
Understanding RISC-V Calling Convention

Arrvindh Shriraman

Original document : Nick Riasanovsky

Abstract

In these notes I will attempt to explain RISC-V calling convention and try
and give some understanding for why we use this convention. Hopefully
understanding these notes will give you better intuition for understanding RISC-
V programs in general, making debugging easier.

1 RISC-V Convention

As you are probably now aware, assembly level programming is very different
from the programming you have done so far in higher level languages like Java
and C. One key detail is that assembly programming doesn’t have anything like
argument checks and everything is the result of ”convention.” When you think
of ”convention” you might think of things like how you name your functions,
how long should each line be, etc, basically a bunch of choices to make your
code consistent but not essential to functionality. However assembly is entirely
based on convention, so if you do not strictly follow convention you will not have
working code (unless you write literally all of the assembly you ever use...yuck).
Understanding convention in RISC-V consists of 3 important parts: registers,
function calls, and entering/exiting a function (prologue/epilogue).

1.1 Registers

In RISC-V each of the 32 registers has a different name which indicates its
intended usage. We will not cover the exact meaning of every register in these
notes but here are the important ones for this course:

Register Name(s) Usage
x0/zero Always holds 0

ra Holds the return address
sp Holds the address of the boundary of the stack

t0-t6 Holds temporary values that do not persist after function calls
s0-s11 Holds values that persist after function calls
a0-a1 Holds the first two arguments to the function or the return values
a2-a7 Holds any remaining arguments

Now let’s cover a few of these in a bit more detail. ra holds the return address.
This is a memory value in the code region. In particular it is useful for function
calls. Let’s imagine what this means by looking at some pseudocode:

1

de f foo () :
x = 1
bar ()
z = 2

de f bar () :
y = 7

Imagine we are at the line y = 7 in bar. When bar finishes we want to resume
execution inside of foo and complete the next instruction, z = 2. We do this
by storing the address of the instruction where the code should return. In this
case ra would hold the address of z = 2 so execution resumes as expected after
a function call.

The sp register holds the current base of the stack. In the C memory manage-
ment section of the course we discussed how the stack grows downward with
each function call. In RISC-V when we need to add more space onto the stack
we will decrement sp (because the stack grows downward) which gives us more
addresses at which to store data. Then when we exit a function we will incre-
ment sp to restore the stack back to the state when entering the function. One
detail that may be unclear is where we store local variables. In the memory
management portion we said they were stored on the stack, but trips to and
from memory are very expensive, so if we don’t need to use the address or store
a value directly in memory we will avoid doing so.

The t and s registers serve a very similar purpose but crucially behave differ-
ently when interacting with functions. The t register values are not guaranteed
to exist after calling a function, in fact it is an error to assume they do. In
contrast s registers should be used for values needed after a function call. In
the prologue/epilogue section we will explain how we achieve this convention.

Finally a registers are used to values between function calls. There can be up
to two return values passed through registers and eight arguments (if you need
more you use the stack but we will not cover how in this class).

1.2 Function Calls

We make a function call using a jal instruction to a label or a jalr instruction
to a register rd. In particular this instructions should be jal ra label or jalr
ra rd imm but we will sometimes abbreviate it with the pseudo-instruction jal
label or jalr rd (when imm is 0). What this jal does is store PC + 4 in ra,
which is the address of the next instruction to run after the function call and
increment the PC by the offset to the label. jalr is similar except it sets the PC
value to rd + imm.

This is different but similar from a standard jump used in a loop. Jumping to a
label without making a function call is done with the instructions jal x0 label
and jalr x0 rd imm, sometimes abbreviated with the pseudo-instructions j
label and jr rd (when imm is 0). To do this we are exploiting the always 0
property of x0. The instruction will attempt to store PC + 4 in x0, but because
x0 is always 0 nothing will be stored. In this way we can jump somewhere in

2

the code without providing a location to return to, which is what separates this
from a function call.

