
1

Strings to Trees to Strings* ���
An Introduction to Tree-adjoining Grammars	

Anoop Sarkar	

Simon Fraser University, Vancouver, Canada	

http://bit.ly/anoop-wata2012	
http://natlang.cs.sfu.ca	

anoop@sfu.ca	

WATA 2012, Dresden	

*Title of talk “borrowed” from Prof Aravind Joshi

2

The Eleventh International Workshop
on Tree Adjoining Grammars

and Related Formalisms
(TAG+11)

26-28 September 2012
University Paris-Diderot

http://alpage.inria.fr/tagplus11/doku.php	

Abstract Submission Deadline: June 15, 2012

3

High Level Overview	

•  1st session (90 minutes)	

1.  Motivating Tree-Adjoining Grammars

(TAGs) from a Computational Linguistics
perspective	

2.  Relation to Monadic Simple Context-free
Tree Grammars	

3.  Relation to algebraic notions of crossing
dependencies in Dependency Grammar	

4

High Level Overview	

•  2nd session (90 minutes)	

1.  TAGs as a formalism for natural language

syntax	

2.  Statistical Parsing with weighted TAG	

3.  Synchronous Tree-adjoining grammar	

5

Preliminaries ���
	

6

Sentences as Strings	

David likes peanuts

Noun Verb Noun

David Mary left said that

Noun Noun Verb Verb Comp

•  Linear order: all important information is contained in the
precedence information, e.g. useful “feature functions” are
w-2, w-1, t-2, t-1, w0, w+1, w+2, t+2, t+1, etc.	

•  No hierarchical structure but every part-of-speech is
lexicalized, e.g. Verb is lexicalized by likes	

•  Language (set of strings) generated by finite-state
grammars

7

Finite State Grammars	

 A → a A
 A → a

 A1 ⇒ a1 A2
 ⇒ a1 a2 A3
 ⇒ a1 a2 a3 A4
 ⇒ a1 a2 ... aN

A

a2 A

a1 A

a3 A

aN Terminal symbol: a	

Non-terminal symbol: A	

8

Context-Free Grammars	

 S → NP VP
 VP → V NP | VP ADV
 NP → David | peanuts
 V → likes
 ADV → passionately

•  CFGs generate strings, e.g. language of G above is the set:	

 { David likes peanuts,	

 David likes peanuts passionately, 	

 ... }	

•  Lexical sensitivity is lost 	

•  CFGs also generate trees: hierarchical structure produced is
non-trivial	

9

CFG: Derived/Parse Tree	

S

NP VP

VP ADV

V NP

David likes peanuts passionately

10

CFG: Derivation Tree	

S → NP VP

NP → David VP → VP ADV

VP → V NP ADV → passionately

V → likes NP → peanuts

David likes peanuts passionately

derivation tree is identical to
derived tree: may not be true
for other grammar formalisms

11

Preliminaries	

•  Rules of the kind α → β where α, β are strings of
terminals and non-terminals	

•  Chomsky hierarchy: regular, context-free, context-
sensitive, recursively enumerable	

•  Automata: finite-state, pushdown, LBA, Turing
machines (analysis of complexity of parsing)	

•  A rule α → β in a grammar is lexicalized if β
contains a terminal symbol	

•  Lexicalization is a useful property, e.g. a rule like
NP → NP creates infinite valid derivations	

12

Strong vs. Weak Generative
Capacity	

•  A property of a formal grammar, e.g. of a regular
grammar or a CFG	

•  Weak Generative Capacity of a grammar is the
set of strings or the string language	

•  Strong Generative Capacity of a grammar is the
set of structures (usually the set of trees) produced
by the grammar or the tree language	

13

Tree Languages	

 S → A B
 A → a A | a
 B → B b | b

This grammar generates the
tree language informally
shown below	

S

A B

a b

S

A

B

a

b

A

a

S

A

B

a

b

A

a B

b

S

A

B

a

b

A

a B

b

A a b B

Note that the heights of the two
branches do not have to be equal	

14

Grammars that generate trees	

15

A Tree Language with no CFG	

Claim: There is no CFG that can
produce the tree lang below:	

S

A A

a b

S

A

A

a

b

A

a

S

A

A

a

b

A

a A

b

S

A

A

a

b

A

a A

b

A a b A

Note that the heights of the two
branches do not have to be equal	

 S → A A
 A → a A | a
 A → A b | b

16

Grammars for Tree Languages	

•  A simple trick: start with a

CFG that almost works	

•  Then re-label the node

labels, map B to A to get
the desired tree set	

•  But how can we directly
generate the tree sets?	

•  We need a generative
device that generates
trees, not strings	

•  (Thatcher, 1967)
(Brainerd, 1969) and
(Rounds, 1970) provided
such a generative device	

 S → A B
 A → a A | a
 B → B b | b

S

A

B

a

b

A

a B

b

Map B to A	

Local set:
tree sets
from CFGs

Recognizable
set: local set
closed under
node relabeling

17

Regular Tree Grammars	

 start state: q
 q → S(x0 x1)
 x0 → A(a x0)
 x1 → A(x1 b)
 x0 → A(a)
 x1 → A(b)

•  RTGs = Top-down tree automata	

•  Can generate infinite tree sets	

•  Found useful in syntax-based
statistical machine translation (May &
Knight, 2006)	

note: rhs can be a
tree of any size!	

S

A

A

a

b

A

a A

b

S

A

A

a

b

A

a

q

q

x1

x0

x0

x1

x1 x0

x0

18

Regular Tree Grammars	

•  RTGs generate tree languages	

•  The yield of each tree in this language

produces a string	

•  yield(RTG) provides a string language	

•  For each RTG: yield(RTG) = CFL	

•  But the set of tree languages of CFGs is

contained within that of RTGs	

19

A Tree Language with no RTG	

Claim: There is no RTG that can
produce the tree language below:	

S

A A

a b

S

A

A

a

b

A

a A

b

S

A

A

a

b

A

a A

b

A a b A

 q → S(x0 x1)
 x0 → A(a x0) | A(a)
 x1 → A(x1 b) | A(b)

Now consider the tree lang where the
depth of the two branches is equal	

RTG is like
a finite-state
machine, the
state cannot
count how
many times
it was
reached	

20

Context-free Tree Languages	

R1: S → C(a)
R2: C(x1) → x1
R3: C(x1) → C(b(x1 x1))

S b

b b

a a a a

⇒
R3

⇒
R2 R1

⇒
R3
⇒

(Rounds 1970)	

String language	

C

a b

a a

C

C

b

b b

a a a a

21

Context-free Tree Languages	

•  yield(CFTLs) = Indexed Languages (Fischer, 1968)	

•  Indexed languages: does not have the constant

growth property	

•  Also, recognition algorithm is NP-complete

(Rounds, 1973)	

•  Perhaps there is a tree grammar formalism

between RTG and CFTG?	

