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Abstract

The predicate-argument structure (PAS) of a natural language sentence is a useful repre-

sentation that can be used for a deeper analysis of the underlying meaning of the sentence

or directly used in various natural language processing (NLP) applications. The task of

semantic role labeling (SRL) is to identify the predicate-argument structures and label the

relations between the predicate and each of its arguments. Researchers have been studying

SRL as a machine learning problem in the past six years, after large-scale semantically

annotated corpora such as FrameNet and PropBank were released to the research commu-

nity. Lexicalized Tree Adjoining Grammars (LTAGs), a tree rewriting formalism, are often

a convenient representation for capturing locality of predicate-argument relations.

Our work in this thesis is focused on the development and learning of the state of the

art discriminative SRL systems with LTAGs. Our contributions to this field include:

We apply to the SRL task a variant of the LTAG formalism called LTAG-spinal and the

associated LTAG-spinal Treebank (the formalism and the Treebank were created by Libin

Shen). Predicate-argument relations that are either implicit or absent from the original

Penn Treebank are made explicit and accessible in the LTAG-spinal Treebank, which we

show to be a useful resource for SRL.

We propose the use of the LTAGs as an important additional source of features for

the SRL task. Our experiments show that, compared with the best-known set of features

that are used in state of the art SRL systems, LTAG-based features can improve SRL

performance significantly.

We treat multiple LTAG derivation trees as latent features for SRL and introduce a

novel learning framework – Latent Support Vector Machines (LSVMs) to the SRL task

using these latent features. This method significantly outperforms state of the art SRL

iii



systems.

In addition, we adapt an SRL framework to a real-world ternary relation extraction

task in the biomedical domain. Our experiments show that the use of SRL related features

significantly improves performance over the system using only shallow word-based features.

Keywords: Semantic role labeling, lexicalized tree adjoining grammars, LTAG features,

latent support vector machines
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Chapter 1

Introduction

In this chapter, we will give a background on semantic role labeling (SRL) and Lexicalized

Tree Adjoining Grammars (LTAGs).

1.1 Semantic Role Labeling (SRL) and its Applications

One of the ultimate goals of Natural Language Processing (NLP) is natural language un-

derstanding. As an important intermediate step towards natural language understanding,

semantic role labeling (SRL) plays a key role in many NLP applications. In this section, we

will give a description of the SRL task and how it is related to a variety of NLP applications.

1.1.1 What is Semantic Role Labeling

Informally, semantic role labeling is the process of assigning a simple WHO did WHAT to

WHOM, WHEN, WHERE, WHY, HOW, etc. structure to a sentence in text. For example,

(1) Mary hit Jack with a ball yesterday.

(2) Jack was hit by Mary yesterday with a ball.

We can see that Mary, Jack, a ball and yesterday play semantic roles, such as “Hitter,

Thing hit, Instrument, Temporal adjunct”, in both sentences. The task of SRL is to assign

pre-defined semantic roles to these phrases regardless of their presence in different syntactic

realizations. This layer of information is vital for us to fully understand the meaning of

1



CHAPTER 1. INTRODUCTION 2

the two sentences.

More generally, the example actually illustrates the phenomenon of alternations of a

verb class (Levin, 1993). This alternation in syntactic realization of semantic argument is

widespread, affecting most English verbs in some way, and the patterns exhibited by specific

verbs vary widely. In addition, while the rapid advances of syntactic parsing techniques

in recent years have had an enormous impact on A breadth of NLP applications, we still

have a long way to go from syntactic analysis to full understanding of the meaning of a

sentence. All this motivates researchers to develop an automatic and accurate technique

for layering semantics on top of syntactic analysis, and to take important steps towards

the ultimate goal of language understanding.

Semantic role labeling is a well-defined task in different annotation frameworks and it

is attracting much research attention. SRL aims to identify and label all the arguments

(or semantic roles) for each predicate occurring in a sentence. Specifically, it involves iden-

tifying constituents in the sentence that represent the predicate’s arguments and assigning

pre-specified semantic roles to them. Here are some examples with semantic role labels.

(3) [AgentMary] hit [Theme Jack] [Instrument with a ball] [Temporalyesterday].

(4) [ThemeJack] was hit by [Agent Mary] [Temporalyesterday] [Instrument with a ball].

(5) [A0John] broke [A1 the window].

(6) [A1The window] was broken by [A0 John].

In these examples, the subscripted information represents the semantic role labels that

are assigned to the arguments of predicate (in bold face). (3) and (4) are examples of SRL

annotation defined in FrameNet Scheme (Fillmore, Wooters, and Baker, 2001); and (5)

and (6) are following PropBank corpus (Palmer, Gildea, and Kingsbury, 2005) annotation

scheme. We will give a more detailed introduction of these two corpora in Section 1.2.1.

1.1.2 Semantic Role Labeling in NLP Applications

While predicate-argument structures might have various syntactic realizations, as shown

in previous examples, semantic role labeling can offer a unified annotation for predicate-

argument relation representation. This abstraction can facilitate many NLP applications.
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In the following, we will describe how SRL relates to such applications as information ex-

traction, document summarization, question answering, textual entailment (as mentioned

in (Yih and Toutanova, 2006)), and some other NLP applications.

SRL for Information Extraction (IE)

The primary goal of the Information Extraction (IE) task is to provide those pieces of

information that are salient to the user’s needs. The kinds of information that IE sys-

tems extract vary in detail and reliability. For example, named entity recognition, entities

relevant facts and attributes identification, and event-level indexing are all sub-tasks of

IE. A novel IE paradigm is proposed by (Surdeanu et al., 2003) that takes advantage of

predicate-argument structures where they built up a semantic role labeling system and

used the extracted semantic role information to fill out the template slots for the purpose

of IE. More recently, extracting meaningful relations among named entities from unstruc-

tured natural language text has attracted a lot of attention. Semantic role information

is used as one of the important feature for relation extraction in (Harabagiu, Bejan, and

Morarescu, 2005; Culotta and Sorensen, 2004; Bunescu and Mooney, 2005),

Predicate-argument structures (PAS) are also applied to IE tasks in the biomedical

domain. Yakushiji et al. (2005) extracted the interaction relationships between proteins

by taking advantage of PAS. Specifically, sentences are first passed to a full parser1 and a

PAS is extracted from the parses, which can absorb the diverse forms of surface sentences.

This level of abstraction then facilitates automatic extraction of rules that are used to

represent the interaction of proteins. Their results show that the performance is remarkably

promising and comparable to manually-created extraction rules.

SRL for Question Answering (QA)

Current Question Answering (QA) systems extract answers from large text collections by

(1) classifying the answer type they expect, (2) using question keywords or patterns asso-

ciated with questions to identify candidate answer passages, and (3) ranking the candidate

answers to decide which passage contains the exact answer. In (Narayanan and Harabagiu,

1Enju: http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
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2004), semantic role information is incorporated into both questions and documents; it first

helps to identify the topic model that contributes to the interpretation of the questions,

and then becomes particularly useful when building a scalable and expressive model of

actions and events, which allows the sophisticated reasoning imposed by QA within com-

plex scenarios. Here is an example with the corresponding semantic role labels in both the

question and the answer to illustrate how this information might help:

Question What kind of nuclear materials were stolen from the Russian navy?

srl(Q) What [A1 kind of nuclear materials] were stolen [A2 from the Russian

Navy]?

Answer Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,

approximately 7 kg of HEU was reportedly stolen from a naval base

in Sovetskaya Gavan.

srl1(A) [A1 Russian’s Pacific Fleet] has [AM−DIS also] fallen [A1 prey to

nuclear theft]; . . .

srl2(A) . . . [AM−TMP in 1/96], [AM−ADV approximately] [A1 7 kg of HEU]

was stolen [A2 from a naval base] [A3 in Sovetskaya Gavan].

Result exact answer = “approximately 7 kg of HEU”

Evaluation in (Narayanan and Harabagiu, 2004) shows that the percentage of questions

whose types can be correctly identified increases from 12% to 32% (PropBank annota-

tion) and to 19% (FrameNet annotation) respectively, due to integration of semantic role

information.

SRL for Document Summarization

The DUC-2005 (Document Understanding Conference 2005 )2 competition task is to gen-

erate a 250-word summary based on the given questions and multiple relevant documents.

2http://duc.nist.gov/
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Melli et al. (2005) integrated semantic role labeling component into their SQUASH sys-

tem. In SQUASH, the ROUGE-2 score3 on the development set increases from 0.0699

using Naive SRL to 0.0731 using ASSERT4 SRL. This is a large improvement considering

the impact of other successful features.

In the SQUASH system, semantic role information is used for sentence selection and

sentence compression. For sentence selection, it contributes to estimating the significance

score assigned to each sentence in terms of the semantic roles that the involved entities

play in the sentence. For example, the following sentence is from Document 03 of question

q0442g, DUC-2005. According to ASSERT output, it is labeled as:

The editor tried to console her by telling about “[A0 the guy in]

the crowd” [R-A0 who] “[V saved ] [A1 the President’s life].”

Based on their metric, this sentence is a good candidate for the given question “What

are some outstanding instances of heroic acts when the hero was in danger of losing his/her

life while saving others in imminent danger of losing their own lives?” (q0442g in DUC-

2005).

In addition, it also helps to measure the similarity of sentences and remove the redun-

dant information in the sentences to enable the summary to fit in the 250-word length

constraint. For example, those constituents that are captured by the semantic role la-

bels ARG-TMP (temporal markers) and ARG-DIS (discourse markers) are removed for

sentence compression purposes.

SRL for Semantic Entailment

Semantic entailment is a task of determining, for example, if sentence (7) entails sentence

(8).

3ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It includes measures to au-
tomatically determine the quality of a summary by comparing it to other (ideal) summaries created by
humans. The measures count the number of overlapping units such as N-gram, word sequences, and word
pairs between the computer-generated summary to be evaluated and the ideal summaries created by hu-
mans. ROUGE-2 score is the measure for bi-grams in the summary. More details about ROUGE can be
found in (Lin and Hovy, 2003).

4ASSERT stands for Automatic Statistical SEmantic Role Tagger, and can be downloaded from http:

//www.cemantix.org/download/assert/beta/download.html.
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(7) Walmart defended itself in court today against claims that its female

employees were kept out of job in management because they are women.

(8) Walmart was sued for sexual discrimination.

It is a fundamental problem in natural language understanding and is also the heart of

many high level natural language processing tasks, including QA and IE.

In (Braz et al., 2005), semantic role information is extensively used in the hierarchi-

cal knowledge representation component and the inference component. The integration of

SRL information greatly extends the richness of knowledge representation and therefore

forms the basis of subsumption. Here is an example from (Braz et al., 2005). The task is

to decide if S entails T.

S: The Spanish leader razed Tenochtitlan in 1521 and constructed a Spanish

city on its ruins.

T: The Spanish leader destroyed Tenochtitlan and built a Spanish city in its place.

Their system identifies two verb frames in both S and T:

S-A: [A0 The Spanish leader] raze [A1 Tenochtitlan].

S-B: [A0 The Spanish leader] construct [A1 a Spanish city] [AM−LOC on its ruins].

T-A: [A0 The Spanish leader] destroy [A1 Tenochtitlan]

T-B: [A0 The Spanish leader] build [A1 a Spanish city] [AM−LOC in its place].

In this case, the lemmas of the key verbs in S and T will not exactly match. Since

WordNet (Miller, 1995) contains synonym relations for “destroy” and “raze”, “build” and

“construct”, the subsumption component determines that the verbs match. Consequently,

by matching semantic arguments, the subsumption algorithm determines that, at the verb

level, S entails T.

A conventional semantic entailment approach relies on mapping to a first order logic rep-

resentation with a general theorem prover but without any rich knowledge source acquired

from a particular domain. Compared with the first order logic representation, semantic role

labeling provides semantic information which, while more general and domain-independent,

is still adequate for this task. And it turns out that by combining SRL with the syntactic



CHAPTER 1. INTRODUCTION 7

level knowledge, the overall system performance increases from 54.7% to 65.9% on the

RTE-PASCAL corpus5.

SRL for Other NLP Applications

Machine Translation (MT) Wu and Fung (2009) proposed a two-pass statistical ma-

chine translation (SMT) system, where the first pass is performed using a conventional

phrase-based SMT model, and the second pass is performed by a re-ordering strategy

guided by semantic role labelers that produce both semantic frame and semantic role

labels. The basic assumption is that “the semantic frames (target predicates and their as-

sociated semantic roles) should be all consistent between the input and output sentences,

and are aligned to each other by the phrase alignments from the first pass”. Otherwise,

the second pass needs to re-order constituent phrases corresponding to predicates and ar-

guments, seeking to maximize the cross-lingual match of the SRL output of the re-ordered

translation to that of the original input sentence. Evaluation on a Wall Street Journal

(WSJ) test set showed the hybrid model to yield an improvement of roughly half a point

in BLEU score6 over a strong pure phrase-based SMT baseline.

Verb Sense Disambiguation Dang and Palmer (2005) integrated PropBank features,

such as labels of semantic roles and syntactic phrase type corresponding to each seman-

tic roles, into their automatic Word Sense Disambiguation (WSD) system to improve the

performance of verb sense disambiguation. The results show knowledge of gold-standard

predicate-argument information from PropBank improves WSD on both coarse-grained

senses and fine-grained WordNet senses. The positive effect of semantic role labeling on the

verb sense disambiguation task is not a surprise, since the predicate-argument structures

essentially encode the verb sense information. Verb sense disambiguation and semantic

role labeling are in fact two closely related tasks.

Automatic Case Marker Prediction in Japanese Japanese case markers indicate

the grammatical relation of the complement NP to the predicate. It often poses a challenge

to Japanese text generation if performed by a foreign language learner, or by a machine

5http://www.pascal-network.org/Challenges/RTE/
6BLEU (Bilingual Evaluation Understudy) is an algorithm for evaluating the quality of text which has

been machine-translated from one natural language to another. More details about BLEU can be found
in (Papineni et al., 2002).
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translation system. In (Suzuki and Toutanova, 2006), it is formulated as a semantic role

labeling task in a monolingual setting, and the system outperforms the language model,

based baseline systems significantly.

Coreference Resolution Ponzetto and Strube (2006) investigated the effects of using

semantic role information in the coreference resolution system. Aside from the semantic

knowledge extracted from WordNet, they also introduced (semantic role argument, predi-

cate) pairs for both referring expressions (RE). Calibration of the features shows semantic

role information helps to improve performance.

Noun Classification Hindle (1990) described an approach to classifying English words

according to the predicate-argument structures they show in the corpus. It is based on the

idea that for any noun, there is a restricted set of verbs that the noun appears as subject

of or object of. For example, wine may be drunk, produced, and sold but not pruned. Each

noun may therefore be characterized according to the verbs that it occurs with. Nouns may

then be grouped according to the extent to which they appear in similar environments.

1.1.3 Semantic Role Labeling v.s. Semantic Parsing

Semantic parsing is the task of mapping a natural language (NL) sentence into a com-

plete, formal, symbolic representation using a meaning representation language (MRL). It

produces a deep semantic analysis which is a representation of the sentence in predicate

logic or other formal language that supports automated reasoning; in contrast, the goal

of semantic role labeling, as a form of shallow semantic parsing, is to identify and assign

labels such as agent, patient, manner to the constituents in the sentence for a particular

predicate, and need not generate complete, formal meaning representations.

Here is an example of MRL called CLANG, which is a team coaching language for the

agents of RoboCup7:

– ((bpos (penalty-area our)) (do (player-except our {4}) (pos (half our))))

– “If the ball is in our penalty area, all our players except player 4 should stay

in our half.”

7www.robocup.org
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Largely due to the difficulty of developing an open-domain MRL and constructing a

large annotated corpus of (NL, MR) pairs for domain general text, the evaluation of current

semantic parsing systems (Ge and Mooney, 2005; Zettlemoyer and Collins, 2005; Ge and

Mooney, 2006; Kate and Mooney, 2006; Wong and Mooney, 2006; Zettlemoyer and Collins,

2007) has been restricted to limited domains such as a simulated soccer domain (Mao et al.,

2003) and a natural-language database interface of U.S. geography. Thus learning semantic

parsers presents more challenges than semantic role labeling, and therefore has not been

used as widely as semantic role labeling.

1.2 Learning an SRL system

1.2.1 FrameNet and PropBank

With the rapid development of machine learning techniques, annotated corpora are becom-

ing more and more important in statistical NLP processing. In this section, we will give a

description of the corpora used for semantic role labeling task.

The Berkeley FrameNet project (Baker and Fillmore, 1998) and PropBank (Palmer,

Gildea, and Kingsbury, 2005) are two major annotation projects that produced text with

semantic role annotation. However, there are some key difference between these two due

to their different initial design philosophies and policy choices.

The following examples illustrate the different annotation schemes of FrameNet and

PropBank for the same sentence.

FRAMENET ANNOTATION:

(9) [Buyer Chuck] bought [Goods a car] [Seller from Jerry] [Payment for $1000].

(10) [Seller Jerry] sold [Goods a car] [Buyer to Chuck] [Payment for $1000].

PROPBANK ANNOTATION:

(11) [A0 Chuck] bought [A1 a car] [A2 from Jerry] [A3 for $1000].

(12) [A0 Jerry] sold [A1 a car] [A2 to Chuck] [A3 for $1000].

In the following, we will introduce them from several aspects:



CHAPTER 1. INTRODUCTION 10

Goal: FrameNet is primarily a lexicographical project. Its starting point is the observation

that words can be grouped into semantic classes, the so-called “frames”, representations

for prototypical situations or states. Each frame provides its set of semantic roles. The

FrameNet project is building a dictionary which links frames to words and the expressions

that can introduce them in text.

On the other hand, PropBank had the more practical aim of obtaining a complete

semantic role annotation of the Penn Treebank. The PropBank lexicon was added first to

facilitate annotation, and later evolved into a resource on its own. No higher-order organi-

zation was established at first, so for each unique verb sense, a “frameset” was constructed

that consists of the set of semantic roles at its accompanying syntactic realizations.

Annotation Methodology:

One major difference in philosophy between FrameNet and PropBank is that FrameNet

is primarily focused on the type of the verb frame (across many different tokens), while

PropBank is primarily concerned with annotation of each token of a verb frame since they

annotate every sentence in the Penn TreeBank.

The FrameNet project methodology has proceeded on a frame-by-frame basis, that is by

first choosing a semantic frame (e.g., Commerce), defining the frame and its participants

or frame elements (BUYER, GOODS, SELLER, PAYMENT), listing the various lexical

predicates which invoke the frame (e.g., buy, sell, etc.) and then finding example sentences

of each predicate in a corpus (BNC) and annotating each frame element in each sentence.

In contrast, PropBank defines semantic roles on a verb-by-verb basis. Specifically,

for a particular predicate, a sample of sentences from the corpus containing this verb is

examined and grouped into one or more major senses, and each major sense turns into a

single frameset. Verb senses are considered distinct if they have distinct syntactic behavior,

which correlates with different types of allowable arguments.

The semantic roles for each verb sense are numbered sequentially from Arg0 to Arg5.

Arg0 is generally the argument exhibiting features of a prototypical Agent while Arg1 is

a prototypical Patient or Theme. In addition to verb-specific numbered roles, a category

of adjunct semantic roles is defined with tag ArgM and one of a set of “functional tags”

(around 13 functional tags) denoting the role of the element within the predicate, such as

ArgM-LOC (Locatives) and ArgM-TMP (Temporal markers). These functional tags can
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also appear on numbered arguments.

Annotated Corpus: The primary corpus used by FrameNet is the British National

Corpus (BNC) and its POS-tagged and lemmatised version. Parse trees are not used in

FrameNet; the grammatical function tags are directly marked for the frame elements in

the text. PropBank’s annotation takes place with reference to the Penn Treebank trees:

not only are annotators shown the trees when analyzing a sentence, they are constrained

to assigning the semantic labels to portions of the sentence corresponding to nodes in the

tree.

Released Versions: The major product of FrameNet project, the FrameNet lexical

database, has gone through three releases. Release 1.3 (the latest one) currently contains

more than 10,000 lexical units, over 6,000 of which are fully annotated, in nearly 800

hierarchically-related semantic frames, exemplified in more than 135,000 annotated sen-

tences. Active research projects are seeking to produce comparable frame-semantic lexicons

for other languages and to devise means of automatically labeling running text with se-

mantic frame information, including German FrameNet (http://gframenet.gmc.utexas.

edu/), Japanese FrameNet (jfn.st.hc.keio.ac.jp/) and Spanish FrameNet (gemini.

uab.es:9080/SFNsite). In particular, a soccer FrameNet has been launched (http:

//www.k-icktionary.de) as a domain-specific trilingual (English, German and French)

lexical resource of the language of soccer.

English PropBank I was released in Spring 2004 and it covers 3,323 predicate verbs

and 4,659 framesets. Out of the 787 most frequent verbs, 521 have only 1 frameset and

169 have 2 framesets and 97 have 3 or more framesets. Note that framesets are not nec-

essarily consistent between senses of the same verb; rather they are consistent between

different verbs that share similar argument structures. Chinese PropBank (http://www.

cis.upenn.edu/~chinese/cpb/) and Korean PropBank (http://www.ldc.upenn.edu/

Catalog/CatalogEntry.jsp?catalogId=LDC2006T03) were released in 2005 and 2006 re-

spectively. PropBank annotation has been explored in the biomedical domain (Chou et

al., 2006) by adding the PropBank annotation on top of GENIA Treebank (GTB) (Tateisi

et al., 2005).