It’s important to note that when we do recursion this is exactly the same as
calling any other function call so we will use a jal label. Technically if we are a
little clever we can implement some functions to be tail recursive using a jump
instruction (if you remember this from 61a). We will not cover how to do this
but is a good exercise to test if you understand calling convention and why we
do each step.

When calling a function we will pass in the arguments to the a registers. Then
when we return we will look for return values is a0-1. Crucially this implies
that the a registers are not preserved across function calls (or else how would
we return values).

1.3 Prologue/Epilogue

The final crucial step to achieving our calling convention is to introduce the
prologue and epilogue. This is where we meet our guarantees. Namely these
are:

• The sp will have the same value when exiting the function that it did
entering (unless we store return values on the stack).

• All s registers will have the same value exiting the function that they did
entering.

• The function will return to the value stored in ra, assuming no abnormal
execution.

To achieve this we add a section before our function called the prologue and a
section after called the epilogue. The prologue looks like this in general:

de f pro logue () :
decrement sp by num s r e g i s t e r s + l o c a l var space
Store any saved r e g i s t e r s used
Store ra i f a func t i on c a l l i s made

The epilogue looks like this in general:

de f ep i l o g ue () :
Reload any saved r e g i s t e r s used
Reload ra (i f nece s sa ry)
Increment sp back to prev ious va lue
Jump back to re turn address

Following this general procedure we can always meet our guarantees and write
code that properly interacts with other people’s procedures.

3

Let’s look at an example for a function sum squares(n) which sums the values
of calling a function square on every value from 1 to n.

sum squares :

pro logue :

addi sp sp −16
sw ra 0(sp)
sw s0 4(sp)
sw s1 8(sp)
 sw s2 12(sp)

l i s0 1
mv s1 a0
mv s2 0

l o o p s t a r t :
bge s0 s1 loop end
mv a0 s0
j a l square
add s2 s2 a0
addi s0 s0 1
j l o o p s t a r t

loop end :
mv a0 s2

ep i l o g ue :
lw ra 0(sp)
lw s0 4(sp)
 lw s1 8(sp)
 lw s2 12(sp)
addi sp sp 16
j r ra

Notice that we store values in the s registers because we need those values for
after the function call. We store enough stack space for each of those s registers
to be restored and ra because we call a function.

4

2 Why choose this convention?

A decent question to ask when confronted with convention is why do we this.
We use the concept of sp and ra because these are general programming as-
sumptions that need to be met. x0 is for efficiency because it can be very useful
to always have a source of 0. In general we want to avoid the model where we
have to save every register we use. Doing so is both burdensome and possi-
bly wasteful because we could end up saving registers that are never changed.
Additionally it would be wasteful to always save values so instead we specify
exactly what values to save using s registers. This implies that we shouldn’t
always save a registers (after all we may not always need the arguments later).
This is crucially why we use the a registers for return values as well. We cannot
ever assume a registers persist so we can always use them, making any other
dedicated return registers wasteful.

3 Violating Convention

Don’t. Just Don’t. Sometimes you may find that you can get your code to
work correctly even if you don’t follow convention. This of course can happen
but provides no guarantees. In particular many students will look in functions
they call for t registers it does not use and use different t registers as though
they are s registers. However this directly violates our abstraction barrier and
prevents us from later modifying this function. So I repeat 1 more time for
emphasis, don’t.

4 Using Convention to Debug

Now that we know this convention how can we use it to debug. Assembly code
can get complicated and lengthy. As a result while you can step through every
single instruction it may not be desirable to do so. Here are some tips to help
you debug.

• Check that you stored ra properly. For recursion make sure you link ra
for each recursive call. You can test this by putting a break point at the
end of the epilogue and seeing where you return.

• Check that you don’t use any t registers after a function call.

• Check that sp enters and exits with the same value.

• Check the number of times you enter the prologue equals the number of
times you enter the epilogue.

• Make sure you restore every register you modified.

These checks won’t help solve every debugging problem but can find difficult
looking cases that result from violating the assumptions with which we program.

5