•  How much context-sensitivity over RTGs should

this tree grammar have?	

22

Motivation #1 ���
Context-sensitive predicates on trees

bear less fruit than you think*	

* borrowed from a title of a paper by A. Joshi	

23

Tree Languages: Another Example	

A more practical example	

E → E + E	

E → E * E	

E → (E)	

E → N 	

E	

E	
 E	
+	

E	
 E	
*	
2	

3	
 5	

E	

E	
E	
 *	

E	
 E	
+	
 5	

2	
 3	
2+3*5 is ambiguous	

either 17 or 25	

Ambiguity resolution: *
has precedence over +	

cannot use RTGs!	

24

Tree Languages: Context-sensitivity	

Eliminating ambiguity	

E → E + E
 ¬(+__)∧¬(*__)∧¬(__*)	

E → E * E
 ¬(*__)	

E → (E)	

E → N 	

E	

E	
 E	
+	

E	
 E	
*	
2	

3	
 5	

E	

E	
E	
 *	

E	
 E	
+	
 5	

2	
 3	

similar to context-
sensitive grammars!	

25

Context-sensitive Grammars	

•  Rules of the form αAβ → αγβ where γ cannot be
the empty string, also written as A → γ / α__β 	

•  CSGs are very powerful: they can generate
languages like { 1p : p is prime }	

•  This kind of computational power is unlikely to be
needed to describe natural languages	

•  Like other grammar formalisms in the Chomsky
hierarchy CSGs generate string sets	

•  What if they are used to recognize tree sets?	

26

Context-sensitive Grammars	

1: S → S B C
2: S → a C
3: a B → a a
4: C B → B C
5: B a → a a
6: C → b

 S ⇒ S B C (1)
 ⇒ S B C B C (1)
 ⇒ a C B C B C (2)
 ⇒ a B C C B C (4)
 ⇒ a a C C B C (3)
 ⇒ a a C B C C (4)
 ⇒ a a B C C C (4)
 ⇒ a a a C C C (3)
 ⇒ a a a b C C (6)
 ⇒ a a a b b C (6)
 ⇒ a a a b b b (6)

27

Context-sensitive predicates	

•  Consider each CSG rule A → γ / α__β to be a
predicate (i.e. either true or false)	

•  Apply all the rules in a CSG as predicates on an
input tree	

•  If all predicates are true then accept the tree, else
reject the tree	

•  Can be easily extended to a set of trees and used to
accept a tree set	

•  Can we precisely describe this set of tree
languages?	

28

Peters-Ritchie Theorem	

•  The Peters-Ritchie Theorem (Peters & Ritchie,
1967) states a surprising result about the
generative power of CSG predicates	

•  Consider each tree set accepted by CSG predicates	

•  Theorem: The string language of this tree set is a

context-free language	

•  Each CSG when applied as a set of predicates can

be converted into a weakly equivalent CFG	

•  See also: (McCawley, 1967) (Joshi, Levy & Yueh,

1972) (Rogers, 1997)	

29

Local Transformations	

•  This theorem was extended by (Joshi & Levy,
1977) to handle arbitrary boolean combinations
and sub-tree / domination predicates	

•  Proof involves conversion of all CSG predicates
into top-down tree automata that accept tree sets	

•  (Joshi & Levy, 1977) showed transformations
used in transformational grammar can be written
in this way	

•  Important caveat: we assume some source GEN
generating trees which are then validated.
(connection to Optimality Theory)	

30

Tree-Adjoining Grammars	

•  Construct a tree set out of tree fragments	

•  Each fragment contains only the structure needed

to express the locality of various CSG predicates	

•  Each tree fragment is called an elementary tree	

•  In general we need to expand even those non-

terminals that are not leaf nodes: leads to the
notion of adjunction	

31

Tree-Adjoining Grammars	

E	

E	
 E *	

3	

E	

2	

E	

3	

E	

5	

E	

E	
 E	
+	

2	

t1 t2 t3 t4 t5

all constraints are checked
locally in the tree where
adjunction occurs	

E	

5	

t3

E	

E	
 E	
*	

3	

t5

E	

E	
 E	
+	

2	
t4

derivation tree	
 derived tree	

(¬t5)

(¬t4)

notice how the root node
and frontier node are the
same label	

Input string: 2 + 3 * 5	

32

Tree-Adjoining Grammars	

E	

E	
 E *	

3	

E	

2	

E	

3	

E	

5	

E	

E	
 E +	

2	

t1 t2 t3 t4 t5

E	

5	

t3

t4
E	

E	
 +	

2	

derivation for 3*2+5	

(¬t5)

(¬t4)

33

Tree-Adjoining Grammars	

E	

E	
 E *	

3	

E	

2	

E	

3	

E	

5	

E	

E	
 E +	

2	

t1 t2 t3 t4 t5

t3
E	

E	
 E	
*	

3	

t4

t5

derivation for 3*2+5	

(¬t5)

(¬t4)

E	

5	

E	

+	
E	

2	

E	

34

Tree-Adjoining Grammars	

E	

E	
 E *	

3	

E	

2	

E	

3	

E	

5	

E	

E	
 E +	

2	

t1 t2 t3 t4 t5

E	

5	

t3

E	

E	
 E	
*	

3	

t4

E	

+	

2	

t5

derivation for 3*2+5	

(¬t5)

(¬t4)

35

Tree-Adjoining Grammars	

•  A TAG G = (N, T, I, A, S) where	

–  N is the set of non-terminal symbols	

–  T is the set of terminal symbols	

–  I is the set of initial or non-recursive trees built from N,

T and domination predicates	

–  A is the set of recursive trees: one leaf node is a non-

terminal with same label as the root node	

–  S is set of start trees (has to be initial)	

