
����Ǧ��������$.15�����

1 RISC-V with Arrays and Lists
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

1.1

1.2

}

lw� t0,� 0(s0)�����U����BSS<�>
lw� t1,� 8(s0)�����U����BSS<�>
add� t2,� t0,� t1����BEE�OVNCFST
sw� t2,� 4(s0)����BSS<�>���U�

Sets�arr[1]�to�arr[0]�+�arr[2]

loop:� beq� s1,� x0,� end
lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

1.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:



2 RISC-V Control Flow

Negates all elements in arr

2 RISC-V Calling Conventions
2.1 How do we pass arguments into functions?

Use the 8 arguments registers a0 - a7

2.2 How are values returned by functions?

Use a0 and a1 as the return value registers as well

2.3 What is sp and how should it be used in the context of RISC-V functions?

sp stands for stack pointer. We subtract from sp to create more space and add to

free space. The stack is mainly used to save (and later restore) the value of registers

that may be overwritten.

2.4 Which values need to saved by the caller, before jumping to a function using jal?

Registers a0 - a7, t0 - t6, and ra

2.5 Which values need to be restored by the callee, before returning from a function?

Registers sp, gp (global pointer), tp (thread pointer), and s0 - s11. Important to

note that we don’t really touch gp and tp

3 More Translating between C and RISC-V
3.1 Translate between the RISC-V code to C. What is this RISC-V function computing?

Assume no stack or memory-related issues, and assume no negative inputs.



RISC-V Control Flow 3

C RISC-V

// a0 -> x, a1 -> y,

// t0 -> result

// Function computes pow(x,y)

// Direct translation:

int power(int x, int y) {

int result = 1;

while (y != 0) {

result *= x;

y--;

}

return result;

}

Func: addi t0 x0 1

Loop: beq a1 x0 Done

mul t0 t0 a0

addi a1 a1 -1

jal x0 Loop

Done: add a0 t0 x0

jr ra


	RISC-V with Arrays and Lists
	RISC-V Calling Conventions
	More Translating between C and RISC-V
	Writing RISC-V Functions