Some SRL systems have been built based on FrameNet (Gildea and Jurafsky, 2002;

Thompson, Levy, and Manning, 2003; Matsubayashi, Okazaki, and Tsujii, 2009), whereas
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PropBank has been more widely used by the SRL research community for its close connec-

tion with Penn Treebank and its more generalized annotation for semantic role labels. In

addition, PropBank provides more training examples (40K sentences more) than FrameNet,

which makes it more appealing for SRL when applying machine learning method. In our

implemented systems, we also use the PropBank corpus and focus on verbs as predicates.

NomBank

NomBank (http://nlp.cs.nyu.edu/meyers/NomBank.html) is an annotation project at

New York University that is related to PropBank, which annotates nominal argument

structure on the same corpus, using the same formalism as PropBank. Given nominal-

ization/verb mappings, the combination of NomBank and PropBank affords even greater

generalization. The goal is to annotate each “markable” NP, marking the head, its argu-

ments, and “allowed” adjuncts in the style of PropBank. For example,

(13) students’ knowledge of two-letter consonant sounds

ARG0 = students, REL = knowledge, ARG1 = two-letter consonant sounds

For more details of NomBank, refer to (Meyers et al., 2004). Jiang and Ng (2006)

built a maximum-entropy based semantic role labeler on NomBank. CoNLL-2008 shared

task (Surdeanu et al., 2008) also took into account the Nombank predicates.

1.2.2 Overview of a Semantic Role Labeling System

Researchers have taken many different computational approaches in analyzing semantic

role labeling. Some traditional parsing and understanding systems (Pollard and Sag, 1994)

rely more on hand-annotated grammars, which are typically time-consuming to create and

often have limited coverage. Data-driven techniques that were applied to template-based

semantic interpretation in limited domains often perform only shallow syntactic analy-

sis (Miller et al., 1996; Riloff, 1993; Riloff and Schmelzenbach, 1998). More recently, with

the availability of annotated corpora like PropBank and FrameNet and a variety of machine

learning techniques, there has been rapid development of research into corpus-based SRL

approches (Gildea and Jurafsky, 2002; Gildea and Palmer, 2002; Surdeanu et al., 2003;

Chen and Rambow, 2003; Gildea and Hockenmaier, 2003; Xue and Palmer, 2004; Pradhan
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et al., 2004; Pradhan et al., 2005). The shared task in Senseval-3 (http://www.senseval.

org/senseval3), CoNLL-2004 (Carreras and Màrquez, 2004) and CoNLL-2005 (Carreras

and Màrquez, 2005) was on SRL; and the shared task in CoNLL-2008 (Surdeanu et al.,

2008) and CoNLL-2009 (http://ufal.mff.cuni.cz/conll2009-st/) was on joint pars-

ing of syntactic and semantic dependencies, which is also relevant to SRL. In this section,

we will give an overview of the current main-stream SRL systems.

Development of SRL Systems

Traditional parsing and understanding systems, including implementations of unification-

based grammars such as HPSG (Pollard and Sag, 1994), rely on hand-developed grammars,

which must anticipate every way in which semantic roles may be realized syntactically.

Writing such grammars is time-consuming, and typically such systems have limited cover-

age.

Data-driven techniques have been used for template-based semantic interpretation in

limited domains to avoid complex feature structures, and often perform only shallow syn-

tactic analysis. For example, in the context of the Air Traveler Information System (ATIS)

for spoken dialogue, Miller et al. (1996) computed the probability that a constituent such

as Atlanta filled a semantic slot such as DESTINATION in a semantic frame for air travel.

In a data-driven approach to information extraction, Riloff (1993) builds a dictionary of

patterns for filling slots in a specific domain, such as terrorist attacks, and (Riloff and

Schmelzenbach, 1998) extends this technique to automatically derive entire “case frames”

for words in the domain. They make use of a limited amount of hand labour to accept or

reject automatically generated hypotheses. They show promise for a more sophisticated

approach to generalizing beyond the relatively small number of frames considered in the

tasks. Don Blaheta and Eugene Charniak (2000) presented a domain-independent system

of assigning function tags such as MANNER and TEMPORAL included in the Penn Tree-

bank corpus. Some of these tags correspond to the semantic roles defined in FrameNet and

PropBank, but the Treebank tags do not include all the arguments of most predicates.

More recent work in developing SRL systems aims for a statistical system to learn to

identify and classify all the semantic roles for a wide variety of predicates in unrestricted

text. Gildea and Jurafsky (2002) presented the first statistical SRL system on FrameNet.
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This system is based on a statistical classifier trained on roughly 50,000 sentences that

are extracted from FrameNet corpus. Each training example is parsed into a syntactic

tree using the Collins’ Parser (Collins, 1997) and a set of syntactic and lexical features,

such as the phrase type of each constituent, its position, etc., are extracted. These features

are combined with knowledge of the predicates, as well as information such as the prior

probabilities of various combinations of semantic roles. This work lays the foundation for

the current automatic semantic role labeling systems. It constructs a general SRL system

architecture and provides a core feature set that has been widely used by almost all the

current SRL systems.

Senseval-3 and CoNLL shared tasks To further the accessibility of FrameNet and its

amenability to NLP applications, Senseval-3 called for the development of systems to meet

the same objectives as the study in (Gildea and Jurafsky, 2002). The basic task for Senseval-

3 is: given a sentence, a target word and its frame, identify the frame elements within that

sentence and tag them with the appropriate frame element name. The Senseval-3 task

uses approximately 8,000 randomly selected sentences and 40 randomly selected frames.

Evaluation of the system follows the metrics8 of the study in (Gildea and Jurafsky, 2002).

Most concentrated work of SRL on FrameNet is stimulated by this task and achieves overall

better results in comparison with (Gildea and Jurafsky, 2002)’s study. A summary of the

systems can be found in (Litkowski, 2004).

The shared tasks of CoNLL-2004 and CoNLL-2005 were on the semantic role labeling

task based on PropBank predicate-argument structures. Given a sentence, for each target

verb in the sentence, all the constituents that fill a semantic role of the verb have to

be recognized. In CoNLL-2004, the goal was to develop SRL systems based on partial

parsing information; in CoNLL-2005, the focus was to increase the amount of syntactic and

semantic input information in order to boost the performance of machine learning systems

on the SRL task. Due to the availability of full parsing information and the application

of advanced learning strategies, the systems competing in CoNLL-2005 showed a great

improvement over those in the previous year. In particular, this competition produced

8Precision, Recall, Overlap and Attempted. Overlap was the average overlap of all correct answers. The
percentage Attempt was the number of frame elements generated divided by the number of frame elements
in the test set
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many state-of-the-art SRL systems, and some of these systems have been released and

widely used for research9. For more detailed descriptions about the task, data, systems

and evaluations see http://www.lsi.upc.edu/~srlconll/.

The goal of the shared task of CoNLL-2008 (http://barcelona.research.yahoo.

net/conll2008/) is to explore the possibility of modeling parsing and semantic role label-

ing in the same dependency-based framework. Besides verbal predicates, it also considers

nominal predicates. Compared to the SRL task defined in CoNLL-2004 and CoNLL-2005,

this task also involves the parsing of syntactic dependencies. The evaluation measures for

this task are multi-dimensional. The evaluation is root-based, where a case is counted as

positive as long as the root of the argument is correctly identified. It evaluates not only the

dependency between the predicate and each of its argument, but also the predicted sense

of the current predicate. From the submitted systems, it was shown that the extraction of

syntactic and semantic dependencies can be performed with state-of-the-art performance

with a pipeline of linear complexity components (Ciaramita et al., 2008), which makes this

technology attractive for the real-world applications. The CoNLL-2008 shared task was

defined on English only. CoNLL-2009 extended the same task to multi-lingual setting.

These competitions greatly promoted the development of SRL systems and produce

benchmarks for data sets and systems evaluations which have been used in later research.

Since our focus is on building an SRL system based on given syntactic structures, we

will be more interested in a setting such as that given in CoNLL-2005. We continue our

introduction in this context.

General Architecture of an SRL System

Figure 1.1 shows the overview of a discriminative SRL system. For a given sentence and

target predicates in the sentence, an SRL system has to identify all the constituents in the

sentence that can fill some semantic role for each predicate. The Annotator component

enriches the sentence using syntactic parsers (syntactic parse trees) or shallow parsers

(chunking information) or semantic ontologies such as WordNet/VerbNet, or Named Entity

Identifier (Named Entity information). Then the Feature Extractor component extracts

pre-defined features such as the phrase type of the constituents, voice of the predicate,

9such as ASSERT: http://www.cemantix.org/download/assert/beta/download.html
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Figure 1.1: Overview of a semantic role labeling system

predicate lemma, etc. from the output of the Annotator.

The extracted features are fed into the Learning component to train a classifier. The

Learning component is typically divided into two sub-components: the semantic role iden-

tification component and the semantic role classification component. Semantic role iden-

tification is the process of identifying parsed constituents in the sentence that represent

semantic arguments of a given predicate; semantic role classification is the process of as-

signing the appropriate argument labels to a given constituent that has known to represent

some argument of a predicate. Assuming the Annotator provides a syntactic tree to the

sentence, then each node in the parse tree can be classified either as a semantic argument

(i.e., a NON-NULL node) or one that does not represent a semantic argument (i.e., a

NULL node). The purpose of semantic role identification is to distinguish the NULL nodes

from the NON-NULL nodes. The NON-NULL nodes may then be further classified with

the set of argument labels by the semantic role classification component. The rationale of

splitting the task into identification and classification is twofold.

1. Splitting the task can increase computation efficiency in training. In identification

phase, every parse tree constituent is a candidate for the classifier; therefore each

parse tree contains 40 candidates on average and we have around 40,000 sentences

in the training set. If we only deal with the NON-NULL nodes in the classification

phase, then only a small number of candidates are involved in the computation, 2.7
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constituents on average per parse tree (for each predicate).

2. Different features might be helpful for each task. For example, structural features

are more helpful for identification while lexical features are more helpful for classifi-

cation (Pradhan, Ward, and Martin, 2008).

The learning component uses a local model, where the semantic role probability estima-

tion for each constituent is independent of one another. Under this strong independence

assumption, systems can achieve acceptable performance. Some hard constraints, such

as no overlapping between constituents that are labeled with semantic roles or the se-

quence of semantic role labels has to be “legal”, were imposed as a post-processing step.

Some systems take into account the interdependence among the labels of constituents in

a “global/joint” learning framework and achieve better performance at the cost of a more

complicated learning strategy. We will talk more about this in Section 1.3.3.

A Typical Setting for SRL

In this section, we will describe a typical setting for a discriminative semantic role labeling

system.

Annotation used: For a given sentence, the syntactic parse tree of the sentence is

generally taken as the input of an SRL system and each substring of the sentence that has

a semantic label typically corresponds to a syntactic constituent in the tree. Identifying

constituents is especially important for the PropBank since the annotation process involved

augmenting the constituents in the Penn Treebank with semantic role information.

To date, the most commonly used annotation used for SRL task is the full syntactic

parse tree on the PropBank predicate-argument annotations. There have also been some

attempts at relaxing the necessity of using full syntactic parse trees to using dependency

structures or shallow syntactic information at the level of phrase chunks. Based on the

syntactic annotations of the input sentence described above, features are extracted from

the syntactic parse trees. A particular set of such features has been widely used in SRL

systems. We will give more details of features that used in our system in later chapters.

Learning component: A variety of learning strategies have been explored, such as

generative Bayesian probabilistic models (Gildea and Jurafsky, 2002; Gildea and Palmer,
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2002; Gildea and Hockenmaier, 2003), Decision Trees (Chen and Rambow, 2003), Max-

imum Entropy (Xue and Palmer, 2004), Support Vector Machines (SVMs) (Pradhan et

al., 2004), Tree Conditional Random Fields (Cohn and Blunsom, 2005). Thompson et al.

(2003) also explored a generative model for FrameNet SRL system. SVMs are one of the

most widely used methods in the community.

Evaluation In general, the standard measures for the performance of SRL systems are

Precision, Recall and F-score. For each semantic role, such as A0, the Precision, Recall

and F-score are calculated and overall system performance is evaluated in terms of the

number of correctly labeled arguments, the number of labeled arguments and the number

of gold arguments10. Aside from the overall system evaluations, evaluations for subtasks of

argument label identification and classification are also given to obtain a better comparison

and analysis to the systems. Precision, recall and f-score are calculated as follows:

Precision = number of correctly labeled arguments / number of labeled arguments

Recall = number of correctly labeled arguments / number of gold arguments

F-score = 2 * precision * recall / (precision + recall)

In some case when the “NULL” arguments are also taken into account or the number

of labeled argument equals to the number of gold arguments, another measure is used:

Accuracy = number of correctly labeled constituents/ number of target constituents

Example:

Gold [A0 The girl] broke [A1 the mirror] [AM−TMP yesterday].

Guess [A0 The girl] broke the [A1 mirror] [AM−LOC yesterday].

Gold Guess

The girl → A0 The girl → A0 correct boundary, correct label

The mirror → A1 mirror → A1 wrong boundary, –

yesterday → AM-TMP yesterday → AM-LOC correct boundary, wrong label

10in this case, only positive examples are considered
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Overall Evaluations:

Precision, Recall, F-score: 1/3, 1/3, 1/3

Evaluations on Subtasks:

Identification(Precision, Recall, F-score): 2/3, 2/3, 2/3

Classification(Accuracy): 0.5

Some State-of-the-Art SRL Systems

Researchers have been tackling different aspects of this task, and due to the variety of

knowledge resources, data sets and evaluations used in these systems, performance varies

accordingly. The CoNLL-2005 shared task provides a common platform to showcase some

state-of-the-art SRL systems. Here we will give a brief description of the top two SRL

systems in this competition.

The top system (Punyakanok, Roth, and Yih, 2005a) achieves (p/r/f%) 82.82/76.78/

79.44 overall performance on test data provided by the shared task. It takes the output

of multiple argument classifiers and combines them into a coherent predicate-argument

output by solving an optimization problem. The optimization stage, which is solved via

integer linear programming, takes into account both the recommendation of the classifiers

and a set of linguistic and structural constraints that the global argument label assign-

ment has to be subject to, and is thus used both to clean the classification results and to

ensure structural integrity of the final role labeling. The system shows some improvement

through this inference step. After this, a better result (p/r/f%) 81.90/78.81/80.32 has been

reported in (Toutanova, Haghighi, and Manning, 2008). To our knowledge, so far it is the

best reported performance on CoNLL-2005 shared task. Instead of using the single given

Charniak parse (from Charniak parser version 2000) in CoNLL data, they used the top-10

automatic parse trees from the May 2005 version of the Charniak parser (Charniak and

Johnson, 2005) with correction of forward quotes11.

11The Charniak parses provided as part of the CoNLL shared task data uniformly ignore the distinction
between forward and backward quotes and all quotes are backward. In (Toutanova, Haghighi, and Manning,
2008), they re-ran the parser and obtained analyses with correct treatment of quotes, which leads to over
1% improvement in f-score in their joint SRL model.
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The 2nd system (Pradhan et al., 2005c) achieves (p/r/f%)82.95/74.78/78.63 overall

performance on the same data set. In this system, for an input sentence, syntactic con-

stituent structure parses are generated by Charniak’s parser and Collins’ parser. Semantic

role labels are assigned to the constituents of each parse using SVM classifiers. The (two)

resulting semantic role assignment sequences are then converted to an IOB representation,

which are used as additional features, along with the flat syntactic chunks, by a chunking

SVM classifier that produces that final SRL output. This strategy for combining features

from three different syntactic views gives a significant improvement in performance over

roles produced by using any one of the syntactic views individually. This system has been

released and widely used for research12. In (Pradhan, Ward, and Martin, 2008), the robust-

ness of this system is carefully examined and analyzed when trained on one genre of data

and used to label a different genre. Their experiments are based on comparisons of perfor-

mance using PropBank-ed WSJ data and PropBank-ed Brown Corpus data. The results

indicate that “whereas syntactic parses and argument identification transfer relatively well

to a new corpus, argument classification does not” (Pradhan, Ward, and Martin, 2008).

The common ground underlying these two systems is that they combine the outputs

from different syntactic views. When an SRL system takes syntactic parse trees as input,

the incorrect parses would become one of the major error sources because the syntactic

parser may fail to produce a constituent that corresponds to the portion for the correct

semantic argument. The hope of combining different syntactic views is that they may give

different errors, and combining them will be better than either system alone. Punyakanok

et al. (2005a) deal with the multiple outputs by formalizing it into an optimization problem

and imposing the hard constraints on the predicted sequence. Pradhan et al. (2005c) add

the IOB features to the phase-based chunker in order to take advantage of the accuracy

gained from the full parses while preserving the robustness and flexibility of the chunker.

The top system focuses more on producing the globally legitimate sequence and the 2nd-

ranked system aims more at fixing the errors caused by the inaccurate parser.

12http://www.cemantix.org/download/assert/beta/download.html
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1.3 Research Directions in Semantic Role Labeling

In the previous section, we gave an overview of a few points of interest involving SRL

systems, including task description, NLP applications involving tasks, a typical setting of

the task, and the development of SRL systems and state-of-the-art SRL systems. In this

section, we will take a closer look at the task. The issues we are discussing in this section

have been attracting a lot of interest from the community and some of them are still open

to solve.

In current state-of-the-art SRL systems, syntactic information is used extensively as

the main source of feature extraction; and the system performance relies heavily on the

performance of the syntactic parsers. Based on the situation, currently there are 4 issues

that are of interest to the SRL researchers: (i) exploring novel sources for predictive SRL

features extraction, (ii) increasing the robustness of the SRL system, (iii) capturing predi-

cate frames using joint models and global inference, and (iv) taking advantage of additional

knowledge sources.

1.3.1 Development of Predictive Syntactic Features

The development of a proper set of features has been viewed as a crucial component

in many machine-learning related applications. SRL systems generally take as input a

syntactic parse tree and use the syntactic information as features to tag the semantic

labels on the syntactic constituents. Based on this setting, Gildea and Jurafsky (2002)

proposed a set of features in a statistical SRL system on FrameNet which has been taken

as a set of baseline features in most of the current SRL systems13). Gildea and Palmer

(2002) adopted the same feature set and the same statistical method on PropBank corpus.

Surdeanu et al. (2003) and Pradhan et al. (2004) explored the parse tree further and

proposed an additional set of features, among which are the generalizations of the more

specific features such as named entities, POS of the head word and verb clusters. A series of

analytic experiments show the contributions of each of the features/feature combinations to

the performance improvement. Xue and Palmer (2004) take a critical look at the features

used in the previous SRL systems and shows that the syntactic parse tree as the main

13We list all the features mentioned in this section in Table 3.1 of Chapter 3.
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feature source has yet to be fully exploited. They propose an additional set of features,

syntactic frame feature and some feature combinations in particular, and experimentally

show that different features are needed for different subtasks; and the results with fewer

features if properly applied, are comparable to the best previously reported results with

a full set of features. Their work indicates that developing features that can capture the

right kind of information is crucial to advancing the state-of-the-art SRL systems.

Aside from the full syntactic parses, features extracted from shallow parses are also

explored (Hacioglu et al., 2004). In order to generalize the path feature which is probably

the most salient (while being the most data sparse) feature for SRL, research efforts have

been made to extract features from other syntactic representations, such as CCG deriva-

tions (Gildea and Hockenmaier, 2003) and dependency trees (Hacioglu, 2004) or integrate

features from different syntactic parsers (Pradhan et al., 2005). Chen and Rambow (2003)

and Liu and Sarkar (2006) also explored features from Tree-Adjoining Grammar (TAG)

based notation. While those works exploit novel sources for SRL feature extraction from

different syntactic views, they still rely on the constituency parses to some degree. Either

the syntactic structures they used (such as dependency trees in (Hacioglu, 2004)) are con-

verted from constituency parses, or the “novel features” from these syntactic structures

are added to the “standard feature” set extracted from the constituency parses to form the

new feature set applied to the system.

To avoid explicitly developing predictive syntactic features on trees, Moschitti (2004)

used convolution kernels on selective portions of syntactic trees. It saves the effort of

explicit feature selection and typically gains a moderate performance in contrast to the

feature selection based SRL systems.

Researchers believe that there is still room for SRL performance improvement with a

better feature selection strategy.

1.3.2 Robustness of SRL systems

There’s an increasing amount of attention being paid to the robustness of SRL systems to

parser errors, changing domains, unseen predicates, etc.
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Robustness to Parser Errors

There are two sources of errors for semantic role identification: (i) failures by the system to

identify all and only those constituents that correspond to semantic roles, when those con-

stituents are present in the syntactic analysis, and (ii) failures by the syntactic analyzers to

provide the constituents that align with correct arguments. Adding new features can im-

prove performance when the syntactic representation being used for classification contains

the correct constituents. Additional features can’t recover from the situation where the

parse tree being used for classification doesn’t contain the correct constituent representing

an argument. Increasing the robustness of SRL to the parser errors is essentially dealing

with the second type of errors.

