(0); /* Control never reaches here */

24 }

code/ecf/restart.c

Figure 8.44 A program that uses nonlocal jumps to restart itself when the user
types Ctrl+C.

Another important application of nonlocal jumps is to branch out of a signal
handler to a specific code location, rather than returning to the instruction that was
interrupted by the arrival of the signal. Figure 8.44 shows a simple program that
illustrates this basic technique. The program uses signals and nonlocal jumps to
do a soft restart whenever the user types Ctrl+C at the keyboard. The sigsetjmp
and siglongjmp functions are versions of setjmp and longjmp that can be used
by signal handlers.

The initial call to the sigsetjmp function saves the calling environment and
signal context (including the pending and blocked signal vectors) when the pro-
gram first starts. The main routine then enters an infinite processing loop. When
the user types Ctrl+C, the kernel sends a SIGINT signal to the process, which
catches it. Instead of returning from the signal handler, which would pass control
back to the interrupted processing loop, the handler performs a nonlocal jump
back to the beginning of the main program. When we run the program on our
system, we get the following output:

822 Chapter 8 Exceptional Control Flow

Aside Software exceptions in C++ and Java

The exception mechanisms provided by C++ and Java are higher-level, more structured versions of the
C setjmp and longjmp functions. You can think of a catch clause inside a try statement as being akin
to a setjmp function. Similarly, a throw statement is similar to a longjmp function.

linux> ./restart

starting

processing...

processing...

Ctrl+C

restarting

processing...

Ctrl+C

restarting

processing...

There a couple of interesting things about this program. First, To avoid a race,
we must install the handler after we call sigsetjmp. If not, we would run the
risk of the handler running before the initial call to sigsetjmp sets up the calling
environment for siglongjmp. Second, you might have noticed that the sigsetjmp
and siglongjmp functions are not on the list of async-signal-safe functions in
Figure 8.33. The reason is that in general siglongjmp can jump into arbitrary
code, so we must be careful to call only safe functions in any code reachable from
a siglongjmp. In our example, we call the safe sio_puts and sleep functions.
The unsafe exit function is unreachable.

8.7 Tools for Manipulating Processes

Linux systems provide a number of useful tools for monitoring and manipulating
processes:

strace. Prints a trace of each system call invoked by a running program and
its children. It is a fascinating tool for the curious student. Compile your
program with-static to get a cleaner trace without a lot of output related
to shared libraries.

ps. Lists processes (including zombies) currently in the system.

top. Prints information about the resource usage of current processes.

pmap. Displays the memory map of a process.

/proc. A virtual filesystem that exports the contents of numerous kernel data
structures in an ASCII text form that can be read by user programs. For
example, type cat /proc/loadavg to see the current load average on
your Linux system.

Bibliographic Notes 823

8.8 Summary

Exceptional control flow (ECF) occurs at all levels of a computer system and is a
basic mechanism for providing concurrency in a computer system.

At the hardware level, exceptions are abrupt changes in the control flow that
are triggered by events in the processor. The control flow passes to a software
handler, which does some processing and then returns control to the interrupted
control flow.

There are four different types of exceptions: interrupts, faults, aborts, and
traps. Interrupts occur asynchronously (with respect to any instructions) when
an external I/O device such as a timer chip or a disk controller sets the in-
terrupt pin on the processor chip. Control returns to the instruction follow-
ing the faulting instruction. Faults and aborts occur synchronously as the re-
sult of the execution of an instruction. Fault handlers restart the faulting in-
struction, while abort handlers never return control to the interrupted flow.
Finally, traps are like function calls that are used to implement the system calls
that provide applications with controlled entry points into the operating sys-
tem code.

At the operating system level, the kernel uses ECF to provide the funda-
mental notion of a process. A process provides applications with two important
abstractions: (1) logical control flows that give each program the illusion that it
has exclusive use of the processor, and (2) private address spaces that provide the
illusion that each program has exclusive use of the main memory.

At the interface between the operating system and applications, applications
can create child processes, wait for their child processes to stop or terminate, run
new programs, and catch signals from other processes. The semantics of signal
handling is subtle and can vary from system to system. However, mechanisms exist
on Posix-compliant systems that allow programs to clearly specify the expected
signal-handling semantics.

Finally, at the application level, C programs can use nonlocal jumps to bypass
the normal call/return stack discipline and branch directly from one function to
another.

Bibliographic Notes

Kerrisk is the essential reference for all aspects of programming in the Linux
environment [62]. The Intel ISA specification contains a detailed discussion of
exceptions and interrupts on Intel processors [50]. Operating systems texts [102,
106, 113] contain additional information on exceptions, processes, and signals.
The classic work by W. Richard Stevens [111] is a valuable and highly readable
description of how to work with processes and signals from application programs.
Bovet and Cesati [11] give a wonderfully clear description of the Linux kernel,
including details of the process and signal implementations.

824 Chapter 8 Exceptional Control Flow

Homework Problems

8.9 !
Consider four processes with the following starting and ending times:

Process Start time End time

A 6 8
B 3 5
C 4 7
D 2 9

For each pair of processes, indicate whether they run concurrently (Y) or
not (N):

Process pair Concurrent?

AB
AC
AD
BC
BD
CD

8.10 !
In this chapter, we have introduced some functions with unusual call and return
behaviors: getenv, setenv, unsetenv, and execve. Match each function with one
of the following behaviors:

A. Called once, returns only if there is an error

B. Called once, returns nothing

C. Called once, returns either a pointer or NULL

8.11 !
How many “Example” output lines does this program print?

code/ecf/global-forkprob1.c
1 #include "csapp.h"

2

3 int main()

4 {

5 int i;

6

7 for (i = 3; i > 0; i--)

8 Fork();

9 printf("Example\n");

10 exit(0);

11 }

code/ecf/global-forkprob1.c