–  I and A together are called elementary trees	

36

Adjunction Constraints	

•  Adjunction is the rewriting of a non-
terminal in a tree with an auxiliary tree	

•  We can think of this operation as being
“context-free”	

•  Constraints are essential to control
adjunction: both in practice for NL syntax
and for formal closure properties	

37

Adjunction Constraints	

•  Three types of constraints:	

–  null adjunction (NA): no adjunction allowed at

a node	

–  obligatory adjunction (OA): adjunction must

occur at a node	

–  selective adjunction (SA): adjunction of a pre-

specified set of trees can occur at a node	

38

Adjunction Constraints	

This TAG can generate the language 	

L = { anbncndn : n ≥ 1 }	

Note that the OA & NA constraints are
crucial to obtain the correct language	

S

S

S*

a d

c b

NA

NA

S

S a d

c b S

ε

NA

NA

S

a d

c b S

ε

S

a d

c b S

S

NA

NA

NA

NA

S

ε

OA

39

Tractable Descriptions	

•  Why not use context-sensitive grammars?	

•  For G, given a string x what is the complexity of

an algorithm for the question: is x in L(G)?	

–  Unrestricted Grammars/Turing machines: undecidable	

–  Context-sensitive: NSPACE[n] linear non-deterministic

space	

–  Indexed Grammars: NP-complete	

–  Tree-Adjoining Grammars: O(n6)	

–  Context-free: O(n3)	

–  Regular: O(n)	

40

Connections with���
Context-free tree grammars	

41

Indexed languages

Context-free languages

Regular languages

Context-free tree grammars

Regular tree grammars

Tree-adjoining languages

??

yield

yield

yield

Strings Trees

42

 CFLs :: RTLs ���
TALs :: ??	

Regular
Tree

Languages

Context
Free

Languages

Tree
Adjoining

Languages

ATLs:
• Tree language
defn for TALs
• Rid TAG of adj
constraints
• Cf. CFTGs
• Useful for ling?
• Prob version is
interesting

43

Context-free Tree Languages	

R1: S → C(a)
R2: C(x1) → x1
R3: C(x1) → C(b(x1 x1))

S b

b b

a a a a

⇒
R3

⇒
R2 R1

⇒
R3
⇒

(Rounds 1970)	

String language	

C

a b

a a

C

C

b

b b

a a a a

44

Modifying Context-free Tree Grammars	

•  Simple CFTG = linear and non-deleting	

•  Linear = tree variables shalt not multiply	

•  Non-deleting = tree variables shalt not be

matched on the lhs and dropped in the rhs	

•  The non-deleting condition can be dropped

(Fujiyoshi, 2005)	

•  Monadic CFTG = only one subtree can be

matched on the lhs of any rule, A(x) → T	

45

Monadic Simple Context-free Tree Languages	

R1: q → C(S(e))
R2: C(x1) → S(a C(S(b x1 c)) d)
R3: C(x1) → x1

q
⇒
R3 R1

⇒
R2
⇒

R2
⇒

S

d a

S

c b S

e

S

d a S

c b

S

d a C

S

c b S

e

S

d a S

d a

S

c b S

e

S

c b

C

S

e

C

46

Monadic Simple CFTGs	

•  Tree language of TAGs is contained within
monadic simple CFTGs	

•  TAGs are weakly equivalent to CFTGs
(Fujiyoshi & Kasai, 2000; Mönnich 1997)	

•  Focus of this talk: how about extending
RTGs instead? (Lang, 1994)	

•  Another way to limit CFTGs is the so-called
spinal form CFTG (Fujiyoshi & Kasai, 2000)	

47

From Trees to Strings	

48

Adjoining Tree Grammars	

•  ATG is a tree grammar formalism over strings	

•  Rules are of the form q(x) → T; q is a state, x is

tree variable, T is a tree	

•  The rhs tree T is built with terminals a, b, … and

non-terminals A, B, …	

•  Tree T can also contain tree variables which can

be internal nodes dominating a single subtree
(unlike RTGs where they occur on the frontier)	

•  Finally, ATGs have a start tree variable	

•  An ATG is well-formed if for every sentential

form w (q ⇒* w) is a well-formed tree.	

49

q

ε

s → R1: q(x) → 	
R2: R3:

s

⇒
R3

⇒
R2

R1
⇒

R3
⇒

q

ε

S

q

S

a d

c b

ε

S

a d

S c b

ε

S

q

S

a d

c b

S

a d

S c b

ε

S

S

S

a d

c b

S

q

S

a d

c b

q(x) →

x

Using a tree grammar
notation, x matches a
subtree in the lhs and is
copied over to the rhs	

S

x

50

q

ε

s → R1: q(x) → 	
R2: R3:

s

⇒
R3

⇒
R2

R1
⇒

R3
⇒

q

ε

A

q

B

a d

c b

ε

A

a d

B c b

ε

A

q

B

a d

c b

A

a d

B c b

ε

A

S

B

a d

c b

Notice that the path from
root to frontier is AnSBn	

S

x

A

q

B

a d

c b

q(x) →

x

51

Adjoining Tree Grammars	

•  Similar to defn by (Lang, 1994)	

•  No adjoining constraints required	

•  Weakly equivalent to TAGs	

•  Set of tree languages for TAGs contained within

that for ATGs	

•  Is ATG attractive for simplifying some TAG-

based linguistic analysis?	

–  Analyses that use adjoining constraints (feature

structures)	

–  Analyses that require different labels on rootnode and

footnode	

52

Adjoining Tree Grammars	

•  Closure properties for TALs (union, concat,
homomorphism, substitution) can be shown using
ATGs instead of TAGs.	

–  By taking yield of the tree language	

–  Without using adjunction constraints	

•  Intersection with regular languages (Lang, 1994)	

•  What about pumping lemma? cf. (Kanazawa, 2006)	

•  Polynomial time parsing algorithm provided by

(Lang, 1994) = takes a string as input not a tree.	

53

ATGs and monadic simple CFTGs	

•  Are ATGs strongly equivalent to monadic
simple CFTGs?	

•  First step: what is strong equivalence?	

•  For each m.s. CFTG construct an ATG that

produces the same tree set, and vice versa	

•  Shown by (Kepser & Rogers, 2011): TAGs

closed under node relabeling are equal to
monadic simple CFTGs.	