In practice, an SRL system experiences a dramatic drop in performance when working

on automatic parses; the gap is typically around 10% (in f-score) (Toutanova, Haghighi,

and Manning, 2005; Punyakanok, Roth, and Yih, 2005b; Xue and Palmer, 2004). To bridge

the gap, some research efforts have been made which fall into two categories: (i) different

syntactic views as complementary to each other, (ii) integration of parsing and semantic

role labeling.

The basic idea of applying alternative syntactic views lies in the fact that different

syntactic representations may contain different errors. The hope is that the combination

of these different views could produce better results than any single one. In (Pradhan et

al., 2005), three SRL systems are trained on three different syntactic views from Char-

niak’s parser (Charniak, 2000), Lin’s Minipar (Lin and Pantel, 2001) and the chunking

parser (Hacioglu, 2004), respectively; then a voting strategy is applied when these SRLs

run on test data. This strategy gives 3.8% improvement in f-score for argument identi-

fication and 2.2% improvement in f-score on the full task. Similarly, Punyakanok et al.

(2005a) use Collins’ parser’s output and Charniak’s parser’s top-5 outputs as the sources

of argument prediction. Then an optimization strategy is applied to obtain a global opti-

mal argument sequence. This system was the best system submitted to the CoNLL 2005

shared task evaluation.

Yi and Palmer (2005) and Sutton and McCallum (2005) reported on the first attempt

to integrate parsing and semantic role labeling to improve SRL performance. In (Yi and

Palmer, 2005) new parsers are trained on the trees which are augmented with semantic
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role labels and new parses turn out to have bigger coverage of the correct constituents;

Sutton and McCallum (2005) use an SRL system to re-rank the top-N parses from the

Charniak parser and try to pick the parse that is best for the SRL task. Sutton and

McCallum (2005) do not try to augment the search space of the statistical parser based

on the SRL task in contrast with (Yi and Palmer, 2005). Unfortunately, neither of them

produces positive results: the new parser’s output in (Yi and Palmer, 2005) performs worse

than using Charniak’s parser directly and top-1 parse always stands out in (Sutton and

McCallum, 2005). It appears that when integrating parsing and semantic role labeling,

somehow both performances deteriorated.

In (Pradhan, Ward, and Martin, 2008), the robustness of their system is carefully

examined and analyzed when trained on one genre of data and used to label a different

genre. It was shown that “errors in the syntactic parse are not a large factor in the overall

performance difference (when the system is run on a different genre of data). Even more

telling, there is still a large drop in performance when training and testing using Treebank

parses”.

Work on Semantic Role Annotations

Even though PropBank is the most widely used corpus for training SRL systems, a serious

criticism to this corpus refers to the role set it uses, which consists of the set of numbered

core arguments, whose semantic translation is verb-dependent. While Arg0 and Arg1

are intended to indicate the general roles of Agent and Theme, other argument numbers

do not generalize across verbs and do not correspond to general semantic roles. Based

on the hypothesis that a set of less verb-dependent semantic roles should be easier to

learn and port better to different genres, a new set of semantic roles was developed by

transforming PropBank roles to less verb-dependent thematic roles based on the mapping

between PropBank and VerbNet (Loper, Yi, and Palmer, 2007). Yi et al. (2007) have

shown that the SRL system that was trained on the new set of semantic roles confirms

the hypothesis and gains the improvement of the overall results (f-score) on the WSJ test

set by 6% and on the Brown corpus by almost 10%. An important remark to this work

is that the improvement is mainly from Arg2 for which the new role is a combination

of grouped VerbNet roles and for the rest of arguments, PropBank roles are still being
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used. In contrast, Zapirain et al. (2008) presented their result by empirically testing a

state-of-the-art SRL system with the two alternative role sets of PropBank and VerbNet

respectively and concluded that the PropBank role set is more robust to the lack of verb-

specific semantic information and generalizes better to the unseen predicates. How to

improve the annotation of an SRL corpus to further improve the robustness of SRL systems

remains an interesting point of research.

1.3.3 Joint Models and Global Inference

Despite the recent progress on accurate semantic role labeling, most of the work has largely

used independent local classifiers which assign a label to an individual parse tree node with-

out knowing the labels of other nodes. This obviously ignores the linguistic observation that

a core argument frame is a joint structure, with strong dependencies between arguments.

Some SRL systems have incorporated such dependencies in different ways. For example,

Gildea and Jurafsky (2002) and Pradhan et al. (2004) encode it into hard constraints –

that arguments cannot overlap with each other or the predicate, and also soft constraints

– it is unlikely that a predicate will have two or more AGENT arguments, or a predicate

used in an active voice will have a THEME argument prior to an AGENT argument. Pun-

yakanok et al. (2008) use a global inference strategy subject to these constraints on the

multiple SRL outputs. Toutanova et al. (2008) shows greater gains can be obtained by

modeling the joint information about a predicate’s argument structure. In their system,

top-k non-overlapping assignments are selected first from the local model using dynamic

programming and the best one is selected from these top-k in a joint log-linear model in

a discriminative re-ranking setting. The features used in the joint model are more “pred-

icate argument frame” related features such as whole label sequence (excluding modifying

arguments).

Similar to (Toutanova, Haghighi, and Manning, 2008), (Johansson and Nugues, 2008a)

presented an SRL system that is integrated with a dependency parser. The syntactic

subcomponent is a pseudo-projective dependency parser and the semantic model uses a

global inference mechanism on top of a pipeline of classifiers which takes as input the

output of the dependency parser. The complete syntactic-semantic output is selected from

a candidate pool generated by the subsystems by applying a syntactic-semantic reranker
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to the top-16 trees from the syntactic module. There are only 3 features they considered

for reranking: the log probability of the syntactic tree, the log probability of the semantic

structure according to the pipeline, and the global model, respectively. This system is

reported to achieve a near state-of-the-art performance when evaluated on CoNLL-2005

data.

The shared tasks of CoNLL-2008 and CoNLL-2009 also aimed to explore the possibility

of jointly modeling parsing of syntactic and semantic dependencies in order to improve the

performance of both. It turns out only 5 systems out of 55 actually combined the syntactic

and semantic tasks in their implementation – all others still followed a pipelined architecture

for this joint modeling task. In fact, for computational reasons, it is hard to encode the

interdependency among (core) semantic argument into the classifying process. It is either

encoded into the features or into constraints as post-processing.

1.3.4 Integration of Multiple Knowledge Sources

Although both FrameNet and PropBank are useful resources for semantic role labeling and

are built with extensive human effort over years of work, most of the current study has

been relying on only one of them, mainly due to the lack of connectivity between these

resources that would enable their exploration in a unified way.

FrameNet is built based on semantic frames and therefore it provides a good generaliza-

tion across predicates using frames and semantic roles. It also provides empirical evidence

for the syntactic realization of these semantic frames. Despite the huge human efforts of

constructing this lexical resource, its verb coverage is still very limited (3040 verbs attached

to 321 distinct frames) and only 30% of these frames were considered to have enough train-

ing data and were used in the Senseval-3 task. Therefore broader frame coverage and more

training data are necessary for a greater utility of FrameNet.

In contrast, PropBank was built on per-predicate basis and formed by a verb lexicon

(Frameset Files) and a semantically annotated corpus. The lexicon contains about 3600

verbs which corresponds to 5000+ framesets. Most verbs (80%) in PropBank have one

frameset, which generalizes over different senses of the verb. One of the main problems
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of PropBank is that it is too domain-specific (finance domain). Also, due to its verb-

by-verb based construction methodology as well as the shallow annotation of predicate-

argument structures (For example, Arg2-4 are seriously “overloaded” due to the coarse-

grained verb sense disambiguation), barriers to improving the generalization of current

(PropBank-based) SRL systems across genres and towards deep semantic analysis still

exist.

Two other useful lexicon resources, VerbNet (Kipper, H.T.Dang, and Palmer, 2000)

and WordNet (Miller, 1995) are useful when linking PropBank and FrameNet. VerbNet is

a verb lexicon with explicitly stated syntactic and semantic information based on Levin’s

verb classification (Levin, 1993). The fundamental assumption is that the syntactic frames

of a verb as argument-taking elements are a direct reflection of the underlying semantics.

Verb entries in the same VerbNet class share common syntactic frames, and thus they are

believed to have the same syntactic behavior – this property can be used to extend the

coverage of FrameNet: by identifying the VerbNet class that corresponds to a FrameNet

frame, the verbs that are not covered by FrameNet can be included now. WordNet covers

approximately 150,000 words which are organized in synset14 and semantic links among

these synsets. WordNet covers a large number of (around 11,000 verbs that are divided into

24,632 senses) but lacks information about verb syntax, which is of primary importance

when creating a complete resource for working on verb behaviors.

These resources provide different information, thus mapping and integrating syntactic-

semantic information among them is becoming a main concern today. In (Kipper, Palmer,

and Rambow, 2002; Kipper, Snyder, and Palmer, 2004), a mapping between VerbNet and

PropBank is proposed. In (Kipper, Snyder, and Palmer, 2004) each PropBank frameset

has been manually linked, when possible, to the VerbNet class; each PropBank role is

then mapped to the corresponding VerbNet thematic roles15. Shi and Mihalcea (2005)

propose a mapping between VerbNet classes and FrameNet frames to build a unified re-

source for semantic parsing. In (Giuglea and Moschitti, 2006) the link between VerbNet

and PropBank proposed in (Kipper, Palmer, and Rambow, 2002) is used together with a

14Each synset represents a lexicalized concept that is linguistically represented by a set of synonymous
words and a gloss describing the synset itself.

1578.62% of PropBank sentences have an exact matching to a VerbNet class.
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semi-automatic mapping from VerbNet to FrameNet to improve the performance of an SRL

system. Pazienza et al. (2006) propose a mapping to link WordNet 2.0 to VerbNet 2.0 and

finally to the PropBank corpus to obtain a large set of linguistic examples of verb pairs that

have some semantic and specific predicate-argument structures. It provides a possibility to

study and automatically learn how the predicate-argument structures of two verbs are re-

lated using the set of corpus examples. Currently there is a unified (FrameNet, VerbNet and

PropBank) verb lexicon available at http://www.cs.rochester.edu/~gildea/Verbs/.

How to apply this richer information to the SRL systems is not yet a well-studied issue.

1.4 Lexicalized Tree-Adjoining Grammars (LTAGs)

Our main focus in this thesis is to explore the utility of the Lexicalized Tree-adjoining

grammars (LTAGs) formalism for the SRL task. In this section we provide our motivation

for this approach, and an introduction to LTAG.

Tree Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975) is a formal tree

rewriting system whose formal properties have been extensively studied in recent years. It

has been applied in some of the NLP applications such as machine translation (Abeillé,

Schabes, and Joshi, 1990; Deneefe and Knight, 2009) and language generation (Stone and

Doran, 1997; Harbusch and Woch, 2002). TAGs are often described as mildly context-

sensitive, meaning that they possess certain properties that make them more powerful (in

terms of the weak generative capacity) than context-free grammars (CFGs), but less pow-

erful than context-sensitive grammars. Mildly context-sensitive grammars are conjectured

to be powerful enough to model natural languages while remaining efficiently parseable in

the general case (Joshi, 1985). LTAG stands for lexicalized TAG. Since the two are formally

equivalent, they are often used interchangeably. In this section, we will give an introduc-

tion to the basics of LTAG. A recent review can be found in (Joshi and Schabes, 1997;

Abeillé and Rambow, 2001), which provides a detailed description of TAG with respect to

linguistics, formal and computational properties.
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Figure 1.2: A parse tree

1.4.1 Elementary Trees

The primitive elements of an LTAG are elementary trees (etree for short). An LTAG is

lexicalized, as each elementary tree is associated with one lexical item which is called the

anchor of the tree. This lexical item is located on the frontier of the tree. Although the

LTAG formalism allows wide latitude in how elementary trees may be defined, various

linguistic principles generally guide their formation. An important principle is that depen-

dencies, including long-distance dependencies are typically localized in the same elementary

tree by appropriate grouping of syntactically or semantically related elements. There are

two types of elementary trees: initial trees and auxiliary trees. Each auxiliary tree has a

unique leaf node, called the foot node, which has the same label as the root and is usually

marked with ?. In both types of trees, leaf nodes other than anchors and foot nodes are

called substitution nodes which are usually marked with a down arrow. We illustrate the

LTAG trees with an example.

(14) Pierre Vinken will join as a non-executive director.
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Figure 1.3: A set of elementary trees

The parse tree for the example is shown in Figure 1.2. Figure 1.3 shows the elemen-

tary trees for each word in the sentence. α stands for an initial tree, and β stands for

an auxiliary tree. Note that LTAG is a formal grammar and not a linguistic theory, so

elementary trees can be defined in many ways. Figure 1.3 just shows one of the many

possible sets of etrees.

1.4.2 Two Operations

Typically etrees can be combined by two operations: substitution and adjunction. In the

substitution operation, a substitution node in an etree is replaced by another etree whose

root has the same label as the substitution node. In an adjunction operation, an auxiliary

tree is inserted into another etree. The root and the foot nodes of the auxiliary tree must

match the node label at which the auxiliary tree adjoins. Figure 1.4 and Figure 1.5 show

the two operations. Figure 1.6 shows the LTAG derivation tree γ1 generated by applying

the two operations to the elementary trees in Figure 1.3. The structure that is the result
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Figure 1.4: The substitution operation

Figure 1.5: The adjunction operation

of combining together the elementary trees in an LTAG derivation is called a parse tree or

a derived tree. The history of the combination process is recorded as a derivation tree.

1.4.3 Derived Trees and Derivation Trees

For semantic computation the LTAG derivation tree is the crucial object. Compositional

semantics is defined on the derivation tree. The idea is that for each elementary tree there

is a semantic representation associated with it and these representations are composed

using the derivation tree.

Unlike in CFGs, the derived trees and the derivation trees in LTAG formalism are not

identical, as previously shown. In fact several derivation trees may result in the same

derived tree. For example, in Figure 1.7, another set of LTAG etrees and the resulting

derivation tree are given for the same derived tree (fragment), due to different ways of

extracting elementary trees. This property gives us the flexibility of locating features that

are useful for SRL from different styles of LTAG derivation trees. We applied this property

through all of our work.
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Figure 1.6: LTAG derivation tree γ1 for the example.

1.4.4 Some Important Properties of LTAG

Each grammar formalism specifies a domain of locality, i.e., a domain over which various

dependencies (syntactic and semantic) can be specified. It turns out that the various

properties of a formalism (syntactic, semantic, computational, and even psycholinguistic)

follow, to a large extent, from the initial specification of the domain of locality.

In a context-free grammar (CFG) the domain of locality is the one level tree correspond-

ing to a grammar rule in a CFG. Compared to CFG, the elementary trees of an LTAG

are minimal syntactic and semantic units since dependencies (such as predicate-argument)

are supposed to be localized within the elementary trees. There are two key properties

of LTAG: (i) Extended Domain of Locality (EDL), which allows (ii) Factoring Recursion

from the domain of Dependencies (FRD), thus attempting to make all predicate-argument

dependencies local (Joshi and Schabes, 1997).
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Figure 1.7: Compared to etrees in Figure 1.3, another plausible set of LTAG elementary
trees (new etrees α8, α9) and the derivation tree γ2 obtained by composing the elementary
trees.

1.5 Lexicalized Tree-Adjoining Grammars and Semantic Role

Labeling

SRL describes the dependencies between a particular predicate and its arguments in a sen-

tence. These dependencies are expected to be represented within some domain of locality

around the predicate in a parse tree. Current SRL features that are commonly used in the

community are also defined aiming to capture such dependencies from the parse tree.

This notion coincides with the LTAG property of EDL. This property also allows fac-

toring of selected portions of the parse in order to provide a local dependency between

predicate and argument even in cases where they might be separated in a parse tree. In

the SRL setting, it means we can simply focus on LTAG elementary trees and ignore var-

ious modal auxiliaries or negation modifiers in the parse tree, whose SRLs (if any) have

little connection with the arguments of the predicate. Factoring away this type of recursion

not only makes the dependencies more local, but can also facilitate SRL for modal verbs

(AM-MOD) and negation (AM-NEG). For instance, in Figure 1.3, with LTAG we can fac-

tor away the auxiliary etree β1 (recursion of VPs) to provide a natural domain of locality

for the predicate join and its arguments without losing important information for SRL pre-

diction. The role label AM-MOD for MD(will) does not depend on the specific predicate

join and removing this auxiliary etree creates a local relation between the predicate and

arguments like A0, A1, etc.
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Based on the discussion above, we can see that LTAG and SRL are related closely. Ide-

ally, the LTAG elementary tree that is anchored with a predicate should automatically form

a frame which contains all the core arguments (mandatory arguments) of the predicate.

The features that accompany the elementary tree are more salient for determining semantic

role labels in that they are extracted from a deeper syntactic structure and therefore more

linguistic motivated. In our work, we are interested in not only the LTAG elementary trees,

but also the LTAG derivation trees, because the LTAG derivation trees contain information

such as typological relations between predicate elementary trees and argument elementary

trees, which is important to the SRL task. In Chapter 2, 3 and 4, we will present our work

of using LTAG derivation trees for the SRL task.
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LTAG-Spinal for SRL

LTAG-spinal is a novel variant of traditional Lexicalized Tree Adjoining Grammar (LTAG)

introduced by (Shen, 2006). The LTAG-spinal Treebank (Shen, Champollion, and Joshi,

2008) combines elementary trees extracted from the Penn Treebank with PropBank anno-

tation. In this work, we present a semantic role labeling (SRL) system based on this new

resource and provide an experimental comparison with CCGBank (Gildea and Hocken-

maier, 2003) and a state-of-the-art SRL system based on Treebank phrase-structure trees.

Deep linguistic information such as predicate-argument relationships that are either im-

plicit or absent from the original Penn Treebank are made explicit and accessible in the

LTAG-spinal Treebank, which we show to be a useful resource for semantic role labeling.

2.1 Introduction

The LTAG-spinal formalism was initially proposed for automatic treebank extraction and

statistical parsing (Shen and Joshi, 2005). However, its PropBank-guided treebank extrac-

tion process further strengthens the connection between the LTAG-spinal and semantic role

labeling. In particular, the development of the LTAG-spinal parsers make the LTAG-spinal

derivation trees become immediately available for the SRL task.

Our experimental results have shown that our LTAG-spinal based SRL system achieves

very high precision on both gold-standard and automatic parses, and significantly outper-

forms the one using CCGbank. More importantly, it shows that LTAG-spinal is an useful

35
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resource for semantic role labeling, with the potential for further improvement.

2.2 LTAG-spinal, its Treebank, and Parsers

This section gives a brief introduction of the LTAG-spinal formalism, its Treebank that

is extracted with the help of PropBank annotation, and its two statistical parsers that

are trained on the Treebank. Predicate-argument relations encoded in the LTAG-spinal

treebank will also be discussed to illustrate its compatibility with PropBank and their

potential utility for the SRL task.

2.2.1 LTAG-spinal

The LTAG-spinal formalism (Shen, Champollion, and Joshi, 2008) is a variant of LTAG.

Compared to traditional LTAG, the two types of elementary trees, initial and auxiliary

trees, are in spinal form with no substitution nodes for arguments appearing in the predi-

cate etree: a spinal initial tree is composed of a lexical spine from the root to the anchor,

and nothing else; a spinal auxiliary tree is composed of a lexical spine and a recursive spine

from the root to the foot node. For example, in Figure 2.1 (from (Shen, Champollion, and

Joshi, 2008)), the lexical spine for the auxiliary tree is B1, .., Bi, .., Bn, the recursive spine

is B1, .., Bi, .., B
∗
1 . Two operations attachment and adjunction are defined in LTAG-spinal

where adjunction is the same as adjunction in the traditional LTAG; attachment stems

from sister adjunction as defined in Tree Insertion Grammar (TIG) (Schabes and Shieber,

1994), which corresponds to the case where the root of an initial tree is taken as a child of

another spinal etree. The two operations are applied to LTAG-spinal etree pairs resulting

in an LTAG derivation tree which is similar to a dependency tree (see Figure 2.2). In Fig-

ure 2.2, etree anchored with continue is the only auxiliary tree; all other etrees are initial

trees. The arrow is directed from parent to child, with the type of operation labeled on the

arc. The operation types are: att denotes attachment operation; adj denotes adjunction

operation. The sibling nodes may have different landing site along the parent spine. For

example, among the child nodes of the stabilize etree, the to etree has VP as landing site;

while even has S as landing site. Such information, on some level, turns out to be helpful

in differentiating the semantic role played by the different child nodes.
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An

B1A1

Bn

initial: auxiliary:

B1*

Bi

Figure 2.1: Spinal elementary trees

Figure 2.2: An example of LTAG-spinal sub-derivation tree, from LTAG-spinal Treebank
Section 22

As claimed on page 14 of (Shen, 2006), “the domain of locality of LTAG is still main-

tained in LTAG-spinal in a way that syntactically dependent arguments are directly at-

tached to the predicate. As a result, elementary trees are in the spinal form since arguments

do not appear in the elementary tree of the predicate. This turns out to be a great ad-

vantage in handling coordination. In the traditional LTAG, one needs to transform the

templates of predicate conjuncts in order to represent the shared arguments. However,

representation of predicate coordination is rather easy with the spinal form”. LTAG-spinal

is weakly equivalent to traditional LTAG with adjunction constraints1 (Shen, 2006).

