

VOTING BETWEEN MULTIPLE DATA

REPRESENTATIONS FOR TEXT CHUNKING
by

Hong Shen

B.Eng. Shanghai University 1995
B.Sc. The University of Manitoba 2002

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

© Hong Shen 2004

SIMON FRASER UNIVERSITY

June 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

PSimpson
Note that with Comments visible, the margins are adjusted so that they may be printed. Click off the View/Markup in order to restore margins.

PSimpson
Adjust your title so that there is more space at the top of your page than on the bottom. This makes your page look more “grounded.

PSimpson
Larger, bold Upper and Lower case may be used instead of all capital letters.

PSimpson

Delete the wording not required in your case.
This is not just a synonym choice. Which of these you undertake for the requirements of your degree is part of a formal agreement between you and your program/department. A given program may offer only one, but others may offer a choice. Know and ensure that you have the correct designation here and on the approval page.

PSimpson
Ensure you have this accurately.

PSimpson
This needs to be precisely correct. Delete the terms not required for your faculty or school or department.See the SFU Calendar and your Graduate Secretary, especially if you are in a specialized program.

PSimpson
Copyright symbol required. See “Insert/Symbol” and search for the “C” symbol, or copy/paste this one

PSimpson
Always in Capital letters.

PSimpson
A copyright statement is required. If you wish to vary this more generously, such as stating “No rights reserved”, please contact the Assistant for Theses for suitable phrasing.

APPROVAL

Name: Hong Shen

Degree: Master of Science (Computing Science)

Title of Project:
Voting Between Multiple Data Representations for
Text Chunking

Examining Committee:

Chair: Dr. Richard (Hao) Zhang
Assistant Professor of Computing Science

 Dr. Anoop Sarkar
Senior Supervisor
Assistant Professor of Computing Science

 Dr. Martin Ester
Supervisor
Associate Professor of Computing Science

 Dr. Fred Popowich
Internal Examiner
Professor, School of Computing Science
Simon Fraser University

Date Approved:

 1

PSimpson
Use “Heading 1” stylesheet for these headings so they will automatically appear in your table of contents.

If your graduate secretary prepares this page, you will not need to edit the following, but keep the page with the heading “Approval” on it, so that it enters into the Table of Contents, as required.

PSimpson
If your committee is significantly larger, do not continue on to another page. Reduce the size of the print, or use both columns to distribute the signatures.

PSimpson
Note there is no signature line for the Chair.

PSimpson
Be sure that the names and titles of all professors are correct, and as they prefer.

They may wish their departments included.

Check with your grad secretary.

PSimpson
The date of your defense or examination, or if a project without an oral defense, of approval by your committee members.

ABSTRACT

One major goal of research on Natural Language Processing (NLP) is to process

and understand multiple languages. There is arguably a close link between understanding

language and the hierarchical analysis of linguistic utterances or sentences. To achieve

this goal, much research in NLP has focused on an intermediate task, text chunking,

which is the task of finding non-recursive phrases in a given sentence of natural language

text. Most of the successful text chunking methods proposed in the last decade have been

achieved using machine learning techniques.

Recent research shows the combination approach, using simple majority voting or

more complex techniques like boosting, is more successful than a single learning model.

Voting can be in terms of system combination or data representation (DR) combination.

In this project, we consider the hypothesis that voting between multiple data

representations can be more accurate than voting between multiple learning models. To

show the power of the data representation combination, we present that a simple learning

method, in our case a simple trigram Hidden Markov Model (HMM), combined with DR

voting techniques can achieve a result better than the best on the CoNLL-2000 text

chunking data set. Without using any additional knowledge sources, we achieved 94.01

 score for arbitrary phrase identification which is equal to previous best comparable

score of 93.91 and 95.23 score for Base NP phrase identification which is better

than the current comparable state-of-the-art score of 94.22. In addition, our chunker is

1=βF

1=βF

 2

considerably faster and simpler than comparably accurate methods in training as well as

decoding.

 3

ACKNOWLEDGEMENTS

I would like to thank my senior supervisor, Dr. Anoop Sarkar. He provided me

with creative idea and insightful directions for this work. I have to say I could not

complete my degree so quickly without his kind help and patience.

Thanks to my supervisor Dr. Martin Ester and my Examiner Dr. Fred Popowich

who spent considerable time reading my project and made several thoughtful suggestions.

Many thanks to Dr. Richard Zhang for chairing my defence and providing useful

advice.

Thanks to Val for helping me with the administration details.

Finally, I thank my wife and parents for their unconditional love and support, and

thank to my Aunt Ping Shen and Uncle Dr. LiYan Yuan, who provided me great help in

my life.

 4

TABLE OF CONTENTS

Approval ...1

Abstract...2

Acknowledgements ..4

Table of Contents ...5

List of Figures...7

List of Tables ..8

Chapter One: Introduction ..9
1.1 Motivation ..9
1.2 Shallow Parsing ..10
 1.2.1 Part-of-Speech (PoS) Tagging..11
 1.2.2 Text Chunking ..12
1.3 Project Contribution ...15
1.4 Project Organization...16

Chapter Two: Overview of CoNLL-2000 Shared Task...17
2.1 Task Background..17
2.2 Dataset ..17
2.3 Performance Evaluation Metric..18
2.4 Chunk Types...19
2.5 Approach Summary..19
2.6 Results ..21
2.7 Base NP Chunking Background...21
 2.7.1 Data and Evaluation..21
 2.7.2 Results ..22
2.8 Chapter Summary...22

Chapter Three: Background to the Approach..24
3.1 Markov Chains ...24
3.2 Hidden Markov Model ...24
 3.2.1 Viterbi Algorithm ...26
3.3 Data Representation..28
 3.3.1 Inside/Outside ...28
 3.3.2 Start/End (O+C)..29
3.4 Voting Techniques..30
 3.4.1 Majority Voting ..31
3.5 Chapter Summary...32

Chapter Four: Text Chunking Approach..34
4.1 Specialized HMM Chunking..34

 5

PSimpson

Insert/Reference/Index and Tables/Table of Contents. On older versions of MSWord, this may be Insert/ Index and Tables/Table of Contents

Try it here

To update, locate cursor in table so that the lines are covered in grey blocks appear: press F9.
If your Roman numeral page numbers appear in Capital letters, you need to use Format/Style to modify the font style of the styles named “TOC”, i.e. TOC1, etc., to eliminate the tickmark for “All CAPS”
Note that the Title page and Partial Licence are not included in the table of contents.
Normally, only three levels of headings are included in a Table of Contents, regardless of how many are used in the document.

This set up is designed to accommodate very short headings, such as “Abstract” If the dots and page number do not extend all the way to the right margin, just hit tab immediately after the end of the word. After that, if you need to use F9 to update the entire table, you will have to do this manual fix again, but if you need only to update the page numbers, that will work.

4.2 Voting Between Multiple Data Representations ..38
4.3 Chapter Summary...39

Chapter Five: Chunking Evaluation..40
5.1 Dataset ..41
 5.1.1 Arbitrary Chunking Dataset (CoNLL-2000 Dataset)41
 5.1.2 Base NP Dataset (Base NP Chunking Dataset)41
5.2 TnT Tagger...41
 5.2.1 File Formats ..42
 5.2.2 Running TnT...44
 5.2.3 Evaluation...44
5.3 Experimental Results..44
 5.3.1 Text Chunking (Arbitrary Phrase Chunking)44
 5.3.2 Base NP Chunking (Noun Phrase Chunking)...................................48
5.4 Results Comparison..48
 5.4.1 Text Chunking Comparison..48
 5.4.2 Base NP Chunking Comparison ...50
 5.4.3 Comparison with Kudo’s Approach ...51
5.5 Analysis ..53
5.6 Chapter Summary...55

Chapter Six: Conclusion...57

Chapter Seven: Future Work ..58

Bibliography ...59

 6

LIST OF FIGURES

Figure 1 Example of Chinese word segmentation. ..11
Figure 2 Example of Hidden Markov Model...25
Figure 3 Example of Viterbi Algorithm...28
Figure 4 Running time comparison for single data representation between

SP+Lex-WCH and [KM01] on arbitrary chunking task.53
Figure 5 Example of a new representation. ...58

 7

LIST OF TABLES

Table 1 PoS and chunk tagging example...18
Table 2 Results based on CoNLL-2000 shared task..21
Table 3 Results based on Base NP chunking task. ..22
Table 4 The noun chunk tag sequences for the example sentence, In early trading

in Hong Kong Monday, gold was quoted at $366.50 an ounce.30
Table 5 Example of majority voting results among five data representations (DRs)

...32
Table 6 Example of specialization where the words belong to the predefined

lexical set sW36

Table 7 Format of lexicon, untagged and tagged files...43
Table 8 Format of lexicon files. ...43
Table 9 Format of n-gram files. ...43
Table 10 Text chunking results for each setting. ...45
Table 11 Text chunking results of 5DR majority voting with SP+Lex-WCH in

IOB2 format. ...46
Table 12 Text chunking results of 3DR majority voting with SP+Lex-WCH in

IOB2 format. ...46
Table 13 Text chunking accuracy for all DRs in five evaluation formats. Note

each column represents the evaluation format and each row represents
the training and testing format. ...47

Table 14 Text chunking accuracy for all DRs evaluated in IOB2 format. Note that
voting format is the format when conducting majority voting, all the
DRs are converted into this format. ..47

Table 15 Text chunking accuracy for all DRs evaluated in IOE1 format.48
Table 16 Base NP chunking accuracy for all DRs evaluated in IOB1 format...................48
Table 17 Comparison of text chunking accuracy with major approaches.49
Table 18 Comparison of Base NP chunking accuracy with major approaches.50
Table 19 Text chunking Error distribution between SP+Lex-WCH w/voting and

[KM01]..52
Table 20 Base NP chunking Error distribution between SP+Lex-WCH w/voting

and [KM01]...52
Table 21 McNemar’s test between Specialized HMM w/ voting and [KM01] on

two chunking tasks..52

 8

PSimpson
Insert/Reference/Index and Tables/Table of Contents/Table of Figures/Table

CHAPTER ONE:
INTRODUCTION

1.1 Motivation
A major goal of research on Natural Language Processing (NLP) is to process and

understand multiple languages. However, not all NLP applications require a complete

syntactic analysis. A full parse often provides more information than needed and

sometimes less. For example, in Information Retrieval, it may be enough to find simple

noun phrases and verb phrases. In Information Extraction, Language Summarization, and

Question Answering, researchers are only interested in information about some specific

syntactic or semantic relations such as agent, object, location, time, etc (basically, who

did what to whom, when, where and why), rather than elaborate hierarchical or recursive

syntactic analyses. The CoNLL-2003 shared task, for example, is only interested in

persons, locations, organizations, and other entities. E.g.:

 [U.N._ORG] [official_O] [Ekeus_PER] [heads_O] [for_O] [Baghdad_LOC].