54

Motivation #2 ���
Lexicalization of Context-Free

Grammars	

55

Lexicalization of Grammars	

•  We know that a CFG can be ambiguous: provide
more than one parse tree for an input string	

•  A CFG can be infinitely ambiguous	

•  Structure can be introduced without influence

from input string, e.g. the chain rule NP → NP
has this effect	

•  Lexicalization of a grammar means that each rule
or elementary object in the grammar is associated
with some terminal symbol	

56

Lexicalization of Grammars	

•  Lexicalization is an interesting idea for syntax,
semantics (in linguistics) and sentence processing
(in psycho-linguistics)	

•  What if each word brings with it the syntactic and
semantic context that it requires?	

•  Let us consider lexicalization of Context-free
Grammars (CFGs)	

57

Lexicalization of CFGs	

•  A normal form is a grammar transformation that
does not change the language of the grammar	

•  Can we transform every CFG to a normal form
where there is guaranteed to be a terminal symbol
on the right hand side of each rule	

•  Answer: yes - using Greibach Normal Form
(GNF)	

•  GNF: every CFG can be transformed into the form
A → aα where A is a non-terminal, a is a terminal
and α is a string of terminals and non-terminals	

58

T(G) ≠ T(GNF(G))	

 A1 → A2 A3
 A2 → A3 A1 | b
 A3 → A1 A2 | a

A1

A2 A3

A3 A1

A2 A3

a b a a

A1

a b a a

A1 A3

A3

Greibach Normal Form does not provide a
strongly equivalent lexicalized grammar:
the original tree set is not preserved	

59

Tree Substitution Grammar	

 S → S S
 S → a

Consider a simple expansion of each
context-free rule into a tree fragment where
each fragment is lexicalized	

S

S S↓

a

S

S↓ S

a

S

a
S

S S

a

S S

a

a

S

S S

a

a

S

S S

a

a

S

this tree cannot be derived	

60

Tree Adjoining Grammar	

 S → S S
 S → a

S

S S*

a S

S* S

a

S

a
S

S S

a

a

S

S S

a

a

S

S

a

S

S S*

a

+

S

a

S

S

a

61

Tree Adjoining Grammar	

 S → S S
 S → a

S

S S*

a S

S* S

a

S

a
S

S S

a

a

S

S S

a

a

S
S

S S*

a

+

S

a

S

S

a

S

a

S

S

a
S

S

a

62

Tree Adjoining Grammar	

 S → S S
 S → a

S

S S*

a S

S* S

a

S

a
S

S S

a

a

S

S S

a

a

S
S

S S*

a

+

S

a

S

S

a

S

S

a

S

a

S

S S*

a

S

S

a

S

S

a

S

63

Tree Adjoining Grammar	

 S → S S
 S → a

S

S* S

a

S

a
S

S S

a

a

S

S S

a

a

S
S

S S*

a

S

a

S

S

a

S

S

a

S

S

a

64

Lexicalization Through TAG	

•  This was an instructive example of how adjoining
can be used to lexicalize CFGs while preserving
the tree sets (strong generative capacity)	

•  (Joshi & Schabes, 1997) show that every CFG can
be strongly lexicalized by TAG	

•  Later work by Schabes et al shows that CFGs can
be lexicalized by Tree-insertion grammars
which are weakly equivalent to CFGs	

65

Tree-Insertion with adjoining	

+ X

X

X

X

X

66

Tree-Insertion with adjoining	

+ X

X

X

X

X

67

Wrapping with adjoining	

+ X

X

X

X

X

A new possible way of using adjoining: to
wrap strings. More weak generative power
than concatenation possible in CFGs.	

u

v

w

x y

68

Lexicalization and TAG	

•  (Kuhlmann & Satta, CL 2012) show that
Tree-Adjoining Languages are not closed
under lexicalization	

•  Every TAL does not have a lexicalized
TAG grammar	

•  (Maletti and Engelfriet, ACL 2012) show
that Context-free Tree Grammars of rank 2
can lexicalize TAGs	

69

Parsing Complexity: CKY for TAG	

+ X

X

X

X

X i j k l

j k

To recognize X with span (i,l), we need to recognize
span (j,k) and also deduce the span (i,j,k,l) for X	

70

Parsing Complexity: CKY for TAG	

+ X

X

X

X

X i j k l

j k

To recognize X with span (i,l), we need to recognize
span (j,k) and also deduce the span (i,j,k,l) for X	

•  Each substring (i,l) can be a constituent, there
are O(n2) substrings, 	

•  For each of them we need to check for each
non-terminal if it dominates an adjunction
span (i,j,k,l) 	

•  There are O(n4) such spans	

•  Hence we have complexity of recognizing
membership of a string in a TAG to be O(n6)	

71

TAG Formal Properties ���
(Vijay-Shanker, 1987)	

•  Membership is in P: O(n6)	

•  Tree-Adjoining Languages (TALs) are closed

under union, concatenation, Kleene closure (*), h,
h-1, intersection with regular languages, and
regular substitution	

•  There is also a pumping lemma for TALs	

•  TALs are a full abstract family of languages

(AFL)	

•  TALs are not closed under intersection,

intersection with CFLs, and complementation	

72

Motivation #3 ���
Is Human Language Regular,

Context-free or Beyond?	

73

Natural Language & Complexity	

•  One notion of computational complexity: the complexity
of various recognition and generation algorithms	

•  Another notion: the complexity of the description of
human languages	

•  What is the lowest upper bound on the description of all
human languages? regular, context-free or beyond?	

•  Describes a class of languages, including closure
properties such as union, intersection, etc.	

•  Automata theory provides recognition algorithms,
determinization, and other algorithms	

74

Grammar Size	

•  Consider the set of strings
that includes enjoy,
enrich, enjoyable,
enrichment but not
*joyable, *richment	

•  The CFG is clearly more
compact	

•  Argument from learning:
if you already know
enjoyment then learning
rich means you can
generate enrichment as
well	

 V → X
 A → X -able | X -ment
 X → en- NA
 NA → joy | rich

en-
joy
rich

joy
rich

-able
-ment

Regular grammars can be
exponentially larger than
equivalent CFGs

75

Sufficient Generative Capacity	

•  Does a formal grammar have sufficient generative
capacity?	