So far, we can see that in contrast with traditional LTAG, where arguments refer to

obligatory constituents only, subcategorization frames and argument-adjunct distinction

1null adjunction (NA), obligatory adjunction (OA) and selective adjunction (SA)
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Figure 2.3: Three examples of LTAG-spinal derivation trees where predicates and their
PropBank style argument labels are given. These examples are from LTAG-spinal Treebank
Section 22.

are underspecified in LTAG-spinal. Since argument-adjunct disambiguation is one of the

major challenges faced by LTAG treebank construction, LTAG-spinal works around this

issue by leaving the disambiguation task for further deep processing, such as semantic role

labeling. In this sense, LTAG-spinal actually shares the common ground with our previous

work in extracting LTAG elementary trees.

The LTAG-spinal Treebank is extracted from the Penn Treebank by exploiting Prop-

Bank annotation. Specifically, as described in (Shen, Champollion, and Joshi, 2008), a

Penn Treebank syntax tree is taken as an LTAG-spinal derived tree; then, information

from the Penn Treebank and PropBank is merged using tree transformations. For instance,

LTAG predicate coordination and instances of adjunction are recognized using PropBank

annotation. LTAG elementary trees are then extracted from the transformed Penn Tree-

bank trees recursively using the PropBank annotation and a Magerman-Collins style head

percolation table.

This guided extraction process allows syntax and semantic role information to be com-

bined in LTAG-spinal derivation trees. For example, the Penn Treebank does not dif-

ferentiate raising verbs and control verbs; however, based on the PropBank information,

LTAG-spinal makes this distinction explicit. Thus, the error of taking a subject argument

which is not semantically an argument of the raising verb can be avoided. Another property

of LTAG-spinal Treebank extraction lies in the flexibility and simplicity of the treatment of

predicate coordination (see (Shen, Champollion, and Joshi, 2008)). Figure 2.3 shows three

examples of PropBank annotation as decorations over the LTAG-spinal derivation trees. In

each derivation tree, each node is associated with LTAG-spinal etrees. Each argument (A0,

A1, etc.) is referred to as A and the predicate is called P . In most cases, the argument is
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found locally in the derivation tree due to the extended domain of locality in etrees. Thus,

most arguments are identified by the pattern P → A or P ← A. The next section contains

a discussion of such patterns in more detail.

Two statistical parsers have been developed by Libin Shen specifically for training on

the LTAG-spinal treebank: a left-to-right incremental parser (Shen and Joshi, 2005) and a

bidirectional incremental parser (Shen and Joshi, 2008). If one compares the output of these

two parsers, the left-to-right parser produces full LTAG-spinal derivation trees (including

all the information about specific elementary trees used in the derivation and the attach-

ment information within the etrees) while the bidirectional parser produces derivation trees

without information about elementary trees or attachment points (similar to output from

a dependency parser). In this work, we use the left-to-right incremental parser for its

richer output because our SRL system uses feature functions that use information about

the elementary trees in the derivation tree and the attachment points between etrees. The

landing site of the child node along the parent spine is useful for identifying different types

of arguments in SRL. For example, assume the parent spine is “S-VP-VB-anchor” (the

root label is S, and “anchor” is where the lexical item is inserted). Along with direction

information, the landing site label “S” is likely to be a good indicator for argument A0

(subject) while the landing site label “VP” could be a good indicator for “A1” (object). In

this sense, the incremental left-to-right parser is preferable for semantic role labeling. How-

ever, having been developed earlier than the bidirectional parser, the incremental parser

obtains 1.2% less in dependency accuracy compared to the bidirectional parser (Shen and

Joshi, 2008).

2.2.2 Predicate-Argument Relations in the LTAG-spinal Treebank

The PropBank-guided extraction process for LTAG-spinal treebank naturally creates a

close connection between these two resources. To examine the compatibility of the LTAG-

spinal Treebank with PropBank, (Shen, Champollion, and Joshi, 2008) provides the fre-

quency for specific types of paths from the predicate to the argument in the LTAG-spinal

derivation trees from the LTAG-spinal Treebank. The 8 most frequent patterns account for

95.5% of the total predicate-argument pairs of the LTAG-spinal Treebank, of which 88.4%

are directly connected pairs. These statistics not only provide empirical justification for
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Path Pattern Number Percent
1 P→A 8294 81.3
2 P←A, V←A 720 7.1
3 P←Px→A 437 4.3
4 P←Coord→Px→A 216 2.1
5 P←Ax←Py→A 84 0.82
6 P←Coord←Px→A 40 0.39
7 P←Px←Py→A 13 0.13
total recovered w/ patterns 9804 96.1

total 10206 100.0

Table 2.1: Distribution of the 7 most frequent predicate-argument pair patterns in LTAG-
spinal Treebank Section 22. P : predicate, A: argument, V : modifying verb, Coord:
predicate coordination.

the notion of the extended domain of locality (EDL) in LTAG-spinal (Shen, Champollion,

and Joshi, 2008), they also provide motivation to explore this Treebank for the SRL task.

We collected similar statistics from Treebank Section 22 for the SRL task, shown in

Table 2.1, where 7 instead of 8 patterns suffice in our setting. Each pattern describes

one type of P(redicate)-A(rgument) pair with respect to their dependency relation and

distance in the LTAG-spinal derivation tree. The reason that we combine the two patterns

P←A and V←A into one is that from the SRL perspective, they are equivalent in terms of

the dependency relation and distance with predicates. Each token present in the patterns

– such as P, Px, Py, V, A, Ax and Coord – denotes a spinal etree in the LTAG-spinal

derivation tree.

To explain the patterns more clearly, take the LTAG-spinal sub-derivation tree in Fig-

ure 2.2 as an example, and assume P(redicate) in question is stabilize then (stabilize →
even), (stabilize → if), (stabilize → Street), (stabilize → continue), (stabilize → to) all be-

long to pattern 1; but only (stabilize→ Street) is an actual predicate-argument pair. Simi-

larly, when taking continue as P, the predicate-argument pair (continue← stabilize) belongs

to pattern 2, where stabilize corresponds to A(rgument) in the pattern; (continue,Street) in

(Street← stabilize→ continue) is an example of pattern 3, where stabilize corresponds to

Px and Street corresponds to A in the pattern 3 schema. Pattern 4 denotes the case where

argument (A) is shared between coordinated predicates (P and Px). The main difference

among patterns 5-7 is where the sibling node of A(rgument) is categorized into: predicate
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(Px) in pattern 7, predicate coordination node (Coord) in pattern 6, and others (Ax) in

pattern 5. We will retain this difference instead of merging it since the semantic relation

between P and A varies based on these differences. Example sentences for other (rarer)

patterns can be found in (Shen, Champollion, and Joshi, 2008).

2.3 LTAG-spinal based SRL System

In this section, we describe our LTAG-spinal based SRL system. So far, we have studied the

LTAG-spinal formalism, its treebank, and parsers. In particular, the frequency distribution

of the seven most-seen predicate-argument pair patterns in LTAG-spinal Treebank tells us

that predicate-argument relationships typical to semantic role labeling are often local in

LTAG-spinal derivation trees.

Pruning, argument identification and argument classification – the 3-stage architecture

now standard in SRL systems is also used in this work. Specifically, for the sake of effi-

ciency, nodes with high probability of being NULL (non-argument) should be filtered at the

beginning; usually filtering is done based on some heuristic rules; after the pruning stage,

argument identification takes place with the goal of classifying the pruning-survival nodes

into argument and non-argument; for those nodes that have been classified as arguments,

argument classification component will further label them with different argument types,

such as A0, A1, etc.. Argument identification and classification are highly ambiguous tasks

and are usually accomplished using a machine learning method.

For our LTAG-spinal based SRL system, we first collect the argument candidates for

each predicate from the LTAG-spinal derivation tree. For each candidate, features are

extracted to capture the predicate-argument relations. Binary classifiers for identification

and classification are trained using SVMs and combined in a one-vs-all model. The results

are evaluated using precision/recall/f-score.

2.3.1 Candidate Locations for Arguments

In SRL systems that perform role labeling of constituents in a phrase-structure tree, statis-

tics show that after pruning, ∼98% of the SRL argument nodes are retained in the gold-

standard trees in the Penn Treebank, which provides a high upper-bound for the recall of
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the SRL system. Pruning away unnecessary nodes using a heuristic makes learning easier

as well, as many of the false positives are pruned away leading to a more balanced binary

classification problem during the semantic role identification and classification steps. We

need a similar heuristic over LTAG-spinal nodes that will have high coverage with respect

to SRL arguments and provide a high upper-bound for recall.

As previously shown, the seven most frequent predicate-argument pair patterns that

are used to describe the specific types of paths from the predicate to the argument account

for ∼96% of the total number of predicate-argument pairs in the LTAG-spinal Treebank.

These patterns provide a natural candidate selection strategy for our SRL.

Table 2.2 shows a similar oracle test applied to the output of the LTAG-spinal parser on

Section 22. The total drop in oracle predicate-argument identifiation drops 10.5% compared

to gold-standard trees. 9.8% is lost from patterns 1 and 2. If we exclude those pairs that

belong to pattern i in treebank but belong to pattern j (i 6= j) in automatic parses (so the

pattern exists but is the wrong one for that constituent), the number drops to 81.6% from

85.6%. This indicates that in terms of the impact of the syntactic parser errors for SRL, the

LTAG-spinal parser will suffer even more than the phrase structure parser. An alternative

is to exhaustively search for predicate-argument pairs without considering patterns, which

we found introduces too much noise in the learner to be feasible. Thus, the predicate-

argument pairs selected through this phase are considered as argument candidates for our

SRL system.

Path Pattern Number Percent
1 P→A 7441 72.9
2 P←A, V←A 583 5.7
3 P←Px→A 384 3.8
4 P←Coord→Px→A 180 1.76
5 P←Ax←Py→A 75 0.73
6 P←Coord←Px→A 48 0.47
7 P←Px←Py→A 22 0.21
total recovered w/ patterns 8733 85.6

total 10206 100.0

Table 2.2: Distribution of the 7 patterns in LTAG-spinal parser output for Section 22.
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2.3.2 Features

Based on the patterns, features are defined on predicate-argument pairs from LTAG deriva-

tion tree, mainly including predicate etrees, argument etrees, intermediate etrees and their

“topological relationships” such as operation, spine node, relative position and distance.

The following are the specific features used in our classifiers:

Features from predicate etree and its variants predicate lemma, POS tag of predi-

cate, predicate voice, spine of the predicate etree, 2 variants of predicate etree: replacing

anchor in the spine with predicate lemma, replacing anchor POS in the spine with voice.

In Figure 2.2, if we take stabilize as predicate, these two variants are S-VP-VB-stabilize

and S-VP-VB-active respectively.

Features from argument etree and its variants argument lemma, POS tag of argu-

ment, Named Entity (NE) label of the argument, spine of the argument etree, 2 variants

of argument etree: replacing anchor in the spine with argument lemma, replacing anchor

POS with NE label if any, label of root node of the argument spine. In Figure 2.2, if take

stabilize as predicate, and Street as argument, the two variants are XP-NNP-street and

XP-ORGANIZATION 2 respectively.

PP content word of argument etree if the root label of the argument etree is PP,

anchor of the last daughter node. NE variant of this feature: replace its POS with the NE

label if any.

Features from the spine node (SP1) The spine node is the landing site between

predicate etree and argument etree. Features include the index along the host spine3, label

of the node, operation involved (att or adj ).

Relative position of predicate and argument in the sentence: before/after.

Order of current child node among its siblings. In pattern 1, predicate etree is parent,

and argument etree is child. This feature refers to the order of argument etree among its

siblings nodes (with predicate etree as parent).

Distance of predicate etree and argument tree in the LTAG derivation tree: For example,

2XP-NNP is a normalized etree form used in (Shen, Champollion, and Joshi, 2008) for efficiency and
to avoid the problem of sparse data over too many etrees.

3it can either be predicate etree or argument etree. For example, for pattern P←A, the A(rgument)
etree is the host spine.
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for pattern 1 and 2, the distance has value 0; for pattern 3, the distance has value 1.

Pattern ID valued 1-7. (see Table 2.1 and Table 2.2)

Combination of position and pattern ID, combination of distance and pattern ID, com-

bination of position and order.

Features from intermediate predicate etree same features as predicate etree features.

Features from spine node of intermediate predicate etree and argument etree

(SP2) for predicate-argument pairs of pattern 3-7. These features are similar to the SP1

features but instead between intermediate predicate etree and argument etree.

Relative position between predicate etree and intermediate etree.

Combination relative positions of argument etree and intermediate predicate etree +

relative position of argument etree and predicate etree.

The features listed above are used to represent each candidate constituent (or node) in

the LTAG-spinal derivation tree in training and test data. In both cases, we identify SRLs

for nodes for each predicate. In training, each node comes with the appropriate semantic

role label, or NULL if it does not have any (for the predicate). In the test data, we first

identify nodes as arguments using these features (ARG v.s. NULL classification) and then

classify a node identified as an argument with the particular SRL using one-vs-all binary

classification.

2.4 Experiments

2.4.1 Data Set

Following the usual convention for parsing and SRL experiments, LTAG-spinal Treebank

Section 2-21 is used for training and Section 23 for testing. The PropBank argument set is

used which includes numbered arguments A0 to A5 and 13 adjunct-like arguments4. The

reason for using an extended set of argument set in this work is to have a fair comparison

with the previous work on CCGBank, which will be discussed later. 454 sentences in the

Penn Treebank are skipped5 from the LTAG-spinal Treebank (Shen, Champollion, and

4{AM-ADV, AM-CAU, AM-NEG, AM-DIR, AM-DIS, AM-LOC, AM-MNR, AM-MOD, AM-PNC, AM-
PRD, AM-TMP, AM-REC, AM-EXT}

5Based on (Shen, Champollion, and Joshi, 2008), the 454 skipped sentences amount to less than 1%
of the total sentences. 314 of these 454 sentences have gapping structures. Since PTB does not annotate
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Joshi, 2008), which results in 115 predicate-argument pairs ignored in the test set.

We applied SVM-light (Joachims, 1999) with default linear kernel to feature vectors.

30% of the training samples are used to fine tune the regularization parameter c and the

loss-function cost parameter j for both argument identification and classification. With

parameter validation experiments, we set c = 0.1 and j = 1 for {A0, AM-NEG}, c = 0.1,

j = 2 for {A1, A2, A4, AM-EXT} and c = 0.1 and j = 4 for the rest.

For comparison, we also built up a standard 3-stage phrase-structure based SRL system,

where exactly the same data set6 is used from 2004 February release of the PropBank.

SVM-light with a linear kernel is used to train on a standard feature set as shown in

Table 3.1. The Charniak and Johnson’s parser (2005) is used to produce the automatic

parses. Similar to before, both the missing constituents and discontinuous constituents

participate in evaluation.

2.4.2 Results

We compared our LTAG-spinal based SRL system with a phrase-structure based one (see

the description in earlier sections), for argument identification and classification. In or-

der to analyze the impact of errors in syntactic parsers, results are presented on both

gold-standard trees and automatic parses. Based on the fact that nearly 97% etrees that

correspond to the core arguments7 belong to pattern 1 and 2, which accounts for the largest

portion of argument loss in automatic parses, the classification results are also given for

these core arguments. We also compare with the CCG-based SRL presented in (Gildea

and Hockenmaier, 2003)8, which has a similar motivation as our work, except they use the

Combinatory Categorial Grammar formalism and the CCGBank syntactic Treebank which

was converted from the Penn Treebank.

the trace of deleted predicates, additional manual annotation is required to handle these sentences. For the
rest of the 146 sentences, abnormal structures are generated due to tagging errors.

6The same 454 sentences are ignored.
7A0, A1, A2, A3, A4, A5
8Their data includes the 454 sentences. However, the missing 115 predicate-argument pairs account for

less than 1% of the total number of predicate-argument pairs in the test data, so even if we award these
cases to the CCGBank system the system performance gap still remains.
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Scoring strategy To have a fair evaluation of arguments between the LTAG-spinal de-

pendency parse and the Penn Treebank phrase structure, we report the root/head-word

based scoring strategy for performance comparison, where a case is counted as positive as

long as the root of the argument etree is correctly identified in LTAG-spinal and the head

word of the argument constituent is correctly identified in phrase structure. In contrast,

boundary-based scoring is more strict in that the string span of the argument must be

correctly identified in identification and classification.

Results from using gold standard trees Table 2.3 shows the results when gold stan-

dard trees are used. We can see that with gold-standard derivations, LTAG-spinal obtains

the highest precision on identification and classification; it also achieves a competitive f-

score (highest f-score for identification) with the recall upper-bound lower by 2-3% than

phrase-structure based SRL. However, the recall gap between the two SRL systems gets

larger for classification compared to identification9, which is due to the low recall that is

observed with our LTAG-spinal based SRL based on our current set of features. If we

compare the difference between the root/head-word based score and the boundary based

score in the 3 scenarios, we notice that the difference reflects the discrepancy between the

argument boundaries. It is not surprising to see that phrase-structure based SRL has the

best match. However, CCGBank appears to have a large degree of mismatch. In this sense,

root/head word based scoring provides fair comparison between LTAG-spinal SRL system

and the CCGBank SRL system.

Recent work (Boxwell and White, 2008) changes some structures in the CCGBank to

correspond more closely with the PropBank annotations. They also resolve split arguments

that occur in PropBank and add these annotations into a revised version of the CCGBank.

As a result they show that the oracle f-score improves by over 2 points over the (Gildea

and Hockenmaier, 2003) oracle results for the numbered arguments only (A0, . . ., A5). It

remains an open question whether a full SRL system based on a CCG parser trained on

this new version of the CCGBank will be competitive against the LTAG-spinal based and

phrase-structure based SRL systems.

Results from using automatic parses Table 2.4 shows the results when automatic

parses are used. With automatic parses, the advantage of LTAG-spinal in the precision

9No NULL examples are involved when training for argument classification.
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Identification gold-standard trees (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 96.0/92.1/94.0 93.0/94.0/93.5 n/a
classification (core) gold-standard trees (p/r/f%)

Scoring LTAG phrase CCG
Root/head-word 90.6/83.4/86.9 87.2/88.4/87.8 82.4/78.6/80.4

classification (full) gold-standard trees (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 88.2/81.7/84.8 86.1/87.1/86.6 76.3/67.8/71.8
Boundary 87.4/81.0/84.1 86.0/87.0/86.5 67.5/60.0/63.5

Table 2.3: Using gold standard trees: comparison of the three SRL systems for argument
identification, core and full argument classification

scores still exists, giving a higher score in both identification and core argument classifi-

cation: only 0.5% lower for full argument classification. However, with over 6% difference

in upper-bound of recall (≤85.6% from LTAG-spinal; ∼91.7% from Charniak’s parser),

the gap in recall becomes larger: increasing to ∼10% in automatic parses from ∼6% in

gold-standard trees.

The identification result is not available for CCG-based SRL. In terms of argument

classification, it is significantly outperformed by the LTAG-spinal based SRL. In particular,

it can be seen that the LTAG-spinal parser performs much better on argument boundaries

than CCG-based one.

One thing worth mentioning is that since neither the LTAG-spinal parser nor Charniak’s

parser provides trace (empty category) information in their output, no trace information

is used for LTAG-spinal based SRL or the phrase-structure based SRL even though it is

available in their gold-standard trees. No function tag information is used either.

2.5 Conclusion and Future Work

With a small feature set, the LTAG-spinal based SRL system described in this work pro-

vides the highest precision in almost all the scenarios, which indicates that the shallow

semantic relations, e.g., the predicate-argument relations that are encoded in the LTAG-

spinal Treebank are useful for SRL, especially when compared to the phrase structure Penn
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Identification automatic parses (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 85.8/80.0/82.8 85.8/87.7/86.7 n/a
classification (core) automatic parses (p/r/f%)

Scoring LTAG phrase CCG
Root/head-word 81.0/71.5/76.0 80.1/82.8/81.4 76.1/73.5/74.8

classification (full) automatic parses (p/r/f%)
Scoring LTAG phrase CCG

Root/head-word 78.0/70.0/73.7 78.5/80.3/79.4 71.0/63.1/66.8
Boundary 72.3/65.0/68.5 73.8/75.5/74.7 55.7/49.5/52.4

Table 2.4: Using automatic parses: comparison of the three SRL systems for argument
identification, core and full argument classification

Treebank. (Shen, Champollion, and Joshi, 2008) achieves an f-score of 91.6% for non-trace

SRL identification on the entire Treebank by employing a simple rule-based system, which

also suggested this conclusion. In other words, there is a tighter connection between the

syntax and semantic role labels in the LTAG-spinal representation.

However, in contrast to the high precision, the recall performance of LTAG-spinal based

SRL needs a further improvement, especially for the argument classification task. From the

SRL perspective, on one hand, this may be due to the pattern-based candidate selection,

which bounds above the number of predicate-argument pairs that can be recovered for

SRL; on the other hand, it suggests that the features for argument classification need to

be examined more carefully, compared to the feature selection for argument identification,

especially for A2 and A3 (as indicated by our error analysis on the results on the devel-

opment set). A possible solution is to customize a different feature set for each argument

type during classification, especially for contextual information.