In above example, there are four Name Entity Recognition (NER) tags. Tag ORG

is for organizations; Tag PER is for persons; Tag LOC is for locations; and Tag O is for

others we are not interested in.

To achieve above goals, much research in NLP has focused on intermediate tasks

that make sense of some of the structure inherent in language without requiring complete

understanding.

 9

PSimpson
Note the “Shift Enter” marks used to shape this paragraph yet keep it one paragraph for ToC purposes

1.2 Shallow Parsing
Shallow parsing, the task of recovering only a limited amount of syntactic

information from natural language sentences – has proved to be a useful technology for

written and spoken language domains. For example, within the Verbmobil project,

shallow parsers were used to add robustness to a large speech-to-speech translation

system [Wah00]. Shallow parsers are also typically used to reduce the search space for

full-blown, ‘deep’ parsers [Col96]. Yet another application of shallow parsing is

question-answering on the World Wide Web, where there is a need to efficiently process

large quantities of (potentially) ill-formed documents [BD01] [SL99]. More generally all

text mining applications can be viewed as applications of shallow parsing, e.g. from

biology and health literature [SPT98] [HOA+02].

Due to the fact that the phrases are assumed to be non-overlapping, the phrase

boundaries can be treated as labels, one per word in the input sentence, and sequence

learning or sequence prediction techniques such as the viterbi algorithm can be used to

find the most likely sequence of such labels. Hence, we can consider shallow parsing as a

sequence learning task.

Sequence learning is simply defined as assigning a sequence of classes to some

given sequences. The following well-known tasks are considered sequence learning tasks.

o Part-of-Speech tagging

o Chunking

o Name Entity Recognition

o Word Segmentation

 10

For example, in Chinese, there is no space between words. To parse this Chinese

sentence, we have to identify the boundaries between words. The technique developed to

deal with this problem is called Chinese word segmentation. We can treat Chinese word

segmentation as a sequence learning problem by tagging each Chinese character with a

certain symbol to show its word boundary. The following sentence is the example result

after segmentation, where symbol B is for the beginning of a Chinese word and symbol I

is for the rest character within a Chinese word.

Figure 1 Example of Chinese word segmentation.

1.2.1 Part-of-Speech (PoS) Tagging
Part-of-speech (PoS) tagging, or simply tagging, is the task of labelling (or

tagging) each word in a sentence with its appropriate part of speech. E.g.:

[He_PRP] [closes_VBZ] [the_DT] [door_NN].

Data-driven PoS tagging has benefited a lot from machine learning techniques,

i.e. the annotation of words with the contextually appropriate PoS tags, often including

morphological features. The main advantage with data-driven PoS taggers is that they are

language and tag set independent and thereby methods are easily applicable to new

languages and domains [Meg02]. The average accuracy reported for state-of-the-art data-

driven PoS taggers lies between 95% and 98% depending on the corpus and language.

However, it is important to realize that this impressive accuracy figure is not quite as

 11

PSimpson
Note the copyright phrase in the caption, as needed.

good as it looks, because it is evaluated on a per-word basis. For instance, in many genres

such as newspapers, the average sentence is over twenty words, and on such sentences,

even with a tagging accuracy of 96%, this means that there will be on average over one

tagging error per sentence. Even though it is limited, the information we get from tagging

can be quite useful. For example, tagging results can be used to solve shallow parsing

tasks.

1.2.2 Text Chunking
In the past years, some attempts have been made to build data-driven shallow

parsers. The main goal of the data-driven shallow parsers is, above all, to find the phrase

structure of the sentence. As a first step in building corpus-based parsers, a considerable

amount of research has been carried out to find syntactically related non-overlapping

groups of words, so-called chunks. A chunk is a major phrase category consisting of the

phrasal head and its modifiers on the left hand side. The example below illustrates three

different chunk types NP (noun phrase), VP (verb phrase) and PP (prepositional phrase)

for the sentence “He reckons the current account deficit will narrow to only $1.8 billion

in September.”

[He_IN] [reckons_VP] [the current account deficit_NP] [will narrow_VP]

[to_PP] [only $1.8 billion_NP] [in_PP] [September_NP].

Text chunking was suggested as a pre-processing step of a parser by [Abn91]. Ten

years later, most statistical parsers contained a chunking phase (e.g. [Rat98]).

Text chunking is defined as given the words and their morphosyntactic class,

decide which words can be grouped as chunks (noun phrases, verb phrases, complete

 12

clauses, etc). The goal of text chunking is to divide each sentence of a given text into

non-overlap syntactic units. Text chunking can help solve many NLP tasks, such as

information extraction, text summarization and spoken language understanding.

The chunking task is divided into two subtasks: finding only noun phrases (Base

NP chunking or Noun Phrase Chunking) and identifying arbitrary chunks (Text Chunking

or Arbitrary Phrase Chunking).

Machine learning approaches towards noun phrase chunking started with work by

[Chu88] who used bracket frequencies associated with POS tags for finding noun phrase

boundaries in text. In an influential paper about chunking, [RM95] show that chunking

can be regarded as a tagging task. Even more importantly, the authors propose a training

and test data set that is still being used for comparing different text chunking methods.

These data sets were extracted from the Wall Street Journal part of the Penn Treebank II

corpus (Marcus et al., 1993). Sections 15-18 are used as training data and section 20 as

test data. The Penn Treebank Project annotates naturally-occuring text for linguistic

structure. Most notably, they produce skeletal parses showing rough syntactic and

semantic information -- a bank of linguistic trees. They also annotate text with part-of-

speech tags [San90]. The Treebank bracketing style is designed to allow the extraction of

simple predicate/argument structure. Over one million words of text are provided with

this bracketing applied. In principle, the noun phrase chunks present in the material are

noun phrases that do not include other phrases, with initial material (determiners,

adjectives, etc.) up to the head but without post-modifying phrases (prepositional phrases

or clauses) [RM95].

 13

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

The noun phrase chunking data produced by [RM95] contains a couple of

nontrivial features. First, unlike in the Penn Treebank, possessives between two noun

phrases have been attached to the second noun phrase rather than the first. An example in

which round brackets mark chunk boundaries:

(Nigel Lawson) (‘s restated commitment): the possessive ‘s has been moved

from Nigel Lawson to restated commitment.

Second, Treebank annotation may result in unexpected noun phrase annotations:

British Chancellor of (the Exchequer) Nigel Lawson in which only one noun chunk has

been marked. The problem here is that neither British Chancellor nor Nigel Lawson has

been annotated as separate noun phrases in the Treebank. Both British … Exchequer and

British … Lawson are annotated as separate noun phrases in the Treebank. But these

phrases could not be used as noun chunks because they contain the smaller noun phrase

the Exchequer.

The major researches of data-driven text chunking have been directed to

recognize base NP chunks (e.g. [Chu88], [CP98], [SB98]) and detect other chunk types

(e.g. [RM95], [ADK98], [Bra99], [BVD99], [Vee99], [Osb00], [Meg01a], [MP02],

[TKS02], [KM01], and [ZDJ02]). The first area is focused on recognition methods for

simple, non-recursive noun phrases. These phrases play an important role in many

application areas, such as information retrieval, information extraction and question

answering. The latter pays attention to develop promising methods to detect other chunk

types, such as prepositional phrases (PP), adverb phrases (ADVP), adjective phrases

(ADJP) and verb phrases (VP). In general, researchers put their most energy on

combining linguistic information (e.g. Lexical information) with chunk detection

 14

methods, extending studies to deal with various language corpora, and applying different

learning methods (e.g. Rule-based learning, Transformation-based Learning, Memory-

based Learning, Hidden Markov Models, Maximum Entropy, Support Vector Machines,

Winnow, etc.).

1.3 Project Contribution
In this project, we consider the hypothesis that voting between multiple data

representations can be more accurate than voting between multiple learning models. The

main contribution of this paper is that a single learning method, in our case a simple

trigram Hidden Markov Model can use voting between multiple data representations to

obtain results equal to the best on the CoNLL-2000 text chunking data set. Using no

additional knowledge sources, we achieved 94.01 score for arbitrary phrase

identification compared to the previous comparable best score of 93.91 [KM01]. The

highest score reported on this data set is 94.17 [ZDJ02], but this result used a full-fledged

parser as an additional knowledge source. Without the parser, the result obtained was

93.57. There have been over 30 publications with different methods on this CoNLL-2000

data set with result from 77.07 to 94.17. It is therefore a very competitive data set with

small significant difference likely to have an impact on many sequence learning

problems. In addition, we achieved 95.23 score for Base NP phrase identification

compare to the previous comparable best score of 94.22 [KM01]. By the paired

McNemar test, we showed our result is significantly different from [KM01] on this task.

1=βF

1=βF

Based on our empirical results, we show that choosing the right representation (or

the types of features used) can be a very powerful alternative in sequence prediction,

even when used with relatively simple machine learning methods.

 15

PSimpson
“Keep with following” in the style of the above heading, and “widow and orphan control” in the paragraph style (See Format/Style/(/Modify/Format/Paragraph) will ensure that any headings appearing near the bottom of a page, with only a line of the following paragraph, will automatically move to the top of the next page, without needed a manual page break inserted.

1.4 Project Organization
The remainder of this project is organized as follows: Chapter 2, gives an

overview of the CoNLL-2000 (Conference of Natural Language Learning 2000) shared

task for data-driven text chunking. Chapter 3, describes some important concepts related

in this study. Chapter 4, presents the combined chunking approach. Chapter 5, describes

the experiments on various lexical features and combinations. Chapter 6, concludes the

project. Chapter 7, draws out the implications for the future work.

 16

CHAPTER TWO:
OVERVIEW OF CONLL-2000 SHARED TASK

2.1 Task Background
The early idea of chunking is initially described by Arvin Joshi in 1957. He first

developed a parser by using chunking technique. Later on in 1990’s, chunking was,

again, recognized as an important intermediate approach toward a full parsing. Lance

Ramshaw and Mitch Marcus have approached chunking by using a machine learning

method [RM95]. Their work has inspired many others to study the application of learning

methods to noun phrase chunking. Other chunk types are considered less useful than NP

chunks. The most complete work is [BVD99] which presents results for NP, VP, PP,

ADJP and ADVP chunks. [Vee99] works with NP, VP and PP chunks. [RM95] have

recognized arbitrary chunks but classified every non-NP chunk as a VP chunk. The

CoNLL-2000 shared task attempts to fill this gap [CoN03] [NP02].