•  Two cases: weak and strong generative capacity	

•  For strong GC: does the grammar permit the right

kind of dependencies, e.g. nested dependencies	

•  For weak GC: usually requires some kind of

homomorphism into a formal language whose
weak GC can be determined (the formal language
class should be closed under homomorphisms)	

76

Is NL regular: strong GC	

•  Regular grammars cannot derive nested
dependencies	

•  Nested dependencies in English:	

–  the shares that the broker recommended were bought	

 N1 N2 V2 V1	

–  the moment when the shares that the broker

recommended were bought has passed	

 N1 N2 N3 V3 V2 V1	

•  Can you provide an example with 4 verbs?	

•  Set of strings has to be infinite: competence vs.

performance	

77

Is NL regular: strong GC	

•  Assume that in principle
we could process infinitely
nested dependencies:
competence assumption	

•  The reason we cannot is
because of lack of
memory in pushdown
automata: performance
can be explained	

•  CFGs can easily obtain
nested dependencies	

 S → a S b
 S → ε

 S1 ⇒ a1 S2 b1
 ⇒ a1 a2 S3 b2 b1
 ⇒ a1 a2 ... aN S bN ... b2 b1
 ⇒ a1 a2 ... aN bN ... b2 b1

78

Is NL regular: Weak GC	

•  Consider the following set of strings (sentences):	

– S = if S then S	

– S = either S or S	

– S = the man who said S is arriving today	

•  Map if, then to a and either, or to b	

•  Map everything else to the empty string	

•  This results in strings like abba, abaaba, or

abbaabba	

79

Is NL regular: Weak GC	

•  The language is the set of strings 	

L = { ww’ : w from (a|b)* and w’ is

reversal of w }	

•  L can be shown to be non-regular using the

pumping lemma for regular languages	

•  L is context-free	

80

Is NL context-free: Strong GC	

•  CFGs cannot handle crossing dependencies	

•  Dependencies like aN... a2 a1 bN... b2 b1 are not

possible using CFGs	

•  But some widely spoken languages have clear

cases of crossing dependencies	

–  Dutch (Bresnan et al., 1982)	

–  Swiss German (Shieber, 1984)	

–  Tagalog (Rambow & MacLachlan, 2002)	

•  Therefore, in terms of strong GC, NL is not
context-free	

81

Is NL context-free: Weak GC	

•  Weak GC of NL being greater than context-free
was harder to show, cf. (Pullum, 1982)	

•  (Huybregts, 1984) and (Shieber, 1985) showed
that weak GC of NL was beyond context-free
using examples with explicit case-marking from
Swiss-German	

mer d’ chind em Hans es huus lönd hälfed aastriiche

we children-acc Hans-dat house-acc let-acc help-dat paint-acc

[({]) }

this language is not context-free	

82

Generating Crossing Dependencies	

1: S → S B C
2: S → a C
3: a B → a a
4: C B → B C
5: B a → a a
6: C → b

 S1 ⇒ S2 B1 C1 (1)
 ⇒ S3 B2 C2 B1 C1 (1)
 ⇒ a3 C3 B2 C2 B1 C1 (2)
 ⇒ a3 B2 C3 C2 B1 C1 (4)
 ⇒ a3 a2 C3 C2 B1 C1 (3)
 ⇒ a3 a2 C3 B1 C2 C1 (4)
 ⇒ a3 a2 B1 C3 C2 C1 (4)
 ⇒ a3 a2 a1 C3 C2 C1 (3)
 ⇒ a3 a2 a1 b3 C2 C1 (6)
 ⇒ a3 a2 a1 b3 b2 C1 (6)
 ⇒ a3 a2 a1 b3 b2 b1 (6)

83

Simple Generation of Crossing
Dependencies	

•  Instead of using powerful swapping operations
(corresponding to more powerful automata)	

•  We instead build local dependencies into
elementary trees	

•  Strong GC: Crossing dependencies arise by simple
composition of elementary trees	

•  The context-sensitive part is built into each
elementary tree: the remaining composition is
“context-free”	

•  Weak GC: Crossing dependencies = string
wrapping 	

84

Crossing Dependencies with Adjoining	

q

ε

s → R1: q(x) → 	
R2: R3: S

x

q(x) → S

q

S

b

a

x s
R1
⇒ q

ε

R3
⇒

S

q

S

b1

a1

ε

85

Crossing Dependencies with Adjoining	

q

ε

s → R1: q(x) → 	
R2: R3: S

x

q(x) → S

q

S

b

a

x
S

q

S

b1

a1

ε

R3
⇒

S

ε

S

b1

a1

S

q

S

b2

a2

86

Crossing Dependencies with Adjoining	

q

ε

s → R1:

q(x) → 	
R2: S

x

R3: q(x) → S

q

S

b

a

x

S

ε

S

b1

a1

S

q

S

b2

a2

R3
⇒

ε

S

S

b1

a1

S

S

b2

a2

S

q

S

b3

a3

87

Crossing Dependencies with Adjoining	

R2
⇒

ε

S

S

b1

a1

S

S

b2

a2

S

q

S

b3

a3

ε

S

S

b1

a1

S

S

b2

a2

S

S

S

b3

a3

q

ε

s → R1:

q(x) → 	
R2: S

x

R3: q(x) → S

q

S

b

a

x

88

Crossing Dependencies with Adjoining	

ε

S

S

b1

a1

S

S

b2

a2

S

S

S

b3

a3

q

ε

s → R1:

q(x) → 	
R2: S

x

R3: q(x) → S

q

S

b

a

x

R1

R3

R3

R3

R2

89

Crossing Dependencies with Adjoining	

q

ε

s → R1:

q(x) → 	
R2: S

x

R3: q(x) → S

q

S

b

a

x

a3 b3 a2 b2 a1 b1

R1

R3

R3

R3

R2

90

Nested Dependencies with Adjoining	

q

ε

s → R1:

q(x) → 	
R2: S

x

R3: q(x) → S

q

S

b

a

x ε

S

S

b1

a1

S

S

b2

a2

S

S

S

b3

a3

R1

R3

R3

R3

R2

91

Nested Dependencies with Adjoining	

q

ε

s → R1:

q(x) → 	
R2: S

x

b2 a2 b1 a1 a3 b3

R1

R3

R3

R3

R2 R3: q(x) → S

q

S

b

a

x

92

Related Formalisms	

•  Another route to lexicalization of CFGs: categorial
grammars (CG is not strongly equivalent to CFGs
but can weakly lexicalize them) 	

•  Several different mathematically precise formal
grammars were proposed to deal with the
motivations presented here	

•  Some examples: 	

– Multiple context-free grammars (MCFG)	

–  head grammars (HG does string wrapping); 	

93

Related Formalisms	

•  Some examples: 	

–  combinatory categorial grammars (CCG;

extends CG); 	

–  linear indexed grammars (LIG; less powerful

than indexed grammars)	

•  (Vijay-Shanker, 1987) and (Weir, 1988) showed

that HG, CCG, LIG and TAG are all weakly
equivalent!	