Experiments show that when following the pipelined architecture, the performance of

LTAG-based SRL is more severely degraded by the syntactic parser, compared to the SRL

using phrase structure and CCG formalism. Even though the left-to-right statistical parser

that was trained and evaluated on the LTAG-spinal Treebank achieves an f-score of 89.3%

for dependencies on Section 23 of this treebank (Shen and Joshi, 2005), which is not far

from the f-score of 91.0% obtained on sentences of length 100 or less in Section 23 of Penn

Treebank by Charniak and Johnson’s parser (2005), the SRL that used this output is worse
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than expected. An oracle test shows that via the same 7 patterns, only 81.6% predicate-

argument pairs can be recovered from the automatic parses, which is a big drop from 96.1%

when we use the LTAG-spinal Treebank trees. Parser accuracy is high overall, but needs

to be more accurate in recovering the dependencies between predicate and argument.

The SRL suffers the low recall not only when the automatic parses are used, but also

when the gold trees are used. Based on this, we would expect that a thorough error analysis

and feature calibrating can give us a better idea in terms of how to increase the recall in

both cases.

As a final note, we believe that our effort on using LTAG-spinal for SRL is a valuable

exploration of the LTAG-spinal formalism and its Treebank resource. We hope our work

will provide useful information on how to better utilize this formalism and the Treebank

resource for semantic role labeling.



Chapter 3

LTAG based Features for SRL

Chapter 2 shows that the LTAG-spinal based SRL system has much lower recall than the

phrase-structure based one when an LTAG parser is used to produce the LTAG derivation

trees. In Chapter 2 we identified the issue of low recall to be caused by issues with using

the LTAG parser for the SRL task. To take advantage of the high-performance phrase-

structure parsers as well as the potential utility of LTAG formalism to the SRL task, we

extract LTAG derivation trees from phrase-structure parse trees rather than produce them

from an LTAG parser. In this chapter, we will introduce our work of using LTAG based

features, which are extracted from such LTAG derivation trees, for semantic role labeling.

Experiments show that LTAG-based features can improve SRL accuracy at a statistically

significant level in comparison with the best known set of features used in the state-of-the-

art SRL systems. To show the usefulness of the features, we provide an experimental study

comparing LTAG-based features with the “standard” set of features1 and kernel methods

used in state-of-the-art SRL systems.

3.1 Motivation

SRL feature extraction has relied on various syntactic representations of input sentences,

such as syntactic chunks (Hacioglu et al., 2004) and full syntactic parses (Gildea and

1Features that are widely used in state of the art SRL systems and extracted from phrase-structure
parse trees. See Table 3.1 in Section 3.3.

50
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Jurafsky, 2002). In contrast with features from shallow parsing, previous work (Gildea and

Palmer, 2002; Punyakanok, Roth, and Yih, 2005b) has shown the necessity of full syntactic

parsing for SRL. In order to generalize the path feature (see Table 3.1 in Section 3.3)

which is probably the most salient (while being the most data sparse) feature for SRL,

previous work has extracted features from other syntactic representations, such as CCG

derivations (Gildea and Hockenmaier, 2003) and dependency trees (Hacioglu, 2004) or

integrated features from different parsers (Pradhan et al., 2005). To avoid explicit feature

engineering on trees, Moschitti (2004) used convolution kernels on selective portions of

syntactic trees.

Most SRL systems exploit syntactic trees as the main source of features. We would like

to take this one step further and show that using LTAG derivation trees as an additional

source of features can improve both argument identification and classification accuracy in

SRL.

3.2 Using LTAG-based Features in SRL

In Section 1.4 of Chapter 1, we gave an introduction of LTAG formalism and described the

relations between this formalism and semantic role labeling. Here we assume the readers

have the background knowledge and we will not go into details of this aspect.

As aforementioned, LTAG is a formal grammar and not a linguistic theory, so ele-

mentary trees can be defined in many ways. A reasonable way to define SRL features is

to provide a strictly local dependency (i.e. within a single etree) between predicate and

argument. There have been many different proposals on how to maintain syntactic lo-

cality (Xia, 1999; Chen and Vijay-Shanker, 2000) and SRL locality (Chen and Rambow,

2003; Shen and Joshi, 2005) when extracting LTAG etrees from a Treebank. These pro-

posed methods are exemplified by the derivation tree γ1 in Figure 3.1. However, in most

cases they can only provide a local dependency between predicate and argument for 87%

of the argument constituents (Chen and Rambow, 2003), which is too low to provide high

SRL accuracy. In LTAG-based statistical parsers, high accuracy is obtained by using the

Magerman-Collins head-percolation rules in order to provide the etrees (Chiang, 2000).

This method is exemplified by the derivation tree γ2 in Figure 3.1. Comparing γ1 with γ2

in Figure 3.1 and assuming that join is the predicate and the NP is the potential argument,
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S

NP VP

MD(will) VP

V(join) PP

S

VP

V(join)

VP

MD(will) VP∗

S

VP

MD(will)

VP

V(join)

α1(join)

NP β1(will) PP

α2(will)

NP α3(join)

PP

α1: β1:

α2: α3:

γ1: γ2:

Figure 3.1: A parse tree schematic, and two plausible LTAG derivation trees for it: deriva-
tion tree γ1 uses elementary trees α1 and β1 while γ2 uses α2 and α3.

the path feature as defined over the LTAG derivation tree γ2 is more useful for the SRL task

as it distinguishes between main clause and non-finite embedded clause predicates. This

alternative derivation tree also exploits the so-called extended domain of locality (Joshi and

Schabes, 1997). In our method of obtaining LTAG derivation trees, we crucially rely on

features defined on LTAG derivation trees of the latter kind. We use sister adjunction (See

Section 2.2 for the definition) which is commonly used in LTAG statistical parsers to deal

with the relatively flat Penn Treebank trees (Chiang, 2000).

We use polynomial kernels to create combinations of features defined on LTAG deriva-

tion trees.

3.2.1 LTAG-based Feature Extraction

In order to create training data for the LTAG-based features, we convert the Penn Treebank

phrase structure trees into LTAG derivations. First, we prune the Treebank parse tree using

certain constraints (Section 3.2.2 will give more details). Then we decompose the pruned

parse trees into a set of LTAG elementary trees and obtain a derivation tree. For each

constituent in question, we extract features from the LTAG derivation tree. We combine

these features with the standard features used for SRL and train an SVM classifier on the

combined LTAG derivation plus SRL annotations from the PropBank corpus.
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For the test data, we report on results using the gold-standard Treebank data, and in

addition we report results on automatically parsed data using Charniak’s parser (Char-

niak, 2000) as provided by the CoNLL 2005 shared task. We did this for three reasons: (i)

our results are directly comparable to those who have used Charniak’s parses distributed

with the CoNLL 2005 data-set; As one of the major benchmark data sets for the SRL

task, CoNLL-2005 data is actually still commonly used within the SRL research commu-

nity (Boxwell, Mehay, and Brew, 2009; Sun, Sui, and Wang, 2009); (ii) Although the new

re-ranking model of Charniak and Johnson’s parser (2005) (Charniak and Johnson, 2005)

is reported to improve upon Charniak (2000) significantly, the overall difference in SRL

accuracy of using these two models is only around 0.3-0.4% (Charniak and Johnson (2005)

over Charniak (2000)), as reported in (Johansson and Nugues, 2008b); and (iii) the quality

of LTAG derivation trees depends indirectly on the quality of head dependencies recovered

by the parser and it is a well-known folklore result (see Table 3 in (McDonald, Cram-

mer, and Pereira, 2005)) that applying the head-percolation heuristics on parser output

produces better dependencies when compared to dependencies directly recovered by the

parser (whether the parser is an LTAG parser or a lexicalized PCFG parser).

3.2.2 Pruning Parse Trees

Given a parse tree, the pruning component identifies the predicate in the tree and then

only admits those nodes that are sisters to the path from the predicate to the root. It is

commonly used in the SRL community (cf. (Xue and Palmer, 2004)) and our experiments

show that 91% of the SRL targets can be recovered despite this aggressive pruning. We

make two enhancements to the pruned Propbank tree: we enrich the sister nodes with

head information, a part-of-speech tag and word pair: 〈t, w〉; and PP nodes are expanded

to include the NP complement of the PP (including head information). Note that the

target SRL node is still the PP. Figure 3.2 is a pruned parse tree for a sentence from the

PropBank.
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3.2.3 Decompositions of Parse Trees

After pruning, the pruned tree is decomposed around the predicate using standard head-

percolation based heuristic rules2 to convert a Treebank tree into an LTAG derivation tree.

Figure 3.3 shows the resulting etrees after decomposition. Figure 3.4 is the derivation

tree for the entire pruned tree. Each node in this derivation tree represents an etree in

Figure 3.3. In our model we make an independence assumption that each SRL is assigned

to each constituent independently, conditional only on the path from the predicate etree to

the argument etree in the derivation tree. Different etree siblings in the LTAG derivation

tree do not influence each other in our current models.

S

NP

NNP-H

Inc.

VP-H

VBD-H

reached

NP

NNS-H

agreements

S

VP-H

TO-H

to

VP

VB-H

sell

NP

NN-H

aircraft

PP

TO-H

to

NP

NNS-H

buyers

Figure 3.2: The pruned tree for the sentence “Ports of Call Inc. reached agreements to sell
its remaining seven aircraft to buyers that weren’t disclosed.”

2using http://www.isi.edu/~chiang/software/treep/treep.html
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PP
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to

e0: e1: e2: e3: NP

NNS

agreements

S

VP

VBD

reached

NP

NNP

Inc.

e4: e5: e6:

Figure 3.3: Elementary trees after decomposition of the pruned tree.

e5(reached)

e6(Inc.) e4(agreements)

e3(to)

e0(sell)

e1(aircraft) e2(to)

Figure 3.4: LTAG derivation tree for Figure 3.2.

3.2.4 LTAG-based Features

We defined 5 LTAG feature categories: predicate etree-related features (P for short), ar-

gument etree-related features (A), subcategorization-related features (S), topological rela-

tion-related features (R), intermediate etree-related features (I). Since we consider up to

6 intermediate etrees between the predicate and the argument etree, we use I -1 to I -6 to

represent these 6 intermediate trees respectively.

Category P: Predicate etree & its variants Predicate etree is an etree with a predicate,

such as e0 in Figure 3.3. This new feature complements the predicate feature in the

standard SRL feature set. One variant is to remove the predicate lemma. Another variant

is a combination of predicate tree w/o predicate lemma&POS and voice. In addition, this

variant combined with predicate lemma comprises another new feature.

In the example, these three variants are (VP(VB)) and (VP) active and (VP) active sell

respectively.



CHAPTER 3. LTAG BASED FEATURES FOR SRL 56

Category A: Argument etree & its variants Analogous to the predicate etree, the

argument etree is an etree with the target constituent and its head. Similar to predicate

etree related features, argument etree, argument etree with removal of head word, combi-

nation of argument etree w/o head POS&head word and head Named Entity (NE) label (if

any) are considered. For example, in Figure 3.3, these 3 features for e6 are e6, (NP(NNP))

and (NP) LOC with head word “Inc.” having NE label “LOC”.

Category S: Index of current argument etree in subcat frame of predicate etree

Sub-categorization is a standard feature that denotes the immediate expansion of the pred-

icate’s parent. For example, it is V NP PP for predicate sell in the given sentence. For

argument etree e1 in Figure 3.3, the index feature value is 1 since it is the very first element

in the (ordered) subcat sequence.

Category R:

Relation type between argument etree & predicate etree This feature is a combi-

nation of position and modifying relation. Position is a binary valued standard feature to

describe if the argument is before or after the predicate in a parse tree. For each argument

etree and intermediate etree, we consider three types of modifying relations they may have

with the predicate etree: modifying (value 1), modified (value 2) and neither (value 3).

From Figure 3.4, we can see e1 modifies e0 (predicate tree). So their modifying relation

type value is 1; combining this value with the position value, this feature for e1 is “1 after”.

Attachment point related features Label of the attachment point of argument etree

and its parent and index of the attachment point along the parent etree. For e1 in the

example, VP in the predicate tree is the label and 0 is the index of attachment point.

Distance This feature is the number of intermediate etrees between the argument etree

and the predicate etree in the derivation tree. In Figure 3.4, the distance from e4 to the

predicate etree is 1 since only one intermediate etree e3 is between them.

Category I:

Intermediate etree related features Intermediate etrees are those etrees that are lo-

cated between the predicate etree and argument etrees. The set of features we propose
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for each intermediate etree is quite similar to those for argument etrees except we do not

consider the named-entity label for head words in this case.

Relation type of intermediate etree & predicate etree.

Attachment point of intermediate etree.

Distance between intermediate etree and predicate etree.

Up to 6 intermediate etrees are considered and the category I features are extracted for

each of them (if they exist).

Each etree represents a linguistically meaningful fragment. The features of relation type

and attachment point, as well as the distance characterize the topological relations among

the relevant etrees. In particular, the attachment point and distance features can explicitly

capture important information hidden in the standard path feature. The intermediate

tree related features can give richer contextual information between predicate tree and

argument trees. We added the subcat index feature to be complementary to the sub-cat

and syntactic frame features in the standard feature set.

3.3 Standard Feature Set

Our standard feature set is a combination of features proposed by (Gildea and Jurafsky,

2002), (Surdeanu et al., 2003; Pradhan et al., 2004; Pradhan et al., 2005) and (Xue and

Palmer, 2004). All features listed in Table 3.1 are used for argument classification in our

baseline system; and features with asterisk are not used for argument identification3. We

compare this baseline SRL with a system that includes a combination of these features

with the LTAG-based features. Our baseline uses all features that have been used in

the state-of-the-art SRL systems and as our experimental results show, these standard

features do indeed obtain state-of-the-art accuracy on the SRL task. We will show that

adding LTAG-based features can improve the accuracy over this very strong baseline.

3This is a standard idea in the SRL literature: removing features more useful for classification, e.g.
named entity features, makes the classifier for identification more accurate.
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Table 3.1: Standard features adopted by a typical SRL system. Features with asterisk ∗
are not used for argument identification.

Basic features from (Gildea and Jurafsky, 2002)

• predicate lemma and voice
• phrase type and head word
• path from phrase to predicate
• position: phrase relative to predicate: before or after
• sub-cat records the immediate structure that expands from predicate’s parent
Additional features proposed by (Surdeanu et al. 2003; Pradhan et al.,
2004, 2005)
• predicate POS
• head word POS
• first/last word/POS
• POS of word immediately before/after phrase
• path length
• LCA(Lowest Common Ancestor) path from phrase to its lowest common
ancestor with predicate
• punctuation immediately before/after phrase∗
• path trigrams∗: up to 9 are considered
• head word named entity label such as “PER, ORG, LOC”∗
• content word named entity label for PP parent node∗
Additional features proposed by (Xue and Palmer, 2004)

• predicate phrase type
• predicate head word
• voice position
• syntactic frame∗

3.4 Experiments

3.4.1 Experimental Settings

Training data (PropBank Sections 2-21) and test data (PropBank Section 23) are taken

from the CoNLL-2005 shared task45. All the necessary annotation information such as

4http://www.lsi.upc.es/~srlconll/
5The main difference of CoNLL-2005 shared task data and Propbank data is that the CoNLL data

introduces two additional label types for arguments where R-ARGX is used to represent co-referential
arguments and C-ARGX is used to represent a continuation phrase of multi-constituent arguments, while
Propbank does not make such a distinction. Thus in CoNLL data, ARGX and R-ARGX are treated as
different labels and evaluated separately. A script that converts Propbank annotations to CoNLL format
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predicates, parse trees as well as Named Entity labels is part of the data. The argument

set we consider is {A0, A1, A2, A3, A4, AM} where AM is a generalized annotation of

all adjuncts such as AM-TMP, AM-LOC, etc., where PropBank function tags like TMP

or LOC in AM-TMP, AM-LOC are ignored (a common setting for SRL, see (Xue and

Palmer, 2004; Moschitti, 2004)). We chose these labels for our experiments because they

have sufficient training/test data for the performance comparison and provide sufficient

counts for accurate significance testing. However, we also provide the evaluation result on

the test set for the full CoNLL-2005 task (all argument types).

We use SVM-light6 (Joachims, 1999) with a polynomial kernel (degree=3) as our binary

classifier for argument classification. We applied a linear kernel to argument identification

because the training cost of this phase is extremely computationally expensive. We use 30%

of the training samples to fine tune the regularization parameter c and the loss-function cost

parameter j for both stages of argument identification and classification. With parameter

validation experiments, we set c = 0.258 and j = 1 for the argument identification learner

and c = 0.1 and j = 4 for the argument classification learner.

The classification performance is evaluated using Precision/Recall/F-score (p/r/f) mea-

sures. We extracted all the gold labels of A0-A4 and AM with the argument constituent

index from the original test data as the “gold output”. When we evaluate, we contrast the

output of our system with the gold output and calculate the p/r/f for each argument type.

Our evaluation criteria are based on predicting the SRL for constituents in the parse

tree which is similar to the evaluation used in (Toutanova, Haghighi, and Manning, 2005).

However, we also evaluate those PropBank arguments which do not have a corresponding

constituent in the gold parse tree or the automatic parse tree: the missing constituent

case. We also evaluate discontinuous PropBank arguments using the notation used in

the CoNLL-2005 data-set but we do not predict them. This contrasts with some previous

studies where the problematic cases have been usually discarded or the largest constituents

in the parse tree that almost capture the missing constituent cases are picked as being the

correct answer. In addition to the constituent based evaluation, in Section 3.4.4 we also

is available as part of the shared task software (http://www.lsi.upc.edu/~srlconll/soft.html). In our
system, we call C-ARGX discontinuous argument. We treat both R-ARGX and C-ARGX as separate
argument labels.

6http://svmlight.joachims.org/
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Gold Standard Charniak’s Parser
std std+ltag std std+ltag

p(%) 95.66 96.79 87.71 89.11
r(%) 94.36 94.59 84.86 85.51
f(%) 95.00 95.68 86.26 87.27∗

Table 3.2: Argument identification results on test data

provide the evaluation of our model on the CoNLL-2005 data-set.

Because the main focus of this work is to evaluate the impact of the LTAG-based

features, we did not consider the frameset or a distribution over the entire argument set

or apply any inference/constraints as a post-processing stage as most current SRL systems

do. We focus our experiments on showing the value added by introducing LTAG-based

features to the SRL task over and above what is currently used in SRL research.

3.4.2 Argument Identification

Table 3.2 shows results on argument identification (a binary classification of constituents

into argument or non-argument). To fully evaluate the influence of the LTAG-based fea-

tures, we report the identification results on both Gold Standard parses and on Charniak’s

parser output.

As we can see, after combining the LTAG-based features with the standard features,

the f-score increased from 95.00% to 95.68% with Gold-standard parses; and from 86.26%

to 87.27% with the Charniak’s parses (a larger increase). We can see LTAG-based features

help in argument identification for both cases. This result is better than (Xue and Palmer,

2004), and better on gold parses compared to (Toutanova, Haghighi, and Manning, 2005;

Punyakanok, Roth, and Yih, 2005b).

3.4.3 Argument Classification

Based on the identification results, argument classification will assign the semantic roles

to the argument candidates. For each argument of A0-A4 and AM, a “one-vs-all” SVM

classifier is trained on both the standard feature set (std) and the augmented feature

set (std+ltag). Table 3.3 shows the classification results on the Gold-standard parses

with the gold argument identification; Table 3.4 and 3.5 show the classification results on
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the Charniak’s parser with the gold argument identification and the automatic argument

identification respectively. Scores for multi-class SRL are calculated based on the total

number of correctly predicted labels, the total number of gold labels, and the number of

labels in our prediction for this argument set.

class std(p/r/f)% std+ltag(p/r/f)%

A0
96.69 96.71 96.71 96.77

96.70 96.74

A1
93.82 93.30 97.30 94.87

93.56 96.07

A2
87.05 79.98 92.43 81.42

83.37 86.58

A3
94.44 68.79 97.69 73.41

79.60 83.33

A4
96.55 82.35 94.11 78.43

88.89 85.56

AM
98.41 96.61 98.67 97.88

97.50 98.27
multi- 95.35 93.62 97.15 94.70
class 94.48 95.91

Table 3.3: Argument classification results on Gold-standard parses with gold argument
boundaries.

3.4.4 Discussion

From the results shown in the tables, we can see that by adding the LTAG-based features,

the overall performance of the systems is improved both for argument identification and

argument classification.

Table 3.3 and 3.4 show that with gold argument identification, the classification for each

class in {A0, A1, A2, A3, AM} consistently benefit from LTAG-based features. Especially

for A3, LTAG-based features lead to more than 3% improvement. But for A4 arguments,

the performance drops 3% in both cases. As we noticed in Table 3.5, which presents

the argument classification results on Charniak’s parser output with automatic argument

identification, the prediction accuracy for classes A0, A1, A3, A4 and AM is improved, but

drops a little for A2.
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class std(p/r/f)% std+ltag(p/r/f)%

A0
96.04 92.92 96.07 92.92

94.46 94.47

A1
90.64 85.71 94.64 86.67

88.11 90.48

A2
84.46 75.72 89.26 75.22

79.85 81.64

A3
87.50 62.02 87.10 68.35

72.59 76.60

A4
90.00 79.12 90.54 73.62

84.21 81.21

AM
95.14 85.54 96.60 86.51

90.09 91.27
multi- 93.25 86.45 94.71 87.15
class 89.72 90.77

Table 3.4: Argument classification results on Charniak’s parser output with gold argument
boundaries

In addition, we also evaluated our feature set on the full CoNLL 2005 shared task.