2.2 Dataset
The CoNLL-2000 dataset for this task is available online [CoN03]. This dataset

consists of the same partitions of the Wall Street Journal corpus (WSJ) as the widely used

data for noun phrase chunking: sections 15-18 as training data (211727 tokens) and

section 20 as test data (47377 tokens). The annotation of the data has been derived from

the WSJ corpus by a program written by Sabine Buchholz from Tilburg University, The

Netherlands.

 17

PSimpson
Note the “Shift Enter” marks used to shape this paragraph yet keep it one paragraph for ToC purposes

The training and test data consist of three columns separated by spaces. Each

word has been put on a separate line and there is an empty line after each sentence. The

first column contains the current word, the second its part-of-speech tag as derived by the

Brill tagger and the third its chunk tag as derived from the WSJ corpus. The chunk tags

contain the name of the chunk type, for example I-NP for noun phrase words and I-VP

for verb phrase words. Most chunk types have two types of chunk tags, B-CHUNK for

the first word of the chunk and I-CHUNK for each other word in the chunk. This chunk

representation is in IOB2 format. We will describe it in detail in Section 3.2. Here is an

example of the file format:

Word PoS Tag [San90] Chunk Tag
He PRP B-NP
Reckons VBZ B-VP
The DT B-NP
Current JJ I-NP
Account NN I-NP
Deficit NN I-VP
Will MD B-VP
Narrow VB I-VP
To TO B-PP
Only RB B-NP
I-NP
1.8 CD I-NP
Billion CD I-NP
In IN B-PP
September NNP B-NP
. . O

Table 1 PoS and chunk tagging example.

2.3 Performance Evaluation Metric

The performance on this task is measured with three rates. First, the percentage of

detected phrases that are correct - Precision. Second, the percentage of phrases in the data

that were found by the chunker - Recall. And third, the rate which is equal to 1=βF

 18

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

precisionrecall
recallprecision

×+
××+

2

2)1(
β

β with β=1 [Rij75]. The latter rate has been used as the target

for optimization.

2.4 Chunk Types
The chunk types are based on the syntactic category part of the bracket label in

the Treebank (cf. [BFK+95] p.35). Roughly, a chunk contains everything to the left of

and including the syntactic head of the constituent of the same name. Some Treebank

constituents do not have related chunks. The head of S (simple declarative clause) for

example is normally thought to be the verb, but as the verb is already part of the VP

chunk, no S chunk exists in our example sentence. Besides the head, a chunk also

contains pre-modifies (like determiners and adjectives in NPs), but no post-modifiers or

arguments. This is why the PP chunk only contains the preposition, and not the argument

NP, and the SBAR chunk consists of only the complementizer [SB00].

2.5 Approach Summary
[SB00] divided the systems that have been applied to the CoNLL-2000 shared

task into four groups:

o Rule-based systems: derive a set of rules (or regular expressions), from the

training data, which corresponds to chunking decisions to be made.

o Memory-based systems: classify data based on their similarity to data that

they have seen earlier. (e.g. MBL)

o Statistical systems: apply various machine learning models to make the

chunking decision. (e.g. HMM, ME, Winnow, and SVM)

 19

o Combined systems: apply more than one technique to make chunking

decision.

Recent research shows many state-of-the-art works are focused on including more

features (e.g. position features between words or/and tags) to train a discriminative model

(e.g. SVM and Winnow) rather than to train a generative model (e.g. traditional HMM).

This change leads to the big improvement of chunking accuracy. The representative of

this approach is [KM01] and [ZDJ02]. The common part of these approaches is that they

all treat sequence learning problem as a classification task and involves more features.

The difference is that [KM01] proposed to train eight different SVM classifiers, two for

each Inside/Outside representation (forward and backward parsing), then vote among

their results. They achieved 93.91 score. However, [ZDJ02] applied generalized

Winnow with enhanced features in the training process. With the enhanced feature, they

achieved 94.17 score, while without the enhanced feature, they obtained 93.57

score. These enhanced features are based on English Slot Grammar (ESG), which does

not produce the same bracketed representation as that used in the CoNLL-2000 shared

task. Also, ESG has the capability to produce multiple ranked parses for a sentence, a full

parser, which is totally different compared with other approaches without the knowledge

of a full parse of a sentence. Thus, we consider their method not to be directly

comparable with ours.

1=βF

1=βF 1=βF

 20

2.6 Results

Paper System Method Precision Recall 1=βF
[ZDJ02] Statistical Gen. Winnow w/ full parser 94.28% 94.07% 94.17
[KM01] Statistical SVM w/voting 93.89% 93.92% 93.91
[ZDJ02] Statistical Gen. Winnow w/o full parser 93.54% 93.60% 93.57
[CM03] Statistical Perceptrons 94.19% 93.29% 93.74
[KM00] Statistical SVM 93.45% 93.51% 93.48
[Hal00] Combined WPDV(Comb) 93.13% 93.51% 93.32
[TKS00] Combined MBL(Comb) 94.04% 91.00% 92.50
[MP02] Statistical Specialized HMM 91.96% 92.41% 92.19
[ZST00] Combined HMM w/ MBL 91.99% 92.25% 92.12
[Dej00] Rule Rule-based 91.87% 92.31% 92.09
[Koe00] Statistical ME 92.08% 91.86% 91.97
[Osb00] Statistical ME 91.65% 92.23% 91.94
[VB00] Statistical MBL 91.05% 92.03% 91.54
[PMP00] Statistical HMM 90.63% 89.65% 90.14
[Joh00] Rule Rule-based 86.24% 88.25% 87.23
[VD00] Rule Rule-based 88.82% 82.91% 85.76
Baseline Most Frequent Chunk Tag 72.58% 82.14% 77.07

Table 2 Results based on CoNLL-2000 shared task.

2.7 Base NP Chunking Background
Unlike arbitrary phrase identification, Base NP phrase identification, or simply

NP chunking, deals with identifying the chunks that consist of noun phrases (NPs). NP

chunking task is initially introduced by Ramshaw and Marcus in 1995.

2.7.1 Data and Evaluation
NP chunking dataset, like CoNLL-2000 dataset, consists of the section 15-18 of

WSJ as training data and the section 20 of WSJ as test data. The PoS is again derived

from a tagger written by Sabine Buchholz from Tilburg University, The Netherlands.

However, instead of using representation IOB2 in CoNLL-2000 dataset, this dataset use

representation IOB1 as its correct chunk tag.

 21

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

The data format and evaluation method are exactly the same as introduced in

CoNLL-2000 dataset section.

2.7.2 Results

Paper Precision Recall 1=βF
[KM01] 94.15% 94.29% 94.22
[TDD+00] 94.18% 93.55% 93.86
[TKS00] 93.63% 92.89% 93.26
[MPR+99] 92.40% 93.01% 92.80
[XTAG99] 91.80% 93.00% 92.40
[TV99] 92.50% 92.25% 92.37
[RM95] 91.80% 92.27% 92.03
Baseline 78.20% 81.87% 79.99

Table 3 Results based on Base NP chunking task.

2.8 Chapter Summary
This chapter introduced CoNLL-2000 shared task, text chunking, and Base NP

chunking task, which consists of dividing a sentence into syntactical units. Text

chunking is an intermediate step towards full parsing. The goal of this task is to come

forward with machine learning methods which after a training phrase can recognize the

arbitrary chunk segmentation of the test data as well as possible.

The CoNLL-2000 shared task and Base NP chunking task has the same part of the

Wall Street Journal corpus (WSJ), section 15-18 as training data and section 20 as test

data. However, their correct chunk type representation is different. CoNLL-2000 dataset

uses IOB2, while Base NP dataset uses IOB1.

The chunker for both dataset is evaluated with score, 1=βF

precisionrecall
recallprecisionF

+
==

**2
1β [Rij79], where precision is the percentage of detected

 22

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

phrases that are correct and recall is the percentage of phrases in the data that were found

by the chunker.

All the chunking methods are fall into four groups: rule-base systems, memory

based systems, statistical systems, and combined systems. The score of text

chunking is ranged from 77.07 to 94.17 and score of Base NP chunking is ranged

from 79.99 to 94.22.

1=βF

1=βF

 23

CHAPTER THREE:
 BACKGROUND TO THE APPROACH

3.1 Markov Chains
Markov processes/chains/models were first developed by Andrei A. Markov (a

student of Chebyshev). Their first use was actually for a linguistic purpose – modeling

the letter sequences in works of Russian literature (Markov 1913) – but Markov models

were then developed as a general statistical tool [MS99].

A Markov chain is a sequence of random values whose probabilities at a time

interval depend on the value of the number at the previous time. Thus, if

is a sequence of random variables taking values in some finite set

, the state space, then the Markov chain has following properties:

),...,(1 TXXX =

},...,{ 1 NssS =

(1) Limited Horizon, the transition probabilities at a time interval depends on its

previous time.)|(),...,|(111 tkttkt XsXPXXsXP === ++

(2) Time invariant, the transition probabilities is independent of time interval and

does not vary with time.)|(),...,|(1211 XsXPXXsXP ktkt ===+

3.2 Hidden Markov Model
Hidden Markov Models was published by Baum-welch. Often we want to

consider a sequence (perhaps through time) of random variables that are not independent,

but rather the value of each variable depends on previous elements in the sequence. For

 24

PSimpson
Note the “Shift Enter” marks used to shape this paragraph yet keep it one paragraph for ToC purposes

many such systems, it seems reasonable to assume that all we need to predict the future

random variables is the value of the past random variable, and we do not need to know

the values of all the past random variables in the sequence. That is, future elements of the

sequence are conditionally independent of past elements, given the present element. In a

Visible Markov Model (VMM) or Markov Chain, we know what states the machine is

passing through, so the state sequence or some deterministic function of it can be

regarded as the output, while in a HMM, you do not know the state sequence that the

model passes through, but only some probabilistic function of it.

In the following example, there are two states q and r. Two pairs of emission

probabilities represented as a and b respectively in the Figure 1. iπ represents the initial

probabilities. The probabilities on the transition curves are transition probabilities

[Sar03].

0.2 0.8 0.7)|(1 ii SSP +

q r
0.3

4.0=a 6.0

0.1=iπ
Start =b

1.0=a

9.0=b

)|(it SOP

Figure 2 Example of Hidden Markov Model.

 25

PSimpson
Note the copyright phrase in the caption, as needed.

0.1)()()(=→+→=→∑ qqPrqPxqP
x

∑ =+=
x

bqemitPaqemitPxqemitP 0.1)),(()),(()),((

In above two equations, represents state; iS tΟ represents output; x represents

hidden state [Sar03] [MS99]. The first equation expresses the total transition probabilities

started from the initial state is 1 and, similarly, the second one describes the sum of the

total emission probabilities is 1.

Given a certain observation sequence , we can find the model parameterstrainingO µ

that maximize)|(µOP using Maximum Likelihood Estimation,)|(maxarg µ
µ

trainingOP .

This maximization process is often referred to as training the model.