•  They also provide a powerful formalism called
Linear Context-Free Rewriting System (LCFRS)	

Mildly Context-Sensitive Formalism	

•  Proper extension of Context-free Languages	

– Should contain CFLs	

•  Limited crossing dependencies	

– Less powerful than full context-sensitive

languages	

•  Constant growth property	

– Relation of derivation to string is linear	

•  Tractable: polynomial time parsing	

94

(Joshi, 1985)	

95

Tree-adjoining grammars and
crossing dependencies	

Material adapted from Marco Kuhlmann’s slides

Dependency structures	

96

I cooked the beans that you ate yesterday

Lexicalized Grammars produce dependencies

1 2 3 4 6 7 8 5

Projective Dependencies	

97

•  Intervals define contiguous sub-strings
•  Projective dependencies: all subtrees form

intervals

I cooked the beans that you ate
1 2 3 4 5 6 7

Projective Dependencies	

98

•  Intervals define contiguous sub-strings
•  Projective dependencies: all subtrees form

intervals, e.g. [5,7]

I cooked the beans that you ate
1 2 3 4 5 6 7

Projective Dependencies	

99

•  Intervals define contiguous sub-strings
•  Projective dependencies: all subtrees form

intervals, e.g. [3,7]

I cooked the beans that you ate
1 2 3 4 5 6 7

Projective Dependencies	

100

•  Context-free grammars can model projective
dependencies

•  Are projective dependencies sufficient for
natural language?

I cooked the beans that you ate
1 2 3 4 5 6 7

Projective Dependencies	

101

Language	
 Crossing
Dependencies %	

Sentences with
crossing deps %	

Arabic	
 0.4	
 10.1	

Basque	
 2.9	
 26.2	

Catalan	
 0.1	
 2.9	

Chinese	
 0.0	
 0.0	

Czech	
 1.9	
 23.2	

English	
 0.3	
 6.7	

Greek	
 1.1	
 20.3	

Hungarian	
 2.9	
 26.4	

Italian	
 0.5	
 7.4	

Turkish	
 5.5	
 33.3	

Block Degree	

102

•  Block degree measures non-projectivity
•  Block degree = number of intervals per sub-tree,

e.g. { [3,4], [6,8] } is block degree 2

I cooked the beans that you ate yesterday
1 2 3 4 6 7 8 5

Block 1 Block 2

Block Degree	

103

•  Block degree measures non-projectivity
•  Block degree = number of intervals per sub-tree,

e.g. { [3,4], [6,8] } is block degree 2

I cooked the beans that you ate yesterday
1 2 3 4 6 7 8 5

Gap

Ill-nested Dependencies	

104

1 2 3 4 6 7 8 5

Ill-nested Dependencies	

105

1 2 3 4 6 7 8 5

Ill-nested Dependencies	

106

1 2 3 4 6 7 8 5

u1

u2

v1

v2

•  Well-nested dependencies: constraint on pairs of
edges

•  If u1 < u2 and v1 < v2 and v1 < u2 then u1 must
dominate v1 or vice versa

Well-nested Dependencies	

107

I cooked the beans that you ate yesterday
1 2 3 4 6 7 8 5

u1

u2
v1 v2

•  In this example, u1 < v1 < u2 < v2
•  And u1 dominates v1 and u2

Block Degree and Well-nestedness	

•  Prague Dependency Treebank 1.0 with
73,088 sentences.	

•  99.48% of sentences have a block degree of
2 and are well-nested.	

•  0.52% are either ill-nested or block degree
is greater than 2.	

•  Similar analysis for other languages.	

•  Results from Marco Kuhlmann’s thesis	

108

Generative Capacity ���
(Crossing Dependencies)	

109

Formalism	
 Dependencies	

CFG	
 projective	

TAG	
 Block degree ≤ 2 and

Well-nested	

Coupled CFG	
 Block degree ≤ k and

Well-nested	

LCFRS	
 Block degree ≤ k 	

110

Motivations for TAG	

•  NL is probably not weakly context-free, but also
possibly not fully context-sensitive and so NL
could be mildly context-sensitive	

•  Strong lexicalization of CFGs leads to the
adjunction operation	

•  Some NLs clearly show crossing dependencies,
but maybe of limited variety	

•  Many issues of locality in linguistics, e.g.
constraints on long-distance dependencies, can be
encoded within the notion of elementary tree	

111

Tree-Adjoining Grammars: ���
Application to Natural Language	

112

Lexicalized TAG	

•  A Lexicalized TAG (LTAG) is a TAG
where each elementary tree has at least one
terminal symbol as a leaf node	

•  Lexicalization has some useful effects: 	

– finite ambiguity: corresponds to our intuition

about NL ambiguities, 	

–  statistical dependencies between words can be

captured which can improve parsing accuracy	

113

Lexicalized TAG	

•  TAGs do not need to be fully lexical	

– Tree to string rules are sometimes unlexicalized	

– Relative clause formation can be done using

unlexicalized trees	

114

Lexicalized TAG: example	

S

NP↓ VP

VBZ NP↓

bought

t1
NP

NNP

John

t2
NP

NNS

pockets

t3
NP

NN

a shirt

t4
VP

VP* PP

IN NP↓

with

t5
NP

NP* PP

IN NP↓

with

t6 0

1 2

2.1
2.2

Gorn tree address: an index for each node in the tree	

115

S

NP↓ VP

VBZ NP↓

bought

t1
NP

NNP

John

t2
NP

NNS

pockets

t3
NP

NN

a shirt

t4
VP

VP* PP

IN NP↓

with

t5
NP

NP* PP

IN NP↓

with

t6

derivation tree	
 derived tree	

t1(bought)