The overall performance using LTAG features increased from 74.41% to 75.31% in terms

of f-score on the full argument set. Our accuracy is most closely comparable to the 77.03%

accuracy achieved on the full task by (Toutanova, Haghighi, and Manning, 2008) where

the features are explored on a single Penn Treebank parse tree and local classifiers are

applied for the SRL task. The 79.44% accuracy obtained by the top system in CoNLL

2005 (Punyakanok, Roth, and Yih, 2005a) is not directly comparable since their system

used the more accurate n-best parser output of (Charniak and Johnson, 2005). In addition

their system also used global inference. Our focus in this work was to propose new LTAG

features and to evaluate impact of these features on the SRL task.

We also compared our proposed feature set against predicate/argument features (PAF)

proposed by (Moschitti, 2004). We conducted an experiment using the SVM-light-TK-

1.2 toolkit7. The PAF tree kernel is combined with the standard feature vectors by

a linear operator. With settings of Table 3.5, its multi-class performance (p/r/f)% is

7http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-software/Tree-Kernel.htm



CHAPTER 3. LTAG BASED FEATURES FOR SRL 63

class std(p/r/f)% std+ltag(p/r/f)%

A0
86.50 86.18 88.17 87.70

86.34 87.93∗

A1
78.73 83.82 88.78 85.22

81.19 86.97∗

A2
85.40 73.93 83.11 75.42

79.25 79.08

A3
85.71 60.76 85.71 68.35

71.11 76.06∗

A4
84.52 78.02 89.47 74.72

81.15 81.43

AM
80.47 82.11 83.87 81.54

81.29 82.69∗
multi- 81.79 82.90 86.04 84.47
class 82.34 85.25∗

Table 3.5: Argument classification results on Charniak’s parser output with automatic
argument boundaries

83.09/80.18/81.61 with linear kernel and 85.36/81.79/83.53 with polynomial kernel (de-

gree=3) over std feature vectors.

3.4.5 Significance Testing

To assess the statistical significance of the improvements in accuracy we did a two-tailed

significance test on the results of both Table 3.2 and 3.5 where Charniak’s parser outputs

were used. We chose SIGF 8, which is an implementation of a computer-intensive, stratified

approximate-randomization test (Yeh, 2000). The statistical difference is assessed on SRL

identification, classification for each class (A0-A4, AM), and the full SRL task (overall

performance). In Table 3.2 and 3.5, we labeled numbers under std+ltag that are statistically

significantly better from those under std with asterisk. The significance tests show that

for the identification and full SRL task, the improvements are statistically significant with

p value of 0.013 and 0.0001 respectively at a confidence level of 95%. The significance test

on each class shows that the improvement by adding LTAG-based features is statistically

significant for class A0, A1, A3 and AM. Even though in Table 3.5 the performance of

8http://www.coli.uni-saarland.de/~pado/sigf/index.html
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A2 appears to be worse it is not significantly so, and A4 is not significantly better. In

comparison, the performance of PAF did not show significantly better than std with p

value of 0.593 at the same confidence level of 95%.

3.4.6 Analysis of the LTAG-based Features

full full−P full−R full−S full−A full−I std
id 90.5 90.6 90.0 90.5 90.5 90.1 89.6
A0 84.5 84.3 84.6 84.5 84.3 83.5 84.2
A1 89.8 90.1 89.4 89.3 89.6 89.3 88.9
A2 84.2 84.2 84.0 83.7 83.6 83.6 84.9
A3 76.7 80.7 75.1 76.0 75.6 76.7 78.6
A4 80.0 83.3 80.0 79.6 80.0 80.0 79.2
AM 82.8 83.3 82.9 82.8 82.6 83.1 82.4

Table 3.6: Impact of each LTAG feature category (P, R, S, A, I defined in Section 3.2.4) on
argument classification and identification on CoNLL-2005 development set (WSJ Section
24). full denotes the full feature set, and we use −α to denote removal of a feature category
of type α. For example, full−P is the feature set obtained by removing all P category
features. std denotes the standard feature set.

We analyzed the drop in performance when a particular type of LTAG feature category

is removed from the full set of LTAG features (we use the broad categories P, R, S, A,

I as defined in Section 3.2.4). Table 3.6 shows how much performance is lost (or gained)

when a particular type of LTAG feature is dropped from the full set.

These experiments were done on the development set from CoNLL-2005 shared task,

using the provided Charniak’s parses. All the SVM models were trained using a polynomial

kernel with degree 3. It is clear that the S, A, I category features help in most cases and

P category features hurt in most cases, including argument identification. It is also worth

noting that the R and I category features help most for identification. This vindicates

the use of LTAG derivations as a way to generalize long paths in the parse tree between

the predicate and argument. Although it seems LTAG features have negative impact on

prediction of A3 arguments on this development set, dropping the P category features can

actually improve performance over the standard feature set. In contrast, for the prediction
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of A2 arguments, none of the LTAG feature categories seem to help.

Note that since we use a polynomial kernel in the full set, we cannot rule out the

possibility that a feature that improves performance when dropped may still be helpful

when combined in a non-linear kernel with features from other categories. However, this

analysis on the development set does indicate that overall performance may be improved

by dropping the P feature category.

We adopt this calibration result on the test set, where we first attempted to drop the P

feature category for the argument identification, and drop the LTAG feature category that

has shown the most hurting. Since the P feature category seems to hurt the performance

of most arguments on the development set, we also tried to drop it in each case of the

test set. It turns out that, in comparison to the development set, the test set responds

differently to each of these feature categories. Table 3.7 shows the result.

full full−P full−R full−S full−A full−I std
id 87.27 87.24 – – – – 86.26
A0 87.93 88.05 88.00 – – – 86.34
A1 86.97 86.88 – – – – 81.19
A2 79.08 80.32 – – – – 79.25
A3 76.06 75.79 – – – – 71.11
A4 81.43 80.92 – – – – 81.15
AM 82.69 80.75 80.78 – – 80.34 81.29

Table 3.7: Result of argument identification and classification on CoNLL-2005 test set
(WSJ Section 23) by adopting LTAG feature calibration result.

Table 3.7 shows that dropping the P category helps to boost the performance of both

A0 and A2 on the test set; however, the results of feature calibration on the development

set show that dropping P does not help on A2 and will hurt on A0; except in these two

cases, dropping P has shown to be helpful overall for all other cases in classification as well

as in identification. This appears very different on the test set. In addition, dropping R

and I feature categories has shown to be helpful for AM on the development set but shown

hurting on the test set. The R category appears to have a similar impact on A0 for both

the development set and the test set. By dropping the P features on A0 and A2, the SRL
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performance on the test set increases from 85.25% to 85.39%.

Due to the inconsistency of the feature analysis result between the development set

and the test set, it is hard to tell specifically which individual feature category hurts most.

What we can tell is that the SRL overall performance can be boosted on a statistically

significant level by incorporating all of these LTAG-based features.

3.4.7 Analysis based on Support Vectors
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Figure 3.5: Illustration of impact of each LTAG feature category (P, A, S, R, I-1, I-
2, I-3, I-4, I-5, I-6 defined in Section 3.2.4) on argument classification and argument
identification.

We also proposed another way to compare the effect that different LTAG feature cate-

gories have on this task. For each LTAG feature category, we count the occurrences of its

instances in the Support Vectors (which can be obtained from the SVM classifier) and in

all of the training data. Presumably the ratio between these two numbers indicates which

feature category is predominantly useful in the large margin classification using SVMs.

Figure 3.5 shows these ratios for the 10 feature categories on both argument classification

(for each class) and argument identification. The x-axis denotes each feature category and

y-axis denotes the ratio. Features in the I category play a more important role than those

of P category and A category. For identification, intermediate etrees close to a predicate

etree seem more important than those far from a predicate etree; for A0, it is the opposite;

and for A1 and A3, those intermediate trees in the middle are more important. For A2

and AM, all I category features appear to contribute equally. The importance of the long
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distance features using intermediate trees in the I category is interesting since it directly

deals with the sparse data issue for standard parse path features. For A4, the I category

has little impact and this class requires sparse lexical information for accurate classifica-

tion. This also explains that why LTAG-based features did not help with A4 prediction

in Table 3.3 and 3.4. The S feature category appears dramatically different between the

group of A2, A3 and A4 and the group of A0, AM and identification. The importance of

other feature categories such as P, A and R basically keeps on the same level in each case.

The theoretical foundation of this method will be further studied in our future work.

3.5 Related Work

There has been some previous work in SRL that uses LTAG-based decomposition of the

parse tree. Chen and Rambow (2003) use LTAG-based decomposition of parse trees (as

is typically done for statistical LTAG parsing) for SRL. Instead of extracting a typical

“standard” path feature from the derived tree, Chen and Rambow (2003) use the path

within the elementary tree from the predicate to the constituent argument. Under this

frame, they only recover semantic roles for those constituents that are localized within a

single etree for the predicate, ignoring cases that occur outside the etree. As stated in their

paper, “as a consequence, adjunct semantic roles (ARGM’s) are basically absent from our

test corpus”; and around 13% complement semantic roles cannot be found in etrees in the

gold parses. In contrast, we recover all SRLs by exploiting more general paths in the LTAG

derivation tree. A similar drawback can be found in (Gildea and Hockenmaier, 2003) where

a parse tree path was defined in terms of Combinatory Categorial Grammar (CCG) types

using grammatical relations between predicate and arguments. The two relations they

defined can only capture 77% arguments in Propbank and they had to use a standard path

feature as a replacement when the defined relations cannot be found in CCG derivation

trees. In our framework, we use intermediate sub-structures from LTAG derivations to

capture these relations instead of bypassing this issue.

Our approach shares similar motivations with the approach in (Shen and Joshi, 2005)

which uses PropBank information to recover an LTAG treebank as if it were hidden data

underlying the Penn Treebank. However their goal was to extract an LTAG grammar using

PropBank information from the Treebank, and not the SRL task.
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Features extracted from LTAG derivations are different and provide distinct information

when compared to predicate-argument features (PAF) or sub-categorization features (SCF)

used in (Moschitti, 2004) or even the later use of argument spanning trees (AST) in the

same framework. The adjunction operation of LTAG and the extended domain of locality

are not captured by those features as we have explained in detail in Section 1.4.

3.6 Conclusion

in this chapter we proposed to use LTAG derivation trees, which are extracted from the

phrase-structure parse trees, as a novel source for SRL feature extraction and defined a

new set of LTAG based features that have been shown to be useful for SRL task. In this

work we show that LTAG-based features improve on the best known set of features used

in current SRL prediction systems: the f-score for argument identification increased from

86.26% to 87.27% and from 82.34% to 85.25% for the SRL task, and the improvement is

statistically significant. The analysis of the impact of each LTAG feature category shows

that the intermediate etrees are important for the improvement.



Chapter 4

LTAG features for SRL using

Latent SVMs

As shown previously, a phrase structure parse tree for a sentence can be generated by many

different LTAG derivation trees. In this chapter, we use multiple LTAG derivation trees as

latent features for semantic role labeling (SRL). We hypothesize that positive and negative

examples of individual semantic roles can be reliably distinguished by possibly different

latent LTAG features. For this reason we introduce latent support vector machines (LSVM)

for the SRL task using these latent LTAG features. Our experiments on the PropBank-

CoNLL’2005 dataset show that our method significantly outperforms the state-of -the-

art SRL systems (even compared to models using global constraints or global inference

over multiple parses). LSVMs are well suited for the SRL task. Our SRL system is

composed of several individual component one-vs-all binary classifiers trained using our

LSVM approach. Each individual binary classifier obtains near perfect precision.

4.1 Introduction

In Chapter 3 we have shown that the features that are extracted from the LTAG derivation

trees, when combined with the standard feature set, can improve the SRL system perfor-

mance on a statistically significant level. In that work, for a particular sentence, a single

LTAG derivation tree was extracted from the Penn Treebank (PTB) parse tree based on

69
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Magerman-Collins head percolation rules and sister-adjunction operation; and then used

as a source of LTAG features for the argument prediction of all SRL instances of that

sentence.

As mentioned in Section 1.4.2 of Chapter 1, an LTAG derivation tree is a composition of

LTAG elementary trees via various operations and can be used to record the history of how

a derived tree is generated. More than one linguistically plausible LTAG derivation can be

extracted from a single PTB tree, as shown in Figure 1.6 and Figure 1.7. As additional

examples, Figure 4.1 and Figure 4.2 also show two of the many possible sets of elementary

trees for the derived tree in Figure 4.3. In this Chapter, we consider these multiple LTAG

derivations as latent features for the SRL task. Since there are multiple LTAG derivations

available for the single PTB tree, any single derivation tree extracted using one heuristic is

not necessarily the best feature source for the SRL instance in question. By treating LTAG

derivations as latent structures of a PTB tree, our method aims to find the most suitable

LTAG derivation for each SRL instance. The work in this chapter is in fact an extension

and generalization of the work in Chapter 3.

For each semantic role we hypothesize that positive and negative examples of individual

semantic roles can be reliably distinguished by possibly different latent LTAG features, and

for this reason we introduce a methodology that uses latent SVMs (LSVM) for SRL using

latent LTAG features from multiple LTAG derivation trees. Our experiments show that

LSVM seems to converge to a very predictive set of latent LTAG features for discrimina-

tive classification in most cases of SRL prediction. Our SRL system obtains a significant

improvement in f-score compared to the use of a single LTAG derivation tree (using stan-

dard Magerman-Collins head rules). Our method gives the best reported precision when

evaluated on the CoNLL-2005 shared task dataset, based on the PropBank corpus. Our

method significantly outperforms the current top performing system on the CoNLL-2005

dataset in prediction of core arguments such as A0, A1, A2, and A3.
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Figure 4.1: LTAG elementary trees resulting from one decomposition from the derived tree
in Figure 4.3.

Figure 4.2: An alternative set of LTAG elementary trees resulting from another decompo-

sition from the derived tree in Figure 4.3.

4.2 Generation of Latent LTAG Derivation Trees

In this section, we will first provide a review of LTAG derivation tree extraction from

previous work, which is mainly used in the context of statistical parsing. Then we will

describe the derivation trees we propose to generate for the SRL task.

In the context of statistical LTAG parsing, extracting LTAG derivation trees from the

PTB trees has been extensively explored in (Chiang, 2000; Xia, 2001; Chen, 2002; Chiang

and Bikel, 2002; Shen, 2004), which was mainly motivated by the following things.

1. Different from PCFG parsing, the sample space for LTAG parsing is the space of

LTAG derivation trees, instead of the derived trees that are found in the PTB.

2. As we know, very large corpora are crucial to statistical natural language processing.



CHAPTER 4. LTAG FEATURES FOR SRL USING LATENT SVMS 72

However no large corpora are immediately available for statistical LTAG parsing.

3. Given a CFG and head percolation scheme, an equivalent LTAG can be constructed

whose derivations mirror the dependency analysis implicit in the head percolation

scheme. Based on these facts, inducing an LTAG treebank (of LTAG derivation

trees) from PTB has become one of the most important pre-processing steps for

efficient statistical LTAG parsing.

To induce LTAG derivation trees from PTB derived trees, two types of ambiguities

need to be resolved: head competition and argument-adjuction distinction (Shen, 2004).

4.2.1 Head Competition

Head-finding is the most commonly used method for grammar lexicalization, and has been

proven to be effective in parsing. The so-called Magerman-Collins head percolation table

is simply a deterministic, heuristic method to determine the head of each phrase given

local syntactic context. The syntactic context that is used for a particular sentence is

defined by the PTB bracketing for that sentence. For example, in figure 4.3, based on the

heuristics VP is the head of rule S→ NP VP; and VBD is the head of rule VP→ VBD NP.

Therefore the lexical head of VP(caught-VBD) is propagated to the parent nodes up to the

root1. Following the lexical heads of a syntactic parse tree, we can get the spines of LTAG

elementary trees. For example, in figure 4.3, the path from the lexical item caught to the

root S forms the spine of the elementary tree anchored at caught ; similarly, the path from

the lexical item boy to NP(boy-NN) forms the spine of the elementary tree anchored at boy.

If we specify the elementary trees in spinal form, then the head-finding rules essentially

tell us how to generate LTAG elementary trees.

4.2.2 Argument-Adjunct Distinction

So far, the spine of each elementary trees can be generated using the head-percolation

rules. For each node η in the parse tree, head-finding rules specify exactly one child of η

as the head; then the remaining child nodes have to be disambiguated either as arguments

1Figure 4.3 (1) and (2) are equivalent in representing the heads. We used notation (1) here for ease of
description. We will use notation (2) in the subsequent description.
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Figure 4.3: A simple lexicalized parse tree

or as adjuncts, which indicates the dependencies that need or need not be localized in

the elementary trees. In (Xia, 2001; Chen, 2002), argument-adjunct distinction is solved

with respect to the constituent label and function tags in the PTB trees as well as a set

of pre-defined templates. Once this ambiguity is resolved, the operations (substitution or

adjunction in standard TAG) for composing the elementary trees into LTAG derivation

tree can also be determined accordingly.

4.2.3 Previous Work

Based on the ambiguities stated above, obviously many different sets of LTAG derivation

trees could be extracted from the same PTB tree, by simply applying alternative sets of

head-percolation rules. In practice some toolkits have been produced to reduce the amount

of human effort needed for this process. Treep2 (Chiang and Bikel, 2002) is such a tree

processor that takes as input a sequence of phrase-structure trees and modifies their labels

according to a set of head-percolation rules. Its envisioned purpose is as a front-end to the

trainer of a statistical parser.

However, in previous work, almost identical head-lexicalizations were used either based

on the Magerman-Collins head percolation table, or a slight variant of this table (Chen,

2002). The situation is similar for argument-adjunct disambiguation. In (Chiang, 2000),

sister adjunction is used to deal with the relatively flat PTB trees for efficient statistical

2http://www.isi.edu/~chiang/software/treep/treep.html
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parsing. In sister-adjuction, the root of the “sub etree3” can be added as a new daughter

to any other node of the “main etree4”.

The reason that all the work favors the lesser variety of LTAG elementary trees is that

as stated in (Xia, 2001) “such transformation conforms to the general linguistic principles

that guide the formation of handwritten TAGs” and “at least some of the dependencies are

crucial in parsing disambuiguation”. In other words, the lack of variety in LTAG derivation

tree extraction in literature work has a strong motivation from parsing. In fact, (Shen,

2004) attempted to relax the linguistic constraints and extract the LTAG derivation trees

nondeterministically using the expectation-maximization (EM) algorithm. However, the

attempt was unsuccessful in terms of its utility for parsing.

4.2.4 Our Initiative

Previous work in LTAG derivation tree extraction was mainly motivated by parsing. If

put it in a broader context by considering the SRL task, it would be interesting to explore

the utility of other ways of LTAG derivation tree extraction. Based on our previous work,

spinal-formed LTAG elementary trees are of more interest for SRL in terms of their sim-

plicity and utility to feature representation. So is the sister-adjunction operation, which

encodes the ambiguity of arguments and adjuncts that is a core aspect of the SRL task,

and leaves the disambiguation to SRL. Besides, our argument candidate collecting does

not depend on the local structure of elementary trees as in (Chen and Rambow, 2003).

Instead, we follow the same approach as we did in Chapter 3. For SRL, we expect that the

cost of generating larger LTAG elementary trees in a standard way will exceed the gain we

get from their usefulness.

As far as SRL is concerned, each predicate is one of the “most important words” in a

sentence, which means that there exists a phrase in the parse tree such that the predicate

indicates the aboutness of the phrase. The most important words in a sentence, based

on (Allen, 1994), are heads. Inspired by the fact that the predicate spine, when combined

with other features, has turned out to be a useful feature for SRL prediction in our system,

we would like to generate LTAG derivation trees using the head percolation rules that will

3The etree that is sister-adjoined to the other etree.
4The etree to which the sub etree is sister-adjoined.
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always give higher priority to predicates for head determination, which does not always

hold in Magerman-Collins head percolation table. Our experiments in this chapter will

show that above strategy is successful in our setting for the SRL task. In the following, we

will give more detail about how the derivation trees are generated based on the new head

percolation rules.

4.2.5 LTAG Derivation Tree Extraction for SRL

In our LTAG derivation tree extraction, we exploit only head competition to create am-

biguous LTAG derivations. For each node with a potential SRL we choose a daughter of

that node as a potential head. In the resulting derivations, all the etrees are in spinal form

and all sub etrees are attached to the main etree through sister adjunction.

For each predicate, we apply 3 heuristic head-percolation rules to generate 3 head-

annotated parse trees per predicate:

1. Magerman-Collins rules.

2. Same as Rule 1, but label all consecutive VP nodes as head from the predicate until

you see a non-VP node.

3. Same as Rule 1, but label all nodes as head from the predicate to the root of the

PTB tree.