Given the observation sequence O and a modelµ , we can efficiently compute

)|(µOP - the probability of the observation given the model. This process is often

referred to as decoding.

HMMs are useful when one can think of underlying events probabilistically

generating surface events. HMM is as a language model: compute probability of a given

observation sequence, HMM is as a parser: compute the best sequence of states for a

given observation sequence, and HMM is as a learner: given a set of observation

sequences, learn its distribution [Sar03] [MS99].

3.2.1 Viterbi Algorithm

The Viterbi algorithm is based on HMMs and used to find the most likely

complete path for a given observation sequence through a trellis. The Viterbi algorithm is

 26

linear in input m for n states, . Alternatively, we can enumerate all paths,

however, this takes exponential time, . One widespread use of the Viterbi algrithm

is tagging – assigning parts of speech (or other classes) to the words in a text. We think of

there being an underlying Markov chain of parts of speech from which the actual words

of the text are generated. This can be applied to text chunking (or shallow parsing task) in

the same way. In this project, we used an existing tagger, TnT, which is implemented

based on this idea – Best Path (Viterbi) algorithm. In order to find the most likely

complete path, that is (where µ represents the model parameters)

)(2mnO

)(mnO

),|(maxarg µOXP
X

To do this, it is sufficient to maximize for a fixed O,

)|,(maxarg µOXP
X

The key idea of this algorithm to compute this trellis is storing the best path up to

each state. Using dynamic programming, we can calculate the most probable path

through the whole trellis [MS99] [Sar03]. E.g.:

t=1 t=2 t=3 t=4

r r r r

q q q

s

q

 b b a

 27

Figure 3 Example of Viterbi Algorithm.

The above trellis is an array of states against times. A node in the trellis can store

information about state sequences up to this node. The lines show the possible transitions

between states at each time step. Here we have a fully interconnected HMM where one

can move from any state to any other at each step [MS99] (This is called having the

ergodic property).

Viterbi algorithm can be easily applied to solve text chunking tasks. The running

time complexity is the same as Viterbi algorithm mentioned before, , while

doing a full parsing with Context-Free Grammar takes at least , which is much

slower, since the number of input words m is often much larger than the number of the

states n.

)(2mnO

)(3mO

Another reason is that they are one of a class of models for which there exist

efficient methods of training through the use of the Expectation Maximization (EM)

algorithm – this algorithm allows us to automatically learn the model parameters that best

account for the observed data. In addition, we can use HMM in generating parameters for

linear interpolation of n-gram models.

3.3 Data Representation

3.3.1 Inside/Outside

In 1995, Ramshaw and Marcus proposed to encode all chunks with 3 tags, I, O

and B [RM95]. This representation enables to solve chunking problem as a trainable PoS

tagging task.

I – for words inside a noun chunk

 28

PSimpson
Note the copyright phrase in the caption, as needed.

PSimpson
“Keep with following” in the style of the above heading, and “widow and orphan control” in the paragraph style (See Format/Style/(/Modify/Format/Paragraph) will ensure that any headings appearing near the bottom of a page, with only a line of the following paragraph, will automatically move to the top of the next page, without needed a manual page break inserted.

O – for words outside a noun chunk.

B – for the initial word of a noun phrase immediately follows another one.

Thereafter, [SV99] developed three variants based on the Ramshaw and Marcus

representation. They named the variants IOB2, IOE1 and IOE2 and used IOB1 as the

name for the Ramshaw and Marcus representation. IOB2 is the same as IOB1, except that

every initial word of a noun phrase receives tag B. IOE1 differs from IOB1 in the fact

that rather than the tag B, a tag E is used for the final word of a noun chunk, which is

immediately followed by another noun phrase. IOE2 is a variant of IOE1 in which each

final word of a noun phrase is tagged with E.

3.3.2 Start/End (O+C)

[SV99] showed that bracket representations O and C can also be regarded as two

tagging representation with two streams of brackets, where tag O, open bracket, is for

initial word of a chunk. Tag C, close bracket, is for final word of a chunk. Tag • , period,

is for words outside of any chunk. After merging these two representations, we get a new

data representation with 5 tags. This representation was renamed as Start/End data

representation in [KM01]. In this project, we follow tag naming convention used in

[KM01]. This representation is defined as follows.

B – for chunk-initial words

E – for chunk-final words

I – for chunk-inside words

S – for single word within a chunk

O – for words outside of any chunk

 29

PSimpson
“Keep with following” in the style of the above heading, and “widow and orphan control” in the paragraph style (See Format/Style/(/Modify/Format/Paragraph) will ensure that any headings appearing near the bottom of a page, with only a line of the following paragraph, will automatically move to the top of the next page, without needed a manual page break inserted.

Table 4 contains example tag sequences for all five tag sequences for the example

sentence.

Word IOB1 IOB2 IOE1 IOE2 O+C
In O O O O O
early I B I I B
trading I I I E E
in O O O O O
Hong I B I I B
Kong I I E E E
Monday B B I E S
, O O O O O
gold I B I E S
was O O O O O
quoted O O O O O
at O O O O O
$ I B I I B
366.50 I I E E E
an B B I I B
ounce I I I E E
. O O O O O

Table 4 The noun chunk tag sequences for the example sentence, In early trading in Hong Kong
Monday, gold was quoted at $366.50 an ounce.

3.4 Voting Techniques
Multiple data representations are interesting because a learner will make different

errors when trained with data encoded in a different representation. This means we can

improve chunking performance with combination techniques.

[Hal98] explored five voting methods. They assign weights to the output of the

individual systems and use these weights to determine the most probable output tag.

Since the classifier generate different output formats, all classifier output has been

converted to the O and the C representations. The simplest voting method assigns

uniform weights and picks the tag that occurs most often - Majority Voting. A more

advanced method is to use as a weight the accuracy of the classifier on some held-out part

 30

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

of the training data, the tuning data - TotPrecision. One can also use the precision

obtained by a classifier for a specific output value as a weight - TagPrecision.

Alternatively, [TKS02] use as a weight a combination of the precision score for the

output tag in combination with the recall score for competing tags - Precision-Recall. The

most advanced voting method examines output values of pairs of classifiers and assigns

weights to tags based on how often they appear with this pair in the tuning data - TagPair

[Hal98].

[TKS02] showed system combination improved performance: the worst result of

the combination techniques is still better than the best result of the individual systems.

Furthermore, data encoded with Inside/Outside data representations trained by a learner

leads to similar results, while data encoded with Start/End (O+C) data representation

trained by a learner consistently obtains higher rates. They also found the

performance differences among the different voting techniques are small. Thus, Majority

Voting becomes attractive, since it is the simplest of the voting techniques

1=βF

3.4.1 Majority Voting

When different machine learning systems are applied to the same task, they will

make different errors. The combined results of these systems can be used for generating

an analysis for the task that is usually better than that of any of the participating system.

For example: suppose we have five different data representations, DR1-5, which assign

binary classes to patterns. Their output for five patterns, pattern1-5, is as follows:

 31

PSimpson
“Keep with following” in the style of the above heading, and “widow and orphan control” in the paragraph style (See Format/Style/(/Modify/Format/Paragraph) will ensure that any headings appearing near the bottom of a page, with only a line of the following paragraph, will automatically move to the top of the next page, without needed a manual page break inserted.

DR1 DR2 DR3 DR4 DR5 Correct

Pattern1 0 0 1 0 0 0
Pattern2 1 1 1 0 1 1
Pattern3 1 1 1 0 1 1
Pattern4 1 0 0 0 0 0
Pattern5 1 1 1 1 0 1

Table 5 Example of majority voting results among five data representations (DRs) .

Each of the five representations makes an error. We then use a combination of the

five by choosing the class that has been predicted most frequently for each pattern. This

means that we can train one learner with five data representations and obtain five

different analyses of the data that we can combine with majority voting techniques. Thus

different data representations can enable us to improve the performance of the chunker,

and the combined results of these data representations (DRs) can be used for generating

an analysis for the task that is usually better than that of any of the participating data

representations. This approach will eliminate errors that made by a minority of the data

representations. The table 5 showed that combined systems are usually better than single

system.

3.5 Chapter Summary

This chapter introduced some background information to our basic approach.

Hidden Markov Models (HMMs) are useful when one can think of underlying

events probabilistically generating surface events. HMM is as a language model: compute

probability of given observation sequence, a decoding process, HMM is as a parser:

compute the best sequence of states for a given observation sequence, a training process,

and HMM is as a learner: given a set of observation sequences, learn its distribution. One

 32

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

application of HMMs is Viterbi algorithm, used to find the most likely complete path

through a trellis by dynamic programming in linear time to its input.

Data representations (DRs) for text chunking are divided into two subgroups:

Inside/Outside (IOB1/IOB2/IOE1/IOE2) and Start/End (O+C). Inside/Outside DRs

have three chunk tags each, where I for words inside a chunk, B for words starting a

chunk, O for words outside any chunk, E for words ending a chunk. Start/End DR has

five chunk tags, including all the tags in Inside/Outside, In addition, S for single word

inside a chunk.

Two voting techniques is described in this chapter: simple Majority Voting,

assigning equal weights to all representations, or various Weighted Voting, assigning

different weights to each representation based on different conditions.

 33

CHAPTER FOUR:
 TEXT CHUNKING APPROACH

Our approach is based on two ideas. First, solving chunking tasks as a PoS

tagging problem for each data representation based on Specialized Hidden Markov

Model (HMM) developed by [MP02]. Second, voting between multiple data

representations.

4.1 Specialized HMM Chunking
For each individual data representation, we followed the approach of [MP02].

They considered text chunking to be a tagging problem and then solved tagging as a

maximization problem.

Let O be a set of output tags and I the input vocabulary of the application. Given

an input sentence I = i1,…,iT, where ∈ji I j∀: , the process consists of finding the

sequence of states of maximum probability on the model. That is, the sequence of output

tags, , where TooO ,...,1= ∈jo O j∀: . This process can be formalized as follows:

∈
⋅

== O
IP

OIPOPIOPO
OO

;)
)(

)|()((maxarg)|(maxargˆ O (1)

Due to the fact that this maximization process is independent of the sequence, and

taking into account the Markov assumptions, the problem is reduced to solving the

following equation (2):

 34

PSimpson
Note the “Shift Enter” marks used to shape this paragraph yet keep it one paragraph for ToC purposes

))|(),|((maxarg
...1:

21...1
∏ ⋅−−

Tj
jjjjjoo

oiPoooP
T

 (2)

The parameters of equation (2) can be represented as a second-order HMM whose

states correspond to a tag pair. In a first-order HMM or simply HMM, each state

corresponds to one tag, which means predicting current tag only depends on the previous

tag. In second-order HMM, predicting the current tag depends on the previous two tags.