S

NP VP

VBZ NP

bought
t2(John)

1 NNP

John
t4(a shirt)

2.2

NN

a shirt

116

S

NP↓ VP

VBZ NP↓

bought

t1
NP

NNP

John

t2
NP

NNS

pockets

t3
NP

NN

a shirt

t4
VP

VP* PP

IN NP↓

with

t5
NP

NP* PP

IN NP↓

with

t6

derivation tree	
 derived tree	

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t3(pockets)

t5(with)

2

2.2

S

NP VP

VBZ NP

bought

NNP

John

NN

a shirt

VP
PP

IN NP

with

pockets

NNS

117

S

NP↓ VP

VBZ NP↓

bought

t1
NP

NNP

John

t2
NP

NNS

pockets

t3
NP

NN

a shirt

t4
VP

VP* PP

IN NP↓

with

t5
NP

NP* PP

IN NP↓

with

t6

derivation tree	
 derived tree	

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t6(with)

t3(pockets)

0

2.2

S

NP VP

VBZ NP

bought

NNP

John
NN

a shirt

PP

IN

with

NP

NP

pockets

NNS

118

Comparison with Dependency
Grammar	

•  Compare the derivation tree with the usual notion
of a dependency tree	

•  Note that a TAG derivation tree is a formal
representation of the derivation	

•  In a Lexicalized TAG, it can be interpreted as a
particular kind of dependency tree	

•  Different dependencies can be created by
changing the elementary trees	

•  LTAG derivations relate dependencies between
words to detailed phrase types and constituency	

119

Localization of Dependencies	

•  Syntactic	

–  agreement: person, number, gender	

–  subcategorization: sleeps (null), eats (NP),

gives (NP NP)	

– filler-gap: whoi did John ask Bill to invite ti	

– word order: within and across clauses as in

scrambling, clitic movement, etc.	

120

Localization of Dependencies	

•  Semantic	

–  function-argument: all arguments of the word

that lexicalizes the elementary tree (also called
the anchor or functor) are localized	

– word clusters (word idioms): non-
compositional meaning, e.g. give a cold
shoulder to, take a walk	

– word co-occurences, lexical semantic aspects of
word meaning	

121

Localization of Dependencies	

122

Idioms	

S

NP↓ VP

VBZ NP↓

kicked

t1
NP

NNP

John

t2
NP

NN

the bucket

t3

derivation tree #1	

t1(kicked)

t2(John)
1

t3(the bucket)
2.2

derived tree	
 S

NP VP

VBZ NP

kicked

NNP

John NN

the bucket

t4
S

NP↓ VP

VBZ NP

kicked NN

the bucket

t4(kicked the bucket)

t2(John)

1 derivation tree #2	

123

Phrasal/Light Verbs	

S

NP↓ VP

VBZ NP↓

takes

t1
NP

NNP

John

t2
NP

NN

a walk

t3

derivation tree #1	

t1(takes)

t2(John)
1

t3(a walk)
2.2

derived tree	
 S

NP VP

VBZ NP

takes

NNP

John NN

a walk

t4
S

NP↓ VP

VBZ NP

takes NN

a walk

t4(takes a walk)

t2(John)

1 derivation tree #2	

124

TAG and Generation	

•  TAG has some useful properties with respect to
the problem of NL generation	

•  Adjunction allows a generation planning system to
add useful lexical information to existing
constituents	

•  Makes planning for generation output more
flexible	

–  e.g. if the system has a constituent the book, it can

choose to add new information to it: the red book, if
there is a distractor for that entity for the hearer	

•  cf. Matthew Stone’s SPUD system	

125

TAG with feature structures ���
	

126

TAG with feature structures	

NP

he

NP

him

We want to rule out strings like *him likes he

S

NP↓ VP

V NP↓

likes

[case: nom]

[case: nom] [case: acc]

[case: acc]

•  Use feature structure unification:	

•  [f:+] ∪ [f:-] = fail, [f:+] ∪ [f:+] = [f:+]	

•  [f:+] ∪ [f:] = [f:+], [f:+] ∪ [g:+] = [f:+, g:+]	

•  unification of two feature structures = least most
general feature structure that subsumes both	

127

VP

V NP↓

like

S

NP↓ VP

[tense: -]

TAG with feature structures	

We want to derive he wants to like him

[tense: -]

[tense: -]

[]

S

NP↓ VP

V NP↓

like

VP

V VP*

to

VP

V VP*

wants

[tense: +]

[]

VP

V VP*

to

[tense: -]

[]

128

VP

V NP↓

like

VP

V

to

S

NP↓ VP

[tense: -]

[tense: -]

TAG with feature structures	

We want to derive he wants to like him

S

NP↓ VP

V NP↓

like

[tense: -]

VP

V VP*

to

[tense: -]

[]

VP

V VP*

wants

[tense: +]

[]

VP

V VP*

wants

[tense: +]

[]

129

TAG with feature structures	

We want to derive he wants to like him

Top and bottom features must unify for a derivation to be valid. 	

S

NP↓ VP

V NP↓

like

[tense: -]

VP

V VP*

to

[tense: -]

[]

VP

V VP*

wants

[tense: +]

[]
VP

V NP↓

like

V

to

VP

V

VP
wants

S

NP↓

[tense: -]

[tense: -]

[tense: +]

130

TAG with feature structures	

We want to derive he wants to like him

Adjunction can be exploited to ensure that the
feature structures never grow to an arbitrary size
unlike context-free based unification grammars.	

S

NP↓ VP

V NP↓

like

[tense: -]

VP

V VP*

to

[tense: -]

[]

VP

V VP*

wants

[tense: +]

[]
VP

V NP↓

like

V

to

VP

V

VP
wants

S

NP↓ [tense: +]

[tense: -]

[tense: -]

131

Mapping a TreeBank into
Lexicalized TAG derivations ���

	

Penn Treebank for English	

•  Training data: 40K sentences with the
correct syntactic phrase-structure tree	

•  Test data: ~2K sentences	

•  Evaluation: labeled constituents precision

and recall	

•  Simple PCFGs can get ~84 F1 score.	