For each head-annotated parse tree, different predicate etrees are extracted using the

algorithm given in (Chiang, 2000) that converts head-annotated parse trees into LTAG

derivations. For each predicate etree, we produce argument etrees which localize the node

that may receive a semantic role. Different argument etrees are created by exploiting head

competition ambiguity for the SRL node in the etree, plus different ways to project to a

root node that connects to the predicate etree. This process can produce multiple identical

etrees, of which only one copy is retained. When the number of intermediate etrees (which

are defined as etrees between predicate etree and argument etree in the LTAG derivation)

is less than 3, we also consider all the possible variants for intermediate etrees based on

the same strategy for generating argument etrees. One LTAG derivation is different from

another if the combination of predicate etree, argument etree, and intermediate etrees (if
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Figure 4.4: The latent derivation trees (di) extracted for predicate x and argument can-
didate NP in a parse tree fragment T . The extraction process works in the same fashion
for more deeply embedded predicates (resulting in more nodes on the path from predicate
to root node) and in cases where the argument candidate dominates any number of lexical
items wi. In contrast to (Chen and Rambow, 2003) argument nodes do not have to be the
root node of an etree.

any) is different. Algorithm 1 shows the pseudo-code that is used to generate the LTAG

derivation trees.

In our dataset on average we have ∼13000 derivation trees generated for each SRL

instance. Figure 4.4 shows a worked out example to illustrate the above latent derivation

tree generation process.

4.3 Latent Support Vector Machines (LSVMs)

Once we have a space of latent features and we are interested in learning an accurate set

of classifiers for the SRL task we can sum over the different latent derivations in order to

make a prediction using a log-linear model. This is potentially attractive but in this work

we were drawn to a different methodology for the use of latent features. We hypothesize

that for each SRL classification task, positive and negative examples of individual semantic
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Algorithm 1 LTAG derivation trees generation
1: for each predicate in the sentence do
2: generate the predicate elementary trees based on the 3 heuristic head-percolation

rules as listed previously, and remove duplicates if any
3: end for
4: for each generated predicate elementary tree do
5: for each target constituent (argument candidate) do
6: for each lexical item that is dominated by the target constituent do
7: take the lexical item as the anchor of the current argument elementary tree
8: for each node from the target constituent to the root of the parse tree do
9: take the node as the root of the current argument elementary tree

10: if the argument etree and the predicate etree are compatible (i.e. no such
node that belongs to both the predicate etree and the argument etree, and it
is a non-root node for both the predicate etree and the argument etree) then

11: if the number of the intermediate elementary trees between the predicate
etree and the argument etree is less than 3 then

12: for each possible intermediate etree (if it exists. Similar way to generate
it as to generate the argument etree) that is directly connected to the
predicate etree do

13: denote it as intermediate etree1
14: for each possible intermediate etree (if it exists. Similar way to gener-

ate it as to generate the argument etree) that is directly connected to
the argument etree do

15: denote it as intermediate etree2
16: a new LTAG derivation tree is generated based on a distinctive com-

bination of the predicate etree, the argument etree, and the inter-
mediate etree1, and the intermediate etree2 (In the combination,
intermediate etree1 and intermediate etree2 are optional.)

17: end for
18: end for
19: end if
20: end if
21: end for
22: end for
23: end for
24: end for
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roles can be reliably distinguished by possibly different latent LTAG features, and thus the

latent features can be used discriminatively using a max-margin SVM classifier that only

picks the most predictive features. Thus, in this work we explore the use of Latent SVMs

(LSVM), which is a relatively new methodology for discriminative training introduced

by (Felzenszwalb, McAllester, and Ramanan, 2008) for object detection in computer vision.

LSVMs are a generalization of classic SVMs to handle classification problems with latent

structures with the properties we described above.

4.3.1 Introduction

Let D = {〈xi, yi〉}n1 be a set of labeled examples where xi is an input and yi is its output

label. In classical SVMs, a weight vector w needs to be trained from D by optimizing the

following objective function,

arg min
w

λ

2
‖w‖2 +

n∑
i=1

max(0, 1− yiw · Φ(xi)) (4.1)

where Φ is a feature vector for representing the input x, and the second term is the hinge

loss. Each misclassification (when yiw · Φ(xi) < 1) incurs a penalty proportional to the

degree to which it violates the margin constraint.

In LSVM, we introduce an extra space of latent structures, and classify input instances

while simultaneously searching for a good latent structure. The score assigned to an input

x is then defined as,

fw(x) = max
h∈H(x)

w · Φ(x, h) (4.2)

where H is a set of latent structures. As in classical SVMs, the weight vector is trained by

solving an analogous optimization problem,

arg min
w

λ

2
‖w‖2 +

n∑
i=1

max(0, 1− yifw(xi)) (4.3)

The LSVM framework allows us to enrich input instances with those latent structures

which are most beneficial for the target task. Those latent annotations are preferred which

induce low training error (the second term above), and at the same time, lead to a low
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complexity classifier (the first term above). In other words, the training instances are

embedded into an appropriate extended feature space specific to the given classfication

task. If there is only one possible latent structure for each input (|H(x)| = 1), then LSVM

reduces to classical SVM.

4.3.2 Semi-convexity

...in fact, the great watershed in optimization isn’t between linearity and non-

linearity, but convexity and nonconvexity.

- R. Tyrrell Rockafellar, in SIAM Review, 1993

Convexity is an important property that allows even large sized optimization problems

to be solved efficiently and reliably (Boyd and Vandenberghe, 2004). SVMs have been

formulated as a convex optimization problem and have been widely used to solve many

applications with a large data setting (Cristianini and Shawe-Taylor, 2000). When we

generalize SVMs to LSVMs, we wish to preserve convexity. A proof for the convexity

of objective function in LSVM is described in (Felzenszwalb, McAllester, and Ramanan,

2008) as follows:

“Note that fw(x) in equation (4.2) is a maximum of functions each of which is linear

in w. Hence fw(x) is convex in w. This implies that the hinge loss max(0, 1− yifw(xi)) is

convex in w when yi = −1. This is, the loss function is convex in w for negative examples.

We call this property of the loss function semi-convexity.”

“Consider an LSVM where the latent domains H(xi) for the positive examples is re-

stricted to a single choice. The loss due to each positive example is now convex. Combined

with the semi-convexity property, equation (4.3) becomes convex in w.”

In fact, when the set of latent structures H(xi) is restricted to a single element set,

then LSVM becomes a regular SVM for which the convexity is satisfied.

4.3.3 Implementation: Coordinate Descent Algorithm

The description above implies a coordinate descent algorithm, alternating between opti-

mizing h for positive examples, and optimizing w. The search is guaranteed to arrive at a

local optimum in equation (4.3). Optimizing w with fixed structure for only the positive
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examples are not entirely straightforward, so Felzensawalb et al. (2008) implemented an

approximation, which fixes h for all examples. This results in an alternative coordinate

descent, iterating over the following two steps until convergence:

1. Fix w, find the max structure for each training example:

∀i : hi ← arg max
h∈H(xi)

w · Φ(xi, h)

2. Using features derived from h[1...n], find a new parameter w, which minimizes the

standard SVM classification objective

λ‖w‖2 +
n∑

i=1

max(0, 1− yi · w · Φ(xi, h))

The above algorithm can be easily implemented, using the current weights to find the

max latent structure h, turning the structure into labeled feature vectors, and training a

classic SVM to classify the vectors. The resulting parameters w provide weights for the

next round of training.

In our case the space of latent features are extracted from a structured source, namely

each latent LTAG derivation tree. However, the derivation tree is mapped into an unstruc-

tured set of latent features that are used in a linear kernel within the LSVM framework.

More structured latent variables can also be used in LSVMs which need more sophisticated

training algorithms (Yu and Joachims, 2009; Wang and Mori, 2009).

4.3.4 Previous Work

As mentioned, LSVM has been successfully applied to the task of object detection in

images (Felzenszwalb, McAllester, and Ramanan, 2008).

Similar idea was adopted for NLP in (Cherry and Quirk, 2008). The primary goal of

their work was to construct a language model by training a classifier to judge the input

sentences. In (Cherry and Quirk, 2008), parse trees are taken as latent structures for the

input sentences and a parser-classifier is trained with an alternative objective function so

that “good” sentences receive high-scoring trees, while “bad” sentences do not. The sign of

the score will be used as a class label to reflect the sentence quality. This method has been

shown in (Cherry and Quirk, 2008) to significantly outperform tri-gram based models.
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Our work pioneers the application of LSVM to the SRL task. Following are the details

of this application.

4.4 Semantic Role Labeling with LSVM

We construct a semantic role labeling system by using a LSVM where the hidden features

are extracted from multiple LTAG derivation trees. Our model considers the LTAG deriva-

tion trees as latent structures underlying the Penn Treebank (PTB) syntactic parse trees

and tries to learn predictive features that exist in these latent structures for SRL instances.

Multiple derivation trees can provide an enriched feature space for the SRL task; if learned

properly, the LTAG features from various trees are expected to improve SRL performance.

4.4.1 SRL Instance Generation

We use the commonly used architecture (as shown in Figure 1.1) for building our SRL

system. It consists of four stages: pruning, argument identification, argument clas-

sification and finally optionally we perform a multi-class classification by breaking ties

between individual argument classifiers based on their prediction score. Following the same

strategy as described in Chapter 3, in the pruning stage we only allow nodes that are sisters

to nodes on the path from the predicate to the root in the parse tree. We then generate

the SRL training instances (positive and negative) from the pruned PTB trees. As in most

other SRL systems, this instance generation method makes an independence assumption

among SRL instances extracted from the same sentence. The final chosen LTAG derivation

may vary across SRL instances that are extracted from the same sentence. Table 4.1 shows

the number of positive and negative instances that are generated from our training data

for LSVM training.

4.4.2 LSVM Training

For SRL identification we train a binary classifier and for SRL classification we use the

standard “one-vs-all” scheme. For each given training point 〈xi, yi〉, xi is a constituent

from the derived tree, and yi is the output label. For identification, y indicates whether

the current constituent that dominates a span is an argument or not. For Ak classification
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Task Positive Examples Negative Examples
ID 219,556 349,629
A0 60,351 159,205
A1 80,486 139,070
A2 17,191 202,365
A3 3,005 218,551
A4 2,461 217,095
AM 55,994 163,562

Table 4.1: The number of positive and negative training examples for the identification
and classification tasks.

task, y indicates whether the current constituent, which has been already identified as an

argument, has the Ak semantic role.

For LSVM training, we repeatedly alternate between the following steps mentioned in

Section 4.3:

• Updating the latent derivation trees based on the current weights, and

• Learning the weights using a standard SVM training method based on the updated

latent annotations.

For SVM training in the second step, we use the freely available SvmSgd package5. It is

a straightforward implementation of stochastic gradient descent (SGD) which is an online

learning algorithm for SVMs. The SGD algorithm selects a random training example at

time t, and perform the following weight updates:

w(t+1) = w(t) − η∇F (t)(w(t))

where F (t)(w) is the objective function specialized for the example chosen at time t, and

η is the learning rate. The gradient ∇F (t)(w) for our case is{
λw − y(t)Φ(x(t), h(t)) if y(t)w · Φ(x(t), h(t)) < 1

λw otherwise

We use online learning for two reasons. Firstly, we have a very large dataset (the number of

sentences in the PropBank times the number of predicates times the number of candidate

5http://leon.bottou.org/projects/sgd
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nodes per predicate). We also have about 1.2 million features that can be potentially active

at any given time. Thus a full quadratic programming search is expensive even for one run

of SVM training. Secondly in cases of large datasets with sparse features, online learning

can outperform batch learning (Liang and Klein, 2009). Our experience was similar: in

preliminary experiments when using SVM-light (Joachims, 1999) for training the SVM in

each iteration of our LSVM method, the performance was degraded compared to the use

of SGD for training the same SVM.

To be more specific, in contrast to batch learning, where gradients are accumulated over

all samples of the data set for the same weight setting before a gradient step is performed,

a tiny gradient step is done here after each observations has been processed. For every

epoch6 the order in which the samples of the training data set are processed is randomized.

A detailed discussion of the advantages of stochastic gradient descent over batch learning

can be found in (Bottou and LeCun, 2003). More empirical as well as theoretical results

concerning the stochastic gradient descent algorithm can also be found in (Bottou and

LeCun, 2003).

4.4.3 Features

Table 4.2 lists the features we proposed that are extracted from the LTAG derivations,

which overlap significantly with the ones used in Chapter 3 but we add n-gram features on

etree spines. Our LSVM based SRL system (LSVM-SRL) uses features from both Table 3.1

and Table 4.2.

6One complete pass of the algorithm through all training samples is called epoch.
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Table 4.2: Features from latent LTAG derivation trees used in our system. Head related

features in Table 3.1 will be determined by the current LTAG derivation tree when they are

used with the features in this table.

• pred etree (plus POS → voice)

• arg etree (plus POS → NE if any)

• reln of arg etree to pred etree: {child, parent, sibling, grandparent, uncle, other}

• distance between arg etree and pred etree: {0, 1, 2}

• label/index of attachment node between pred etree and parent (index of root = 0) 1

• position1 of pred etree to its parent etree

• intermediate etree #1: predicate’s parent etree, POS and lemma of anchor 2

• label/index of attachment point of arg etree and its parent OR 3

• label/index of attachment point of arg etree and its child 4

• intermediate etree #2: arg’s parent etree, POS and lemma of anchor OR 5

• arg’s child etree, POS and lemma of anchor 4

• position2 of arg etree to its parent

• label of attachment between pred’s parent etree and arg’s parent etree 6

• position3 of pred’s parent etree to arg’s parent etree

• position1 + position2 + position3 + relation

• position1 + position2 + position3 + distance

• relation + distance

• upto 9 trigrams of arg etree spine (from the head)

• upto 9 trigrams of pred etree spine (from the pred)

when relation is:

1 parent or sibling or grandparent or uncle.

2 sibling or grandparent or uncle.

3 child or sibling or uncle.

4 grandparent.

5 sibling or uncle.

6 uncle.
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4.5 Experiments

4.5.1 Experimental Setup

Similar to Chapter 3, training data (PropBank Sections 02-21), development set data

(Section 24) and test data (Section 23) are taken from CoNLL-2005 shared task data7

All the necessary annotation information such as predicates, parse trees8 as well as named

entity labels are part of the data. Our evaluation is done for identification and {A0, A1, A2,

A3, A4, AM} using measures of Precision/Recall/F-score. We follow the same evaluation

criteria as used in Chapter 3. For more details about evaluation please refer to Section 3.4.1

of Chapter 3.

4.5.2 SvmSgd Parameters

A proper adoption of learning rate is important to help the stochastic gradient descent

converge faster. In SvmSgd, the learning rate has the form 1/λ(t+ t0) where

• λ is the regularization constant that has default value 1e− 4 in the implementation;

• t is the index of the current example;

• the constant t0 is determined heuristically to ensure that the initial update is compa-

rable to the expected size of the weights. It has default value 0 in the implementation;

At each point in the training process, the weight update continues through a fixed

number of epochs (experimentally set to 5 in the implementation). We run the package

with all the above parameters for our experiments.

It must be mentioned is that the SvmSgd is implemented as a primal optimizer for

a linear SVM, which indicates that the mapping from the the input space to the feature

space is linear. In this sense, it is straightforward to obtain the updated weights after each

training point is explored. Section 4.4.2 has given a detailed discussion.

7http://www.lsi.upc.es/∼srlconll/.
8from Charniak’s parser (Charniak, 2000)
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4.5.3 Baselines

We have built two baseline systems to compare the relative utility of the LSVM for SRL:

• Baseline1 is an SRL system that uses the features in Table 3.1 only. No LTAG

derivation is introduced for each SRL instance.

• Baseline2 is an SRL system that uses the features in Table 3.1 and Table 4.2.

The LTAG derivation that is introduced for each SRL instance is generated using

Magerman-Collins head percolation rules and sister-adjunction operation. This base-

line replicates the SRL method in Chapter 3.

For a fair comparison, we use SGD as the trainer for the two baseline systems.

4.5.4 Results

The initial setting of our LSVM-based SRL (LSVM-SRL) is the same as Baseline2: the

weights trained from Baseline2 are the initial weights for LSVM training. Then we alternate

between learning/updating the weights using SGD and selecting the best latent derivation

based on the updated weights. Table 4.3 shows the Precision/Recall/F-score of LSVM-

SRL and the baselines for each individual argument prediction. Compared to the two

baselines, LSVM improves the SRL F-scores significantly in all cases. Even for A2, for which

Baseline2 failed to show improvements, LSVM outperforms the purely phrase-structure

based baseline (Baseline1). The precision obtained by each LSVM binary classifier for

each argument type is near perfect.

Identification and Classification Results

Figure 4.5 shows the learning curve evaluated on test data across the iterations of LSVM

training. The largest improvement happens in the iteration 1 where the weights are updated

for the first time; the performance levels off after a few iterations. A similar trend has been

observed in the development set.

Table 4.4 shows the results of LSVM-SRL using the CoNLL-2005 evaluation program

on the CoNLL test data for the given set of argument types. We compare our scores for A0,

A1, A2, A3, A4 with the system that has the best reported results on the CoNLL-2005
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class Baseline1 (p/r/f)% Baseline2 (p/r/f)% LSVM-SRL (p/r/f)% stopping point
ID 87.71 84.86 86.26 89.00 85.21 87.01 98.96 86.38 92.74 12
A0 86.46 85.30 85.87 87.87 87.50 87.68 99.26 90.31 94.57 18
A1 78.70 83.72 81.13 84.56 82.16 83.34 99.69 82.00 89.99 22
A2 85.04 73.91 79.09 83.00 74.86 78.72 99.26 73.35 84.36 26
A3 77.04 65.82 71.00 83.46 67.09 74.39 98.48 76.47 86.09 18
A4 77.42 79.12 78.26 90.14 70.33 79.01 98.77 79.21 87.91 20
AM 80.85 81.39 81.11 82.10 81.87 81.99 97.73 85.31 91.10 22

Table 4.3: Results for each individual binary classifier comparing Latent SVM with Base-
line1, Baseline2 for the argument identification and classification tasks. The stopping point
was determined based on accuracy on the development set.

shared task dataset (Toutanova, Haghighi, and Manning, 2008). We also compare with

the best reported scores from various systems on each argument type. For A0, A1, A2,

A3, LSVM-SRL gives the best precision/recall/f-scores by a large margin. However, for

A4, it reports the lowest scores. One possible reason is that the prediction of A4 is not as

confident compared to classifiers for other argument types.

We also evaluated our LSVM-SRL on the multi-class SRL classification task, where

the entire sequence of predictions for the given argument set is examined. In terms of the

argument set, we compare against (Toutanova, Haghighi, and Manning, 2008)9 who obtain

an f-score of 82.5% while we obtain (p/r/f%): 94.86/82.39/88.2.

Label Our system (p/r/f)% Toutanova et al. (2008) CoNLL-2005 best scores per label

A0 98.77 92.45 95.51 88.37 88.91 88.64 88.32 88.30 88.31 (Haghighi et al., 2005)
A1 92.00 79.09 85.06 81.50 81.27 81.38 82.25 77.69 79.91 (Punyakanok et al., 2005)
A2 98.91 73.24 84.16 73.44 68.74 71.01 72.55 68.11 70.26 (Haghighi et al., 2005)
A3 64.65 73.99 69.00 75.00 55.49 63.79 76.38 56.07 64.67 (Màrquez et al., 2005)
A4 25.81 78.43 38.83 74.74 69.61 72.08 83.91 71.57 77.25 (Punyakanok et al., 2005)

Table 4.4: Comparison (Precision/Recall/F-score%) of LSVM-SRL, the system having the
best performance on the CoNLL-2005 shared task (Toutanova, Haghighi, and Manning,
2008), and various other papers that report the best score for each individual label. To the
best of our knowledge these are the state of the art accuracies for individual labels on this
dataset.

9There are some caveats to this comparison. They use PropBank data and top-10 parse trees from
Charniak parser (2000) and we use CoNLL 2005 data. They predict A5 arguments while we do not, but
there are only 5 instances in the test set.
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Figure 4.5: F-score of identification and classification tasks on test data for each iteration
of LSVM.

4.5.5 Analysis

To better understand the behavior of LSVMs, we analyse various aspects of the LSVM-SRL

algorithm and experimental results.

In each training iteration LSVM picks the argmax latent LTAG derivation. Are

the latent derivation trees stabilized during the LSVM learning iterations? In

each group of the two bars in Figure 4.6, the first bar shows the percentage of the instances

for which the argmax derivation tree has not been observed in all previous iterations, and

the second bar plots the percentage of the instances in the training data for which the

latent derivation tree is new compared to the immediately previous iteration. The model

converges pretty quickly to its best latent annotation for the training data. For over 90%

of the instances the derivation trees are changed in the first iteration, which is a drastic

departure from the initial derivation trees (from Baseline2). The tendency to pick unseen

derivation trees exists throughout the learning process, although it drops significantly after

a few iterations.
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Figure 4.6: For each LSVM iteration in the identification task, the percentage of the
training examples that have derivation trees that are different from the previous iteration
and the percentage of the training examples that have derivation trees that have not been
observed in all previous iterations.