Contextual probabilities, , represent the transition probabilities between

states and represents the output probabilities.

),|(21 −− jjj oooP

)|(jj oiP

The formalism has been widely used to efficiently solve part-of-speech (PoS)

tagging in ([Chu88], [Mer94], [Bra00]), etc. In PoS tagging, the input vocabulary is

composed of words and the output tags are PoS or morphosyntactic tags. The

segmentation produced by some different shallow parsing tasks, such as text chunking or

clause identification, can be represented as a sequence of tags as mentioned above.

Therefore, these problems can also be carried out in a way similar to PoS tagging.

PoS tagging considers only words in the input. In contrast, chunking can consider

words and PoS tags. However, if all this input information is considered, the input

vocabulary of the application could become very large, and the model would be poorly

estimated.

On the other hand, in order to avoid generating an inaccurate model due to the

generic output tag set. They consider a more fine-grained output tag set by adding lexical

and PoS information to the output tags. This aspect has also been tackled in PoS tagging

([KLR99], [LTR00], [PM01]), by lexicalizing the models, that is, by incorporating words

into the contextual model.

 35

In the work, they proposed a simple function that encoded the given data format

into the model without changing the learning or the tagging processes. This method

consists of modifying the original training data set in order to consider only the relevant

lexical and POS information and to extend the output tags with additional information,

since adding all the words leads to poor performance and no improve at all.

This transformation is the result of applying a specialization function on the

original training set to produce a new one. This function transforms every training tuple

sf

iii chpw ,, to a new tuple ii chp , or iiiii chpwchp ⋅⋅⋅ , . That is, only a set of

certain relevant words belong to certain lexical set ()sW were considered in the

contextual language model and defined the following specialization function:

⎩
⎨
⎧

∉⋅
∈⋅⋅⋅

=⋅
siiii

siiiiii
iiis Wwifchpp

Wwifchpwpw
chpwf

,
,

),(

Input Output = (Input) sf

iw ip ich ip or ii pw ⋅ ii chp ⋅ or iii chpw ⋅⋅
you PRP B-NP PRP PRP-B-NP
will MD B-VP MD MD-B-VP
start VB I-VP VB VB-I-VP
to TO I-VP TO TO-I-VP
see VB I-VP VB VB-I-VP
shows NNS B-NP NNS NNS-B-NP
where WRB B-ADVP where-WRB where-WRB-B-ADVP
viewers NNS B-NP NNS NNS-B-NP
program VBP B-VP VBP VBP-B-VP
the DT B-NP DT DT-B-NP
program NN I-NP NN NN-I-NP

Table 6 Example of specialization where the words belong to the predefined lexical set . sW

 36

PSimpson
A plain “starter” table with single spaced lines and 3 pts space before and after each paragraph, and "keep lines together" to prevent the table from breaking. It is best to develop a table format that is consistent throughout your document. To ensure it fits within the margins, use Table/Autofit/Autofit to window.
�
�

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

Table 6 shows an example of the application of this function on a sample of the

training set used in the chunking task, where symbol “-” is a connection symbol used to

connect between words, PoS, or chunk type. For example, the tuple NPBPRPYou −− ,

is transformed to the new tuple NPBPRPPRP −−, , considering only POS

information. On the other hand, the tuple ADVPBWRBwhere −,, , considering also

lexical information, is transformed to the new tuple

ADVPBWRBwhereWRBwhere −−−− , .

From this new training set, we can learn the Specialized HMM by maximum

likelihood in the usual way. The tagging process is carried out by Dynamic Programming

Decoding using the Viterbi algorithm. This decoding process is not touched. Thus, the

only thing we need to worry about is the decisions taken into account in the specialization

process. That is, to consider the relevant information in the output of specialization.

The model is called SP if only the part-of-speech tag is involved in specialization,

while the model is called SP+Lex-XXX if there is more lexical information involved

based on some lexical rule Lex-XXX defined by [MP02].

The selection of the set produces various kinds of lexicalized HMM models.

To generate lexical set Lex-WTE, we use a development set consisting of a heldout or

deleted set of 10% from the training set in order to pick elements for . The heldout set

consists of every 10

sW

sW

th sentence. The remaining set is used as the training data.

We used the following lexical specialization models defined by [MP02].

 37

o Lex-WHE: contains the words whose frequency in the training set was

higher than a certain threshold. In order to determine which threshold

maximized the performance of the model (that is, the best set of words to

specialize the model), we tuned it on the development partition with word

sets of different sizes. The threshold obtained in my experiments was 100.

sW

o Lex-WCH: contains the words that belong to certain chunk types with

higher frequency threshold. In our work, we pick chunk types NP,VP,PP

and ADVP with a threshold of 50.

sW

o Lex-WTE: contains the words whose chunk tagging error rate was

higher than a certain threshold in development set. Based on the

experiments in [MP02], we pick a threshold of 2.

sW

The experiments in [MP02] showed that specialization can improve performance

considerably. By combining the Lex-WCH and Lex-WTE conditions, the output tag set

increases from the original set of 22 to 1341, with 225 words being used as lexical

material in the model and the accuracy on the CoNLL-2000 data increases to 92.19%

using exactly the same trigram-based HMM model.

4.2 Voting Between Multiple Data Representations
The notion of specialization is a good example of how the data representation can

lead to higher accuracy. We extend this idea further by voting between multiple

specialized data representations.

The model we evaluate in this paper is simple majority voting on the output of

various specialized HMM models (described above). The HMM model is trained on

 38

different data representations, and the test data is decoded by each model. The output on

the test data is converted into a single data representation, and the final label on the test

data is produced by a majority vote.

We experimented with various weighted voting schemes -- setting weights for

different representations based on accuracy on the heldout set and using a don’t care tag

to ignore certain chunk type for certain data representations. However, no weighting

scheme provided us with a significant increase in accuracy over simple majority voting.

4.3 Chapter Summary
This chapter introduced the chunking approach used in this project. It is divided

into two parts: Specialized HMM Chunking and Majority Voting.

o In Specialized HMM Chunking process, for each data representation, we

first apply a specialization function on the original training set and

outputs a new one and then use this output to train a trigram HMM model.

This function transforms every training tuple

sf

iii chpw ,, to a new tuple

ii chp , or iiiii chpwchp ⋅⋅⋅ , . That is, only a set of certain relevant

words belong to certain lexical set ()sW were considered in the contextual

language model and defined the following specialization function:

⎩
⎨
⎧

∉⋅
∈⋅⋅⋅

=⋅
siiii

siiiiii
iiis Wwifchpp

Wwifchpwpw
chpwf

,
,

),(

o In Majority Voting process, we simply take equal weight vote among all

these five data representations (IOB1/IOB2/IOE1/IOE2/O+C).

 39

CHAPTER FIVE:
 CHUNKING EVALUATION

Chapter four introduced how specialized HMM approach with voting between

multiple data representations works. In this Chapter, we will test this approach on the

CoNLL-2000 dataset and Base NP dataset, then we compare our results with the ones of

other major approaches.

In first experiment, arbitrary phrase chunking (or text chunking), to obtain various

data representations, we convert the corpus in IOB2 format into the other four data

representations (IOB1, IOE1, IOE2 and O+C), where O+C is Start/End representation,

and then convert each data representation into the format defined by the specialized

HMM approach.

We tested various specialization models discussed in last chapter. In addition, to

generate a specialized model – SP+Lex-WHE, we split original training set into a new

training set (90% of the original training set) and a development set (10% of the original

training set) for each data representation. Also, to keep the sentence distribution, we set

ten sentences as a unit, and for each unit, put first nine sentences into the new training set

and the last one into the development set. Now we are ready to chunk.

Once we have all five different data representations chunked, we start to use

majority voting technique to combine them into one file. In order to evaluate the

accuracy, we have to transform the result into the CoNLL-2000 output format. Then, we

 40

PSimpson
Note the “Shift Enter” marks used to shape this paragraph yet keep it one paragraph for ToC purposes

remove the enriched information from the output and convert the results into the CoNLL-

2000 output format – IOB2.

In second experiment, Noun Phrase Chunking (or Base NP chunking), the process

is similar as the previous one, except that the original chunk representation is in IOB1

format, thus we convert it into other four data representations and finally evaluate the

result in this format.

5.1 Dataset

5.1.1 Arbitrary Chunking Dataset (CoNLL-2000 Dataset)

We used the dataset defined in the shared task of CoNLL-2000. The

characteristics of this task were described by [TB00]. It used the same Wall Street

Journal (WSJ) corpus sections defined by [RM95]. The set of chunks was derived from

the full parsing taking into account certain assumptions and simplification. The PoS

tagging was obtained using the Brill tagger without correcting the tagger output.

5.1.2 Base NP Dataset (Base NP Chunking Dataset)
Base NP dataset is defined in [NP02] and was first introduced by Ramshaw and

Marcus [RM95]. Same as the text chunking dataset, it consists of section 15-18 of WSJ

of the Penn Treebank as training data, section 20 of that as test data, and the PoS tagging

was obtained using the Brill tagger. However, the correct chunk format is defined in

IOB1 representation instead of IOB2 in chunking dataset of CoNLL-2000 shared task.

5.2 TnT Tagger

All the training and tagging tasks were conducted by using the TnT tagger

developed by [Bra00] without making any modification to its source code.

 41

TnT, developed by Brants, is an efficient statistical part-of-speech tagger

independent of language, domain and tagset. TnT is the short form of Trigrams’n Tags.

The component for parameter generation trains on tagged corpora.

The TnT tagger is an implementation of the Viterbi algorithm for second order

Markov models. The main paradigm used for smoothing is linear interpolation, the

respective weights are determined by deleted interpolation. Unknown words are handled

by a suffix trie and successive abstraction. In [MP02], they used this smoothing setting in

their chunking process. In order to compare with their results, we will follow this setting

in our experiments. The programs are run under Solaris in ANSI C using the GNC C

compiler.

TnT comes with three models, one for German and two for English. The German

model is trained on the Saarbrücker, German newspaper corpus, using the Stuttgart-

Tübingen-Tagset. The English model are trained on the Susanne Corpus and the Penn

Treebank respectively [Bra00].

5.2.1 File Formats

There are four types of files: n-gram file, lexicon file, the untagged input file and

the tagged output file. Optionally, the user can specify a mapping of tags used by the

tagger to an output tagset.

Each line starting with two percentage signs (%%) marks a comments and is

ignored by the programs. The tokens are encoded using all characters with codes

0x21…0xFF and each line with white space is ignored by the programs [Bra00].

 42

Untagged format Tagged format
%%Brown Corpus %%Brown Corpus
%% File N11, Sent 3 %% File N11, Sent 3
You you PRP
Will will MD
Start start VB
To to TO
See see VB
Shows shows NNS
Where where WRB
viewers viewers NNS
program program VBP
The the DT
program program NN
. . .