Does LSVM training effectively minimize the complexity of the learned model

by capturing feature sparsity? Each newly-selected previously unseen derivation tree

(in Figure 4.6) brings a set of new active features10 into the model. Although new active

features are added constantly to the model, Figure 4.7 shows that the total number of

active features decreases drastically during the first few learning iterations, and then sta-

bilizes. In fact the model has picked a small set of features (8K features from the pool of

1,242,869 all possible features) having strong predictions for each individual task. Figure

4.8 shows the average entropy of conditional probability of labels given features for the A1

classification task. The reduction of average entropy confirms that LSVM picks highly dis-

criminative features. We have observed similar trend for other classification tasks, except

the identification task for which the combination of several features seems to be necessary

for making a good prediction.

10Active features are those which have non-zero values in the learned weight vector.
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Figure 4.7: Number of active features during the iteration of LSVM for different tasks.
These curves for the other classification tasks are similar to that of A0.

Does the initialization of the weight vector in LSVM matter? In our main ex-

periments we initialize the weights based on SVM training using linguistically plausible

Magerman-Collins head rules. To compare against this initialization, for each training

instance, we randomly select a derivation tree from its space of latent derivation trees,

and train the LSVM from this random initial condition. The results show that proper

initialization matters a lot. For example, in the A0 classification task, we have observed

that p/r/f% is 84.54±8.00/86.44±2.12/85.33±4.49 over five independent runs. This is far bet-

ter than that of random initial weights 71.15±.79/86.11±.29/77.92±.36 (mainly due to the

precision), but less than the performance of our best system reported in Table 4.3.

4.5.6 Weight updates in Training Process

As we observed before, the selected derivation tree features tend consolidate towards a

small stable set of features across LSVM iterations. In this part, we try to gain a quick

intuition through the observation of weight updates across the training process. Due to the
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Figure 4.8: For each feature f , we compute the entropy of its predictive distribution
(

C+
f

C+
f +C−f

,
C−f

C+
f +C−f

) where C+
f / C−f are the frequencies of f in the positive / negative training

instances. The y-axis is weighted average of the entropy over active features; where weights
are proportional to the feature frequencies.

huge number of active features, it is infeasible to give an overview of the weight updates for

all or even part of those features. Plus it is difficult to track the behavior of a linear model

by looking at individual weights, since the final result is a dot product of individuals.

However, we can get a first approximation of feature value by looking at the way that

the weights change over the training iterations. Therefore, we start our observation by

first picking an example whose label was initially incorrectly predicted before applying

LSVM. See the example in Figure 4.9 where do is the predicate and NP that dominates

the program is the candidate constituent; and where the program plays as semantic role

“A1” for the predicate do. To avoid a busy figure we select 9 of them as representatives with

the hope to find the smart updates on salient features. The selection of the representative

features is based on the trend of their weight updates as the number of iterations increases.

For example, in Figure 4.10, feature#114411 and feature#193 both have weight 0 in the

beginning. With subsequent iterations, weight of feature#1144 increases while weight of

feature #193 decreases. Similar trend is observed for feature#428 and feature#119, which

11The numbers we use here are just an easy shorthand for features in the feature pool.
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Figure 4.9: Tree fragment of a training example

both have non-zero initial weights. Feature#24 has an initial positive weight that becomes

negative with subsequent iterations. The opposite is true for feature#181. For interest, we

also select a tri-gram feature of predicate spine valued NULL>NULL>NULL. Feature#17,

Feature#18, Feature#19 are such features. Figure 4.10 shows the updating process of these

features over 50 iterations of training.

By looking up the features in the feature pool, we found that it is hard to tell if the

feature that has an increasing weight is more salient than the feature that has a decreasing

weight. For example, feature#1144 has an increasing weight, especially in the first 20

iterations. The feature is VB>VP>VP, one of the tri-grams of the current predicate

spine. Feature#181 denotes the voice of the current predicate, which is 0 in this case.

Feature#119 is the LCA (refer to Table 3.1) feature which is NP>NP. Feature#17, that

has value NULL>NULL>NULL (one of the tri-grams of the predicate spine), has also

experienced dramatic weight updates, especially in the first few rounds.
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Figure 4.10: Snapshot of weight updating process across 50 iterations for 9 sample features
from a training example.

Based on the above observation, it is hard to give a specific example to illustrate how

well the LSVM method works for feature weight updates. However, we would say that the

method works for weight updating in that the linear combination of the updated weights,

if not a single updated weight, gives a great improvement to the system performance.

4.6 Conclusion and Future Work

In this chapter, we generalized the work in Chapter 3 and proposed to apply a novel learning

framework, latent support vector machines (LSVMs), to the SRL task with multiple LTAG

derivation trees. First we treated the LTAG derivation trees as latent variables, through
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which we provided an enriched feature space for the SRL task. To solve the SRL task

with latent structures, we adopted LSVM for each binary classification scenario and an

overall improvement was obtained. We recovered a huge number of latent LTAG derivation

trees by enumerating the combinations of predicate elementary trees, argument elementary

trees and intermediate elementary trees. We used SvmSgd package, a straightforward

implementation of online gradient descent algorithm, as the training tool in each LSVM

iteration. The method has shown great advantage in improving the system performance

over the two baseline systems.

We presented the experimental results and analysis on the results. In addition, we used

an example to observe how the feature vectors are updated over the LSVM iterations in

order to find the salient features introduced by the latent structures.

As far as the related work is concerned, (Vickrey and Koller, 2008) is the only other

work (that we know of) that uses latent features for SRL. They use hand-written sentence

simplification rules and search for the most useful set of simplifications that can improve

training error based on a log-linear model. Their model sums over the set of possible

simplifications in contrast to our LSVM approach. In terms of SRL results, we outperform

them by a big margin on the CoNLL 2005 dataset. In future work, we would like to explore

our approach in the probabilistic setting using log-linear models and marginalizing out the

latent variables.

We believe that our success in applying LSVM to SRL has provided useful evidence to

the NLP research community for the general applicability of LSVM to complex and diverse

NLP tasks.



Chapter 5

SRL for Biomedical Relationship

Extraction

In this chapter, we present our work of applying SRL related features to a real-world infor-

mation retrieval task. Specifically, we proposed a ternary relationship extraction method

primarily based on the rich syntactic information that has been used for the SRL task. We

extract PROTEIN-ORGANISM-LOCATION relations from the text of biomedical articles

to facilitate the biologists to generate the annotated corpus. Different kernel functions are

used with an SVM learner to integrate two sources of information from syntactic parse

trees: (i) specific syntactic features extracted along the path between entities, and (ii) fea-

tures from entire trees using a tree kernel. We use the large number of syntactic features

that have been shown to be useful for Semantic Role Labeling (SRL) and apply them to

the relation extraction task. Our experiments show that the use of rich syntactic features

significantly improves performance over the system using only shallow word-based features.

5.1 Introduction

A biomedical functional relation (biomedical relation for short) states interactions among

biomedical substances. For instance, the PROTEIN-ORGANISM-LOCATION (POL) re-

lation that we study in this work presents information about where a PROTEIN is located

in an ORGANISM, thus providing valuable clue to the biological function of the PROTEIN

95
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and helping to identify suitable drug, vaccine and diagnostic targets. Figure 5.1 illustrates

possible locations of proteins in Gram+ and Gram-, two straints of bacterium.

cytoplasm cytoplasm 

Gram+ Gram- 

cytoplasmic 
membrane 

cell wall 

periplasm 

outer 
membrane secreted 

inner 
membrane 

Figure 5.1: Illustration of bacterial locations

Previous work in biomedical relation extraction task (Sekimizu, Park, and Tsujii, 1998;

Blaschke et al., 1999; Feldman et al., 2002) suggested the use of predicate-argument struc-

ture by taking verbs as the center of relation expression. In contrast, in this work we di-

rectly link protein named entities to their locations; an approach was proposed in (Claudio,

Lavelli, and Romano, 2006) that solely considers the shallow semantic features extracted

from sentences.

For relation extraction in the newswire domain, syntactic features have been used in a

generative model (Miller et al., 2000) and in a discriminative log-linear model (Kambhatla,

2004). In comparison, we use a much larger set of syntactic features extracted from parse

trees, many of which have been shown useful in semantic role labeling. Also, kernel-based

methods have been used for relation extraction (Zelenko, Aone, and Richardella, 2003;

Culotta and Sorensen, 2004; Bunescu and Mooney, 2005) on various syntactic representa-

tions, such as dependency trees or constituency-based parse trees. In contrast we explore a

much wider variety of syntactic features in this work. To benefit from both views, a com-

posite kernel (Zhang et al., 2006) integrates the flat features from entities and structured

features from parse trees. In our work, we also combine a linear kernel with a tree kernel

for improved performance.
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Figure 5.2: An example of POL ternary relation in a parse tree

5.2 SRL Features for Information Extraction

Figure 5.2 shows one example illustrating the ternary relation we are identifying. In this

example, “Exoenzyme S” is a PROTEIN name, “extracellular” a LOCATION name and

“Pseudomonas aeruginosa” an ORGANISM name. Our task is to determine whether there

exists a ”PROTEIN-ORGANISM-LOCATION” relation among these three named entities

(NEs).

To simplify the problem, we first reduce the POL ternary relation extraction problem

into two binary relation extraction problems. Specifically, we split the POL ternary relation

into binary relation as follows:

• PO: PROTEIN and ORGANISM

• PL: PROTEIN and LOCATION

Notice that the ORGANISM-LOCATION relation is ignored because it is irrelevant to

PROTEIN and less meaningful than PO and PL relations. Based on this simplification,

and following the idea of semantic role labeling, we take the PROTEIN name in the role of

the predicate (verb) and the ORGANISM/LOCATION name as its argument candidates

in question. Then the problem of identifying the binary relations of PO and PL has been

reduced to the problem of argument classification problem given the predicate and the

argument candidates. The reason that we pick PROTEIN names as predicates is that we
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assume PROTEIN names play a more central role in linking the binary relations to the

final ternary relations.

Compared to a corpus for the standard SRL task, there are some differences: first is

the relative position of PROTEIN names and ORGANISM/LOCATION names. Unlike the

case in SRL, where arguments locate either before or after the predicate, in this application

it is possible that one named entity is embedded in another. A second difference is that a

predicate in SRL scenario typically consists of only one word; here a PROTEIN name can

contain up to 8 words.

Note that we do not use PropBank data in our model at all. All of our training data

and test data is annotated by domain expert biologists and parsed by Charniak-Johnson’s

parser (released in 2006). When there is a misalignment between the named entity and the

constituent in the parse tree, we insert a new NP parent node for the named entity.

5.3 System Description

Figure 5.3: High-level system architecture

Figure 5.3 shows the system overview. The input to our system consists of titles and

abstracts that are extracted from MEDLINE1 records. These extracted sentences have

been annotated with the NE information (PROTEIN, ORGANISM and LOCATION).

Syntactic Annotator inserts the head information to the parse trees by using the Magerman-

Collins head percolation rules. The main component of the system is our SRL-based

1http://medline.cos.com/
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• each word and its Part-of-Speech (POS) tag of the PRO name
• head word (hw) and its POS of the PRO name
• subcategorization that records the immediate structure that expands from the
PRO name. Non-PRO daughters will be eliminated
• POS of parent node of the PRO name
• hw and its POS of the parent node of the PRO name
• each word and its POS of the ORG name (in the case of “PO ” relation extraction).
• hw and its POS of the ORG name
• POS of parent node of the ORG name
• hw and its POS of the parent node of the ORG name
• POS of the word immediately before/after the ORG name
• punctuation immediately before/after the ORG name
• feature combinations: hw of PRO name hw of ORG name, hw of PRO name POS
of hw of ORG name, POS of hw of PRO name POS of hw of ORG name
• path from PRO name to ORG name and the length of the path
• trigrams of the path. We consider up to 9 trigrams
• lowest common ancestor node of the PRO name and the ORG name along the
path
• LCA (Lowest Common Ancestor) path that is from the ORG name to its lowest
common ancestor with PRO name
• relative position of PRO name and ORG name. In parse trees, we consider 4 types
of positions that ORGs are relative to PROs: before, after, inside, other

Table 5.1: Features adopted from the SRL task. PRO: PROTEIN; ORG: ORGANISM

relation extraction module, where we first manually extract features along the path from

the PROTEIN name to the ORGANISM/LOCATION name and then train a binary SVM

classifier for the binary relation extraction. Finally, we fuse the extracted binary relations

to the ternary relations and obtain the final results. In contrast with this discriminative

model, a statistical parsing based generative model (Shi, Sarkar, and Popowich, 2007) has

been built up for the same task where the named-entities and their relations are extracted

together. Since our final goal is to facilitate the biologists to generate the annotated corpus,

we plan to take the annotated named entities from the generative model as our input.

As a discriminative feature-based relation extraction system, identification of important

features is crucial to the task. Table 5.1 and Table 5.2 listed the features that are used in

the system.
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• subcategorization that records the immediate structure that expands from the ORG name.
Non-ORG daughters will be eliminated
• if there is an VP node along the path as ancestor of the PRO name
• if there is an VP node as sibling of the PRO name
• if there is an VP node along the path as ancestor of the ORG name
• if there is an VP node as sibling of the ORG name
• path from PRO name to LCA and the path length (L1)
• path from ORG name to LCA and the path length (L2)
• combination of L1 and L2
• sibling relation of PRO and ORG
• distance between PRO name and ORG name in the sentence. (3 valued: 0 if nw
(number of words) = 0; 1 if 0 < nw <= 5; 2 if nw > 5)
• combination of distance and sibling relation

Table 5.2: New features used in the SRL-based relation extraction system.

5.4 Experiments and Evaluation

5.4.1 Data Set

Our work is part of collaboration with molecular biologist to build up a POL named

entity/relation annotated corpus from scratch. As in a real scenario, our experimental

data set is derived from a small expert-curated corpus, in which the POL relations and

relevant PROTEIN, ORGANISM and LOCATION NEs are labeled. It contains around

150k words, 565 relation instances for POL, 371 for PO and 431 for PL. The small size of

our dataset is a common problem of many other bio-medical information extraction tasks2.

5.4.2 Systems and Experimental Results

We built several models to compare the relative utility of the various types of rich syntactic

features we can exploit for relation extraction. For various representations, such as feature

vectors, trees and their combinations, we applied different kernels in a Support Vector

Machine (SVM) learner. Specifically, we use Joachims’ SVM-light3 with default linear

2To ensure significance of our results, we do 5-fold cross validation in all our experiments.
3http://svmlight.joachims.org/
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Method PL PO POL
Measure P R F A P R F A P R F A
Baseline1 98.1 61.0 75.3 60.6 88.4 59.7 71.3 58.5 57.1 90.9 70.1 56.3
Baseline2 61.9 100.0 76.5 61.9 48.8 100.0 65.6 48.9 59.8 100.0 74.8 59.8

PAK 71.0 71.0 71.0 64.6 69.0 66.7 67.8 61.8 66.0 69.9 67.9 62.6
SRL 72.9 77.1 74.9 70.3 66.0 71.0 68.4 64.5 70.6 67.5 69.0 65.8
TRK 69.8 81.6 75.3 72.0 64.2 84.1 72.8 72.0 79.6 66.2 72.3 71.3

TRK+SRL 74.9 79.4 77.1 72.8 73.9 78.1 75.9 72.6 75.3 74.5 74.9 71.8

Table 5.3: Percent scores of Precision/Recall/F-score/Accuracy for identifying PL, PO and
POL relations.

kernel to feature vectors and Moschetti’s SVM-light-TK-1.24 with the default tree kernel.

The models are:

Baseline1 is a purely word-based system, where the features consist of the unigrams and

bigrams between the PROTEIN name and the ORGANISM/LOCATION names inclu-

sively.

Baseline2 is a naive approach that assumes that any example containing PROTEIN,

LOCATION names has the PL relation. The same assumption is made for PO and POL

relations.

PAK system uses predicate-argument structure kernel (PAK) based method. PAK was

defined in (Moschitti, 2004) and only considers the path from the predicate to the target

argument, which in our setting is the path from the PROTEIN to the ORGANISM or

LOCATION names.5

SRL is an SRL system which is adapted to use our new feature set. A default linear kernel

is applied with SVM learning.

TRK system is similar to the PAK system except that the input trees are entire parse

trees instead of PAK paths.

TRK+SRL combines full parse trees and manually extracted features and uses the kernel

combination.

4http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-software/Tree-Kernel.htm
5We also experimented with PAK+SRL but since the results were similar to using only SRL, we do

not discuss it here.
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5.4.3 Fusion of Binary relations

We predict the POL ternary relation by fusing PL and PO binary relations if they belong

to the same sentence and have the same PROTEIN NE. The prediction is made by the sum

of confidence scores (produced by the SVM) of the PL and PO relations. This is similar

to the postprocessing step in SRL task that the semantic roles assigned to the arguments

have to realize a legal final semantic frame for the given predicate.

5.4.4 Discussion

Table 5.3 shows the results we obtained when running on our data set with 5-fold cross

validation. We evaluated the system performance for ternary relation extraction as well

as the extraction of the two binary relations. The total accuracy of finding the correct

ternary relation in the test data using rich syntactic features is 71.8% and we can see that

it significantly outperforms shallow word-based features which obtains 56.3% accuracy6.

By comparing the PAK model and SRL model, we observe that with the same path, a

system based on manually extracted features boosts precision and accuracy and therefore

obtains an overall better performance than the PAK model. In contrast to the SRL

model for both PL and PO relation extraction, the TRK model obtains lower precision

but higher recall. This means that the sub-structures considered by TRK are good in

discriminating the instances but may not suffice. The addition of SRL features boosts the

overall performance of TRK system to the best overall F-score by moderating precision

and recall.

The gaps between models reinforce the fact that the path between named entities in

the parse tree is very important for the relation extraction task. In particular, it illustrates

that along this path, SRL-based syntactic features are discriminative as well as necessary

for this task. In addition, our experiments showed that some features outside this path

can contribute to the task to some extent.

6We highlight precision and accuracy of finding the ternary relations in text, i.e. distinguishing between
positive and negative examples of relations as these are the most important figures for the domain expert
biologists.



Chapter 6

Conclusions and Future Work

Semantic role labeling (SRL) has been attracting much attention in the research com-

munity as an important intermediate step in many important NLP applications. From

the information extraction point of view, semantic role labeling can also be taken as an

instance of “multi-way relationships” extraction problem where the relation between the

given predicate and each of its arguments has to be identified and labeled. Lexicalized Tree

Adjoining Grammar (LTAG), with its property of Extended Domain of Locality (EDL), is

particularly suited to the SRL task. Initially motivated by the connection between SRL

and LTAG, we started the effort of applying LTAG to the SRL task.

Previous work had shown the limitation of applying LTAG elementary trees to SRL

that are extracted from using the standard way. In our work, we first applied the LTAG

derivation trees that are produced by the immediately available LTAG parser to the SRL

task. We also took advantage of the flexibility of defining LTAG elementary trees and

mainly used the sister-adjunction operation to combine the generated LTAG elementary

trees. The most challenging task of disambiguating complements and adjuncts in LTAG

extraction has been bypassed and left to to be resolved by a probabilistic model of SRL. In

this way the EDL property is used implicitly and could be made more favorable to SRL.

Our experimental results have shown the positive impact of using LTAG features for the

SRL task, and they were shown to be distinct and more accurate than tree kernels. As

an extension, we treated multiple LTAG derivation trees as latent structures of a Penn

Treebank tree and used latent support vector machines (LSVMs) for the SRL task with

103
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the latent LTAG structures, which improves the SRL system performance significantly. As

a summary, we have accomplished the following work in this research:

• We first explored a novel LTAG formalism – LTAG-spinal and its treebank for the

SRL task and demonstrated the utility of this new resource for SRL. Our work has

also contributed to the further development of LTAG-spinal resource.

• We proposed the use of LTAG derivation trees as an important additional source of

features for the SRL task. These features, after combined with the standard features,

can improve SRL system performance on a statistically significant level.

• As a generalization of the previous work, we recovered multiple LTAG derivations as

latent structures of the given Penn Treebank parse tree and applied a novel learning

framework - Latent Support Vector Machines (LSVMs) with a stochastic gradient

descent (SGD) algorithm to SRL. This method significantly outperforms the state-

of-the-art SRL systems. LSVMs are well suited for the SRL task: binary LSVM

classifiers for core argument classification obtain near perfect precision.

• To implement the idea of treating SRL as one of the “multi-way relationships” ex-

traction problems, we proposed and applied SRL framework and features for ternary

relation extraction from the biomedical domain and obtained a better result superior

to the use of word-level features.

In the future, we would like:

• To explore our approach to the current LSVM-based SRL system in the probabilistic

setting using log-linear models and marginalizing out the latent variables.

• To explore the general application of LSVM to other NLP tasks. The latent SVM

could potentially become a powerful tool for many NLP tasks. It applies whenever a

hidden structure would be useful in a classification task.

• SRL can be viewed as a general relation extraction problem. We believe that the

entire SRL framework (such as the architecture, and the features) can be more widely

applied to various applications that involve relation extraction.
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Abeillé, Anne and Owen Rambow, editors. 2001. Tree adjoining grammars: formalisms,
linguistic analysis and processing. Center for the Study of Language and Information.
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