Table 7 Format of lexicon, untagged and tagged files.

Lexicon format
%% Lexicon created from the Brown corpus
%% …
thaw 6 NN 3 VB 3
thawed 3 VBN 3
thawing 2 VBG 2
The 625 DT 624 IN 1
theaf 1 NN 1
%% …

Table 8 Format of lexicon files.

%% n-gram, Brown corpus
%%
NNP 62022
NNP CC 2888
NNP CC CD 26
NNP CC NN 76
%% …
NNP CD 912
NNP CD CC 23
NNP CD CD 7
%% …
%% …

Table 9 Format of n-gram files.

 43

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

PSimpson
Captions may be above or below, depending on the style manual chosen or personal taste.

Use Insert/Reference/Caption to insert automatically numbered captions for tables and Figures, and to enable an automatically generated List of Tables. Use Format/Styles to select the font, font style, size and line spacing you wish for the “Caption” stylesheet. Name of Table can be typed in here or pasted in later. Full text of caption will be picked up by the automatically generated list, so if you wish only an abbreviated descriptor in the List of Tables (or Figures). Create a separate paragraph style (ie. “Caption2” in the same font, size and style, and with appropriate “space before/space after/ you have designated for your Caption stylesheet. If you modify the “Caption” style to always have “Caption2” paragraph following, and “keep with next” you will be able to work very smoothly with your captions, and be able to automatically keep them together on your page.

5.2.2 Running TnT
The application of TnT consists of two steps [Bra00]:

o Parameter generation, creates the model from a tagged training corpus.

E.g.: tnt-para [options] <corpusfile>

o Tagging, applies the model to new text and performs the actual tagging.

E.g.: tnt [options] model corpus

5.2.3 Evaluation
TnT’s performance is evaluated under following aspects [Bra00].

o Determining the averaged accuracy over ten iterations, overall accuracy

and separate accuracies for known and unknown words are measured.

o Presenting learning curves to indicate the performance comparison with

different corpus.

o Assigning tags to words with optional probabilities to rank different

assignment.

5.3 Experimental Results

5.3.1 Text Chunking (Arbitrary Phrase Chunking)
In order to obtain various data representations, we converted the corpus in IOB2

format into other four data representations: IOB1, IOE1, IOE2 and O+C. We then

converted each data representation into the format defined by specialized HMM

approach.

In the results shown in this section,

o SP represents specialized HMM approach without lexical information.

 44

o SP+Lex-WCH represents specialized HMM approach with lexical

information defined based on Lex-WCH.

o 5DR represents five data representations (DR), which is IOB1, IOB2,

IOE1, IOE2, O+C and we pick O+C as the default DR.

o 3DR represents IOB1, IOB2, IOE1 and we pick IOB2 as the default DR.

o Majority represents majority voting.

Table 10 gives the text chunking (arbitrary phrase chunking) results for each

setting. Table 11 and 12 shows the results of the specialized model SP+Lex-WCH in

IOB2 and IOE2 evaluation format respectively, where all represents the results obtained

after 3DR or 5DR majority voting respectively. Our results show the performance of 5DR

voting is better than 3DR voting.

Specialization criteria Precision(%) Recall(%) 1=βF
Baseline 72.58 82.14 77.07
Trigram HMM (no words) 84.31 84.35 84.33
SP 89.57 89.54 89.56
SP+Lex-WTE (3DR, Majority) 92.49 93.00 92.75
SP+Lex-WCH (3DR, Majority) 93.54 92.97 93.25
SP+Lex-WCH (5DR, Majority) 93.89 94.12 94.01

Table 10 Text chunking results for each setting.

 45

Chunk type Precision(%) Recall(%) 1=βF
ADJP 75.54 71.92 73.68
ADVP 80.80 79.21 80.00
CONJP 60.00 66.67 63.16
INTJ 50.00 50.00 50.00
NP 95.46 95.67 95.57
PP 97.69 96.61 97.15
PRT 66.02 64.15 65.07
SBAR 77.25 85.05 80.96
VP 92.69 94.16 93.42
All 93.89 94.12 94.01

Table 11 Text chunking results of 5DR majority voting with SP+Lex-WCH in IOB2 format.

Chunk type Precision(%) Recall(%) 1=βF
ADJP 77.94 71.00 74.31
ADVP 80.12 78.18 79.14
CONJP 66.67 66.67 66.67
INTJ 50.00 50.00 50.00
NP 94.85 94.03 94.44
PP 97.52 96.47 96.99
PRT 64.29 59.43 61.76
SBAR 76.11 83.36 79.57
VP 92.65 93.39 93.02
all 93.54 92.97 93.25

Table 12 Text chunking results of 3DR majority voting with SP+Lex-WCH in IOB2 format.

In Table 13, we find when an Inside/Outside representation is converted into

Start/End representation, the accuracy is increased and if we do the other way, the

accuracy will decrease. [TKS00] also reported O+C (Start/End) obtained higher

accuracy with high precision and lower recall and [XS03] presented a so called LMR

tagging to solve Chinese word segmentation problem is another example Start/End

representation improves the performance, since the role of LMR in Chinese word

segment is just like that of Start/End in Text chunking. The reason is because Start/End

representation with five tags catches more context information, while Inside/Outside

1=βF

 46

representation only has three tags. Hence, Start/End representation is more discriminative

than the inside/outside representations.

Also we find even the difference among different representations within

Inside/Outside representations is smaller than that with the Start/End representation, we

still can observe the representation format conversion will affect the accuracy. Thus,

picking a best result other than standard test format IOB2 as their final result is incorrect,

since it is not comparable with other approaches. Moreover, the testing corpus should not

be touched somehow. Converting the test corpus is not the right way to do the testing.

Errors may be introduced and lead to incomparable results.

 IOB1 IOB2 IOE1 IOE2 O+C
IOB1 92.68 93.07 92.66 92.68 94.72
IOB2 92.82 92.63 92.82 92.82 94.47
IOE1 92.82 92.82 92.87 92.87 94.64
IOE2 92.53 92.53 92.53 92.53 94.43
O+C 92.45 92.45 92.49 92.35 94.28
3DR 93.03 93.25 92.82 93.07 94.92
5DR 93.92 93.76 93.90 94.01 95.05

Table 13 Text chunking accuracy for all DRs in five evaluation formats. Note each column represents
the evaluation format and each row represents the training and testing format.

Table 14 and 15 give the final results in IOB2 and IOE2 respectively.

Voting format Precision(%) Recall(%) 1=βF
IOB1 93.89 93.95 93.92
IOB2 93.69 93.82 93.76
IOE1 93.79 93.77 93.78
IOE2 93.89 94.12 94.01
O+C 93.84 93.98 93.91

Table 14 Text chunking accuracy for all DRs evaluated in IOB2 format. Note that voting format is
the format when conducting majority voting, all the DRs are converted into this format.

 47

Voting format Precision(%) Recall(%) 1=βF
IOB1 93.81 93.79 93.80
IOB2 93.69 93.82 93.76
IOE1 93.87 93.93 93.90
IOE2 93.89 94.12 94.01
O+C 93.84 94.00 93.92

Table 15 Text chunking accuracy for all DRs evaluated in IOE1 format.

5.3.2 Base NP Chunking (Noun Phrase Chunking)
We first convert dataset in IOB1 format into IOB2/IOE1/IOE2/O+C. For each

representation, we perform specialization based on lexical rule SP+Lex-WCH before

learning process. Finally, we apply voting in each format and evaluate it in IOB1 format.

Table 16 shows the final results in IOB1 representation after 5DR voting.

However, some other experiment results are obtained in other representations. For

example, in [KM01], they picked IOB2 as their final evaluation representation. We know

there is no significant difference between IOB1 and IOB2, but the chunk representation

of original training and test data from [NP02] is defined in IOB1, thus we decide to pick

IOB1 as our final evaluation representation.

Voting format Precision(%) Recall(%) 1=βF
IOB1 95.11 95.35 95.23
IOB2 95.05 95.34 95.19
IOE1 94.96 95.11 95.04
IOE2 94.96 95.21 95.08
O+C 95.04 95.30 95.17

Table 16 Base NP chunking accuracy for all DRs evaluated in IOB1 format.

5.4 Results Comparison

5.4.1 Text Chunking Comparison

 48

Table 17 compares the results with other major approaches. We achieved 94.01

on score for both formats, which is slightly higher than [KM01], but still lower than

[ZDJ02] in Table 17. However, [ZDJ02] used a full parser, detailed in Section 2.5, which

we do not use in our experiments.

1=βF

Approach 1=βF
Generalized Winnow w/ full parser [ZDJ02] 94.17
Specialized HMM w/voting between multiple DR 94.01
SVM w/voting between multiple DR [KM01] 93.91
Generalized Winnow w/o full parser [ZDJ02] 93.57
WPDV w/voting between multiple models [Hal00] 93.32
MBL w/voting between multiple models [TKS00] 92.50
Specialized HMM [MP02] 92.19

Table 17 Comparison of text chunking accuracy with major approaches.

The above table shows the text chunking results rank on CoNLL-2000 dataset. All

approaches, except [Hal00] and [TKS00], used a single learner and among of them, those

approaches with voting between multiple data representations obtained better results than

other approaches ([ZDJ02] is the only exceptional, since they used a full parser, which is

not comparable with other’s). The reason single learner with voting between multiple

data representation performs better than that without voting is obvious, since voting

between multiple data representations can correct minority errors. Moreover, the above

results also showed single learner with voting between multiple data representations

seems better than voting between multiple learning models. The reason why voting works

is because the partners involved in voting are information compensable. Also, we know

creating multiple syntactically complementary data representations is much easier than

developing multiple complementary learning models. Hence, our finding -- a single

 49

learner with voting between multiple data representations outperforms voting between

multiple learning models seems reasonable.

5.4.2 Base NP Chunking Comparison

Table 18 compares the Base NP chunking results with other major approaches.

We achieved 95.23 on score, which is the best state-of-the-art score so far. 1=βF

Approach 1=βF
Specialized HMM w/voting between multiple DR 95.23
SVM w/voting between multiple DR [KM01] 94.22
Voting between multiple learning model[TDD+00] 93.86
Voting between multiple learning model[TKS00] 93.26

Table 18 Comparison of Base NP chunking accuracy with major approaches.

[SP02] developed a discriminative model, conditional random field (CRF). Like

other discriminative models, such as [KM01], they also involve position features between

tags and words. To remove the overfitting, they used an addition development set

(Section 21 of WSJ) to tune the results. Strictly speaking, their dataset is not the same as

the other Base NP chunking approaches, since section 21 is not a part of standard Base

NP chunking dataset. They achieved 94.38 on score. In [SP02], they do not indicate

if they apply a Base NP chunking or an arbitrary phrase chunking. We guess they take the

arbitrary chunking process, since they pick CoNLL-2000 dataset and compare their NP

results with others extracted from arbitrary phrase chunking approaches. Thus, we

consider their score is not comparable with our Base NP results, but their results are

comparable with an even higher score, 95.57, which we obtained through an

arbitrary chunking process in the previous section. In addition, we find NP F-score in an

arbitrary phrase chunking is slightly higher than that in a standard Base NP chunking and

1=βF

1=βF

 50

[KM01] has the same phenomenon. We can easily explain this phenomenon from a

classification perspective. That is, an arbitrary phrase chunking model (multiple-class

model) describes the dataset more accurate than a Base NP chunking model (two-class

model). This is obviously true if we look at the syntactic content of the dataset. However,

we clearly know this change is not significant.

5.4.3 Comparison with Kudo’s Approach
The common parts between our approach and Kudo’s approach are that we all

train a statistical learner with voting between multiple data representations, treat chunk

tagging task as a sequence learning problem, and achieve equal state-of-the-art

performance. The differences are that our approach uses a simpler learner based on

specialized HMM, which runs linear time on input words, while [KM01] trains eight

different SVM classifiers, the algorithm requires 2/)1(−× kk classifiers considering all

pairs of k classes. Each SVM training uses a quadratic programming step. Secondly, we

apply simple majority voting between five data representations (Inside/Outside and

Start/End), while Kudo’s approach only apply weighted voting between Inside/Outside

representations, since their learner restricted them to vote between different data

representation types. In our experiments, we find Start/End representation usually catch

more information than that of Inside/Outside representations and in turn improve our

performance.

To examine the assumption that our approach and [KM01] are different is valid,

we applied McNemar Test and assumed the errors are independent. The distributions of

the errors for arbitrary phrase chunking (text chunking) and Noun phrase chunking (Base

NP chunking) are listed in the following Table 19 and 20

 51

[KM01]
Correct Incorrect Total

Correct 22093 () 00n 356 () 01n 22449 SP+Lex-WCH
w/ voting Incorrect 309 () 10n 1094 () 11n 1403
 Total 22402 1450 23852

Table 19 Text chunking Error distribution between SP+Lex-WCH w/voting and [KM01].

[KM01]
Correct Incorrect Total

Correct 11557() 00n 202() 01n 11759 SP+Lex-WCH
w/ voting Incorrect 74() 10n 491() 11n 565
 Total 11631 693 12324

Table 20 Base NP chunking Error distribution between SP+Lex-WCH w/voting and [KM01].

With this distribution, we can directly compute a 2-tailed P value based on the

following formula defined in [GC89],

∑
=

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10

0 2
12

n

m

k

m
k

P , where 0110 nnk +=

Task Null hypothesis p-value
Arbitrary Chunking Specialized HMM w/voting vs. [KM01] 0.0745
Base NP Chunking Specialized HMM w/voting vs. [KM01] <0.001

Table 21 McNemar’s test between Specialized HMM w/ voting and [KM01] on two chunking tasks.

In arbitrary phrase chunking task, we have to say the difference between our

approach and [KM01] is not statistically significant, which means this two approaches

have the equal performance on the arbitrary phrase chunking task, while Table 21 shows

Specialized HMM w/voting and [KM01] are significantly different on Base NP chunking

task.

 52

Moreover, our approach is much faster. As showed in figure 4, our approach takes

more than 15 times faster than Kudo’s approach for a data representation chunking

process. Furthermore, [KM01] trained eight SVM classifiers, thus it took much longer

time overall. Thus, our simple voting system is considerably faster and produces

comparable results.

Running Time Comparison for single data
representation

0
50

100
150
200
250
300
350

[KM01] SP+Lex-WCH

s)

Approach

Ti
m

e
(m

in

Series

Figure 4 Running time comparison for single data representation between SP+Lex-WCH and
[KM01] on arbitrary chunking task.

5.5 Analysis

Previous approaches that use voting have all used voting as a means of system

combination, i.e. taking multiple machine learning methods and taking a multiple

machine learning methods and taking a majority vote or weighted vote combining their

output [TKS00]. This kind of system combination can be done using voting or stacking.

 53

PSimpson
Note the copyright phrase in the caption, as needed.

Voting as system combination has been applied to CoNLL-2000 data set as well:

[Hal00] obtains an of 93.92. [TKS02] combines the output of several systems but

also does voting by exploiting different data representations. However, to our knowledge,

there has not been a study of voting purely between multiple data representations using a

single machine learning method. Our results seem to indicate that even simple majority

voting between multiple data representations does better than voting for system

combination.

1=βF

Superficially, it seems that [KM01] also does voting on multiple data

representations. However, the multiple data representations are only used to discover

which representation works better with the SVM classifier. The approach uses multiple

classifiers (as stated earlier), in order to enable multi-class classification using a two-class

SVM classifier (instead of using error-correcting codes or other methods for multi-class

classification). This is quite different from voting between multiple data representations.

[SFB+98] provide some insight into the power of voting by stating that voting

between multiple representations can be seen as a form of smoothing over a hidden

posterior distribution over the true labels in the test data. If we see voting as being a

smoothing method, one way we can choose an appropriate representation to participate in

voting is to check the goodness of the representation based on methods used to evaluate

smoothing methods in language modelling. A representation can be added if the addition

reduces perplexity on the training set.

There is another theoretical approach that can be used to analyze this result: the

bias-variance tradeoff could be used to discover that the multiple representations are all

increasing bias while reducing variance in the labelling task.

 54

We plan to explore these alternate analysis methods as well in the near future.

5.6 Chapter Summary
This chapter has described the approach experiments and results. The following

are some of the highlights of this chapter.

The Dataset is the part of the Wall Street Journal corpus (WSJ), section 15-18 as

training data (211727 tokens) and section 20 as test data (47377 tokens), defined in the

shared task of CoNLL-2000.

All the training and tagging tasks were conducted by using TnT tagger developed

by [Bra00] without making any modification. TnT is an implementation of Viterbi

algorithm for second order Markov models.

We achieved 94.01 in score on arbitrary phrase chunking and slightly higher

than 93.91 obtained by [KM01], the second best result. Based on McNemar Test, we

have to say this slight difference is not statistical significant. Additionally, they trained

eight different SVM classifiers and took considerable longer time than our approach. The

best result is achieved by [ZDJ02], they obtained 94.17 with a full parser. Since we do

not have this knowledge, we consider their result is not comparable with ours. Without a

full parser, they obtained 93.57.

1=βF

In addition, we obtained 95.23 in score on the Base NP chunking task and

our score is higher than the current best score 94.22 obtained by [KM01]. By the paired

McNemar test, our approach vs. [KM01], we showed this difference is significant.

1=βF

To our knowledge, there has not been a study of voting purely between multiple

data representations using a single machine learning method. Our results seem to indicate

 55

that even simple majority voting between multiple data representations does better than

voting for system combination.

 56

CHAPTER SIX:
CONCLUSION

The main contribution of this study is that a single learning method, a simple

trigram HMM can use voting between multiple data representations to obtain results

equal to the best on the CoNLL-2000 text chunking data set. Using no additional

knowledge sources, we achieved 94.01 score on arbitrary phrase chunking

compared to the previous best comparable score of 93.91. Based on the McNemar test,

we find the difference between our approach with the comparable state-of-the-art

approach is not statistical significant, which means we have the equal performance on the

CoNLL-2000 dataset. Secondly, we achieved 95.23 on the Base NP chunking,

which is better than the current comparable state-of-the-art score of 94.22 and we showed

our approach is significantly different with the current comparable state-of-the-art

approach on the Base NP chunking task by the McNemar test. In addition, our text

chunker is considerably faster than comparably accurate methods in training as well as in

decoding.

1=βF

1=βF

 57

CHAPTER SEVEN:
FUTURE WORK

[SFB+98] provided some insight into the power of voting by starting that voting

between multiple data representations can be seen as a form of smoothing. Hence, we can

try to choose an appropriate representation based on its perplexity on the training set.

Secondly, the bias-variance tradeoff could be used to discover that the multiple

representations are all increasing bias while reducing variance in the labelling task.

Lastly, our research also shows voting between multiple data representations can

improve performance and we can continue to improve it if we have more data

representations. We may recursively create more data representations to capture more

context information. In the following example, we create a new representation by

considering the previous word information for each word tagged as O. However, we are

not sure if the new created data representations are syntactically meaningful.

He is the man .
B O B I O (IOB2)
B O-B B I O-I (A new representation)

Figure 5 Example of a new representation.

 58

PSimpson
Note the copyright phrase in the caption, as needed.

BIBLIOGRAPHY

[Abn91] S. Abney. Parsing by Chunks. In Principle-Based Parsing. Kluwer
Academic Publishers, 1991.

[ADK98] S. Argamon, I. Dagan and Y. Krymolowsky. A Memory-Based Approach
to Learning Shallow Natural Language Patterns. In Proceedings of 36th
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 67-73, Montreal, Canada, 1998.

[ATH03] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov Support
Vector Machines. In Proceedings of the 20th International Conference on
Machine Learning: ICML 2003, 2003

[BD01] S. Buchholz and W. Daelemans. Complex Answers: A Case Study using a
WWW Question Answering System. In Proceedings of Natural Language
Engineering, 2001.

[BFK+95] A. Bies, M, Ferguson, K. Katz, R. Macintyre. Bracketing Guidelines for
Treebank II Style Penn Treebank Project.1995.

[Bra99] T. Brants. Cascaded Markov Models. In Proceedings of the 9th Conference
of the Europen Chapter of the Association for Computational Linguistics
(EACL-99), Bergen, Norway, 1999.

[Bra00] T. Brants. TnT – a statistical part-of-speech tagger. In Proceedings of the
6th Applied Natural Language Processing Conference: ANLP-2000,
Seattle, WA, 2000.

[BVD99] S. Buchholz, J. Veenstra and W. Daelemans. Cascaded Grammatical
Relation assignment. In Proceedings of the 1999 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, 1999.

[Chu88] K. W. Church. A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Text. In Second Conference on Applied Natural language
Processing, pp 136-143. Austin, Texas, 1988.

[Col96] Machael John Collins. A new statistical parser based on bigram lexical
dependencies. In 34th Annual Meeting of the Association for
Computational Linguistics. University of California, Santa Cruz,
California, USA, June, 1996.

[Col02] M. Collins. Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms. In Proceedings of
EMNLP and ACL, 2002.

[CoN03] CoNLL URL. http://cnts.uia.ac.be/conll2000/chunking/ and
http://cnts.uia.ac.be/conll2003/ner/, 2003

 59

http://cnts.uia.ac.be/conll2000/chunking/

[CP98] C. Cardie and D. Pierce. Error-Driven Pruning of Treebank Grammars for
Base Noun Phrase Identification. In Proceedings of COLING/ACL, pp
218-224, Montreal, Canada, 1998.

[Dej00] H. Déjean, Learning Syntactic Structures with XML. In: Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

[GC89] L.Gillick and S.J.Cox. Some Statistical Issues in The Comparison of
Speech Recognition Algorithms. In Proceedings of Acoustics, Speech, and
Signal Processing, 1989. pp. 532 - 535 vol.1. ICASSP-89., 1989
International Conference on , 1989.

[Hal98] H. V. Halteren. "Improving data driven wordclass tagging by system
combination," In: COLING-ACL'98. In Proceedings of the Conference.
Vol. 1: 491-497.1998.

[Hal00] H. Halteren, Chunking with WPDV Models. In: Proceedings of CoNLL-
2000 and LLL-2000, Lisbon, Portugal, 2000.

[HOA+02] J. Hammerton, M. Osborne, S. Armstrong, and W. Daelemans.
Introduction to Special Issue on Machine Learning Approaches to Shallow
Parsing. In Journal of Machine Learning Research 2, pp. 551-558, 2002.

[Joh00] C. Johansson, A Context Sensitive Maximum Likelihood Approach to
Chunking. In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon,
Portugal, 2000.

[KLR99] J.D. Kim, S.Z. Lee, and H.C. Rim. HMM Specialization with Selective
Lexicalization. In Proceedings of the join SIGDAT Conference on
empirical Methods in Natural Language Processing of Very Large
Corpora (EMNLP-VLC-99), 1999.

[KM01] T. Kudo and Y. Matsumoto. Chunking with support vector machines. In
Proceedings of the 2nd Meeting of the North American Association for
Computational Linguistics: NAACL, 2001.

[Koe00] R. Koeling, Chunking with Maximum Entropy Models. In: Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

[LTR00] S. Lee, J. Tsujii,and H. Rim. Lexicalized Hidden Markov Models for Part-
of-Speech Tagging. In Proceedings of 18th International Conference on
Computational Linguistics, Saarbrucken, Germany, August, 2000.

[Meg01a] B. Megyesi. Phrasal Parsing by Using Data-Driven PoS Taggers. In
Proceedings of Recent Advances in Natural Language Processing
(EuroConference RANLP-2001), Tzigov Chark, Bulgaria, September,
2001.

[Meg02] B. Megyesi. Shallow Parsing with PoS Taggers and Linguistic Features. In
Journal of Machine Learning Research 2, pp. 639-668, 2002.

[Mer94] B. Merialdo. Tagging English Text with a Probabilistic Model. In
Proceedings of Computational Linguistics, 20(2):155-171, 1994.

 60

[MP02] A. Molina and F. Pla. Shallow Parsing using Specialized HMMs. In
Journal of Machine Learning Research, volume 2, pp. 595-613, Match,
2002.

[MPR+99] M. Muñoz, V. Punyakanok, D. Roth and D. Zimak, A Learning Approach
to Shallow Parsing, In: "Proceedings of EMNLP/WVLC-99", University
of Maryland, MD, USA, 1999.

[MS99] C. D. Manning and H. Schutze. Foundations of Statistical Natural
Language Processing by 680 pages 1 edition, M.I.T. Press/Triliteral,
ISBN: 0262133601, 1999.

[NP02] NP Chunking URL. http://lcg-www.uia.ac.be/~erikt/research/np-
chunking.html, 2002.

[Osb00] Miles Osborne. Shallow Parsing as Part-of-Speech Tagging. In
Proceedings of CoNLL-2000 and LLL-2000, pp. 145-147, Lisbon,
Portugal, 2000.

[PM01] F. Pla and A. Molina. Part-of-Speech Tagging with Lexicalized HMM. In
Proceedings of International Conference on recent Advances in Natural
Language Processing (RANLP2001), Tzigov Chark, Bulgaria, September
2001.

[PMP00] F. Pla, A. Molina and N. Prieto, Improving Chunking by Means of
Lexical-Contextual Information in Statistical Language Models. In:
Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

[Rij79] C.J. van Rijsbergen, "Information Retrieval". Buttersworth, 1979.

[RM95] L. RamShaw and M. Marcus. Text Chunking Using Transformation-Based
Learning. In Proceedings of the 3ird ACL Workshop on Very Large
Corpora: WVLC-1995, Cambridge, USA, 1995

[San90] B. Santorini. Part-of-Speech Tagging Guidelines for the Penn Treebank
Project(3rd Revision, 2nd printing), 1990.

[Sar03] Anoop Sarkar. CMPT-825, Natural Language Processing, Course Notes,
Simon Fraser University, Fall 2003.

[SB98] W. Skut and T. Brants. Chunk Tagger Statistical Recognition of Noun
Phrases. In ESSLLI-98 Workshop on Automated Acquisition of Syntax and
Parsing (ESSLLI-98), Saarbrüchken, Germany, 1998.

[SFB+98] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the
margin: A New Explanation for the Effectiveness of Voting Methods. The
Annals of Statistics, 26(5):1651-1686, 1998.

[SL99] R. Srihari and W. Li. Information extraction supported question
answering. In Proceedings of TREC 8, 1999.

[SP03] F. Sha and F. Pereira. Shallow Parsing with Conditional Random Fields.
In Proceedings of Technical Report CIS TR MS-CIS-02-35, University of
PennsyIvania, 2003.

 61

http://lcg-www.uia.ac.be/~erikt/research/np-chunking.html
http://lcg-www.uia.ac.be/~erikt/research/np-chunking.html

[SPT98] T. Sekimizu, H. Park, and J. Tsujii. Identifying the interaction between
genes and gene products based on frequently seen verbs in medline
abstracts. In Genome Informatics, pp. 62-71. Universal Academy Press,
Inc, 1998.

[SS00] E. F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-
2000 Shared Task: Chunking. In Proceedings of Conference on
Computational Natural Language Learning: CoNLL-2000, pages 127-
132, Lisbon, Portugal, 2000

[SV99] E. F. Tjong Kim Sang and Jorn Veenstra. 1999. Representing Texting
Chunks. In Proceedings of the 7th Conference of the European Asociation
for Computational Linguistics: EACL-1999, pp. 173-179, Bergen,
Norway, 1999.

[TB00] Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the
CoNLL-2000 Shared Task: Chunking. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, 2000.

[TDD+00] E. F. Tjong Kim Sang, W. Daelemans, H. Déjean, R. Koeling, Y.
Krymolowski, V. Punyakanok and D. Roth, Applying System
Combination to Base Noun Phrase Identification. In Proceedings of
COLING 2000, Saarbrücken, Germany, 2000.

[TKS00] E. F. Tjong Kim Sang. Text Chunking by System Combination. In
Proceedings of Conference on Computational Natural Language
Learning: CoNLL-2000, pp. 151-153. Lisbon, Portugal, 2000.

[TKS02] E. F. Tjong Kim Sang. Memory-Based Shallow Parsing. In Journal of
Machine Learning Research, volume 2, pp. 559-594, 2002.

[TV99] E. F. Tjong Kim Sang and J. Veenstra, Representing Text Chunks. In
Proceedings of EACL'99, Bergen, Norway, 1999.

[VB00] J. Veenstra and A. Bosch, Single-Classifier Memory-Based Phrase
Chunking. In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon,
Portugal, 2000.

[VD00] M. Vilain and D. Day, Phrase Parsing with Rule Sequence Processors: an
Application to the Shared CoNLL Task. In Proceedings of CoNLL-2000
and LLL-2000, Lisbon, Portugal, 2000.

[Vee99] Jorn Veenstra. Memory-Based Text Chunking. In Workshop on Machine
Learning in Human Language Technology, ACAI-99, Crete, Greece, 1999.

[Wah00] Wolfgang Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech
Translation. Springer, 2000.

[XS03] N. Xue and L. Shen. Chinese Word Segmentation as LMR Tagging. In
Proceedings of the 2nd SIGHAN Workshop on Chinese Language
Processing, in conjunction with ACL'03. Sapporo, Japan, 2003.

 62

[XTAG98] The XTAG Research Group, "A Lexicalized Tree Adjoining Grammar for
English". In Proceedings of IRCS Tech Report 98-18, University of
Pennsylvania, PA, USA, 1998.

[ZDJ02] T. Zhang, F. Damerau, and D. Johnson. Text chunking based on a
generalization of winnow. In Journal of Machine Learning Research,
Volume 2, pp. 615-637, Match, 2002.

[ZST00] G. Zhou, J. Su and T. Tey, Hybrid Text Chunking. In: Proceedings of
CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

 63

	APPROVAL
	CHAPTER ONE: �INTRODUCTION
	1.1 Motivation
	1.2 Shallow Parsing
	1.2.1 Part-of-Speech (PoS) Tagging
	1.2.2 Text Chunking
	1.3 Project Contribution
	1.4 Project Organization

	CHAPTER TWO: �OVERVIEW OF CONLL-2000 SHARED TASK
	2.1 Task Background
	2.2 Dataset
	2.3 Performance Evaluation Metric
	2.4 Chunk Types
	2.5 Approach Summary
	2.6 Results
	2.7 Base NP Chunking Background
	2.7.1 Data and Evaluation
	2.7.2 Results
	2.8 Chapter Summary

	CHAPTER THREE: � BACKGROUND TO THE APPROACH
	3.1 Markov Chains
	3.2 Hidden Markov Model
	3.2.1 Viterbi Algorithm
	3.3 Data Representation
	3.3.1 Inside/Outside
	3.3.2 Start/End (O+C)
	3.4 Voting Techniques
	3.4.1 Majority Voting
	3.5 Chapter Summary

	CHAPTER FOUR: � TEXT CHUNKING APPROACH
	4.1 Specialized HMM Chunking
	4.2 Voting Between Multiple Data Representations
	4.3 Chapter Summary

	CHAPTER FIVE: � CHUNKING EVALUATION
	5.1 Dataset
	5.1.1 Arbitrary Chunking Dataset (CoNLL-2000 Dataset)
	5.1.2 Base NP Dataset (Base NP Chunking Dataset)
	5.2 TnT Tagger
	5.2.1 File Formats
	5.2.2 Running TnT
	5.2.3 Evaluation
	5.3 Experimental Results
	5.3.1 Text Chunking (Arbitrary Phrase Chunking)
	5.3.2 Base NP Chunking (Noun Phrase Chunking)
	5.4 Results Comparison
	5.4.1 Text Chunking Comparison
	5.4.2 Base NP Chunking Comparison
	5.4.3 Comparison with Kudo’s Approach
	5.5 Analysis
	5.6 Chapter Summary

	CHAPTER SIX: �CONCLUSION
	CHAPTER SEVEN: �FUTURE WORK
	BIBLIOGRAPHY