•  Also, Treebanks and TAG parsers exist for

other languages: Chinese, Korean, German,
French, …	

132

133

LTAG Derivations from TreeBanks	

•  TreeBanks contain phrase structure trees or dependency
trees	

•  Converting dependency trees into LTAG is trivial	

•  For phrase structure trees: exploit head percolation rules

(Magerman, 1994) and argument-adjunct heuristic rules	

•  First mark TreeBank tree with head and argument

information	

•  Then use this information to convert the TreeBank tree

into an LTAG derivation	

•  More sophisticated approaches have been tried in (Xia,

1999) (Chiang, 2000) (Chen, 2000) and (Shen, 2006)	

134

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	

VP-H	
NP-A	

S	

LTAG derivations from TreeBanks	

135

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	

VP-H	
NP-A	

S	

LTAG derivations from TreeBanks	

NP-A	

136

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	

VP-H	

NP	

S	

LTAG derivations from TreeBanks	

NP↓	

137

LTAG derivations from TreeBanks	

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	
VP-H	
NP	

S	

NP↓	

t(marked)	

t(economic)	

t(achievements)	

t(China)	

t(‘s)	
 t(14)	
 t(open)	
 t(border)	

t(cities)	

138

Ambiguity Resolution ���
	

139

Ambiguity Resolution	

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t3(pockets)

t5(with)
2

2.2

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t6(with)

t3(pockets)

0

2.2

•  Two possible
derivations for John
bought a shirt with
pockets.	

•  One of them is more
plausible than the
other.	

•  Statistical parsing is
used to find the most
plausible derivation.	

140

Statistical parsing	

•  Statistical parsing = ambiguity resolution
using machine learning	

•  S = sentence, T = derivation tree	

•  Find best parse: 	

P(T,S) is a generative model: it contains parameters	

that generate the input string

141

Statistical Parsing with TAG	

P(tree1, John bought a shirt with
pockets)=	

P(t1) * P(t1#0, NONE | t1#0) *	

P(t1#1, t2 | t1#1) *	

P(t1#2.2, t4 | t1#2.2) * 	

P(t1#2, NONE | t1#2) *	

P(t2#0, NONE | t2#0) *	

P(t4#0, t6 | t4#0) *	

P(t6#0, NONE | t6#0) *	

P(t6#2, NONE | t6#2) *	

P(t6#2.2, t3 | t6#2.2) *	

P(t3#0, NONE | t3#0)	

P(tree2, John bought a shirt with
pockets)=	

P(t1) * P(t1#0, NONE | t1#0) *	

P(t1#1, t2 | t1#1) *	

P(t1#2.2, t4 | t1#2.2) *	

P(t1#2, t5 | t1#2) *	

P(t2#0, NONE | t2#0) *	

P(t4#0, NONE | t4#0) *	

P(t5#0, NONE | t5#0) *	

P(t5#2, NONE | t5#2) *	

P(t5#2.2, t3 | t5#2.2) *	

P(t3#0, NONE | t3#0)	

S

NP↓ VP

VBZ NP↓

bought

t1

VP

VP* PP

IN NP↓

with

t5

NP

NNP

John

t2
NP

NNS

pockets

t3

NP

NN

a shirt

t4

NP

NP* PP

IN NP↓

with

t6

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t3(pockets)

t5(with)
2

2.2

t1(bought)

t2(John)
1

t4(a shirt)
2.2

t6(with)

t3(pockets)

0

2.2

142

Statistical Parsing with TAG	

•  PCFG	

•  Let tree T be built out of r CFG

rules	

•  Note that in both PCFG and Prob.

TAG, T is the derivation tree 	

•  (in contrast with DOP models)	

•  Find all T for given S in O(G2n3)	

•  For lexicalized CFG: O(n5)	

•  Prob. TAG	

•  Let tree T be built using r

elementary trees, t1 … tr	

•  Let there be s nodes where

substitution can happen	

•  And a nodes where adjunction can

happen	

•  Find all T for given S in O(n6)	

a

143

Statistical Parsing with ATGs	

S

 n x

VBZ n

bought

q → R1: y

NNP

John

n → R2: y

NNS

pockets

n → R3: y

NN

a shirt

n → R4:

 x

VP PP

IN n

with

x(n) → R5: x(n) → VP(n) R6:

y(n) → NP(n) R7:

 y

NP PP

IN n

with

y(n) → R8:

P(R2) + P(R3) + P(R4) = 1

P(R7) + P(R8) = 1

P(R5) + P(R6) = 1

144 derivation tree	
 derived tree	

S

NP VP

VBZ NP

bought

NNP

John

NN

a shirt

VP
PP

IN NP

with

pockets

NNS

R1:bought

R2:John R4:shirt R5:with

R3:pockets R6 R7

R7

R7

P(R1) * P(R2) * P(R4) * P(R5) * P(R3) * P(R6) * (3 * P(R7))

Probabilities do not have to be bi-lexical!	

145 derivation tree	
 derived tree	

S

NP VP

VBZ NP

bought

NNP

John
NN

a shirt

PP

IN

with

NP

NP

pockets

NNS

R1:bought

R2:John R4:shirt

R8:with

R3:pockets R7

R7

R7

R6

P(R1) * P(R2) * P(R4) * P(R8) * P(R3) * P(R6) * (3 * P(R7))

146

Statistical Parsing with TAG ���
(Carreras, Collins and Koo 2008)���

CoNLL 2008 Best Paper	

TAG-based discriminative parsing	

•  State of the art discriminative parsing using
TAG	

•  Combines dependency parsing algorithms
with phrase-structure parsing algorithms	

•  Does better on both phrase-structure and
dependency evaluation	

– Phrase structure: 91.1 F1 (versus best 91.7 F1)	

– Dependencies: 93.5% (versus 92.5%)	

147

TAG-based discriminative parsing	

•  Parse trees y for a given sentence x	

•  Each tree y comes from a set Y(x)	

•  Training: learn a weight vector w using

perceptron updates on training data	

•  Representation: one weight per feature in a

feature vector f(x, y)	

•  Discriminative parsing at test time: find the

y in Y(x) that maximizes w . f(x,y)	

148

149

TAG-based discriminative parsing	

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	
VP	
NP	

S	

t(marked)	

t(economic)	

t(achievements)	

t(China)	

t(‘s)	
 t(14)	
 t(open)	
 t(border)	

t(cities)	

Dependency
evaluation

150

China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	

NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	

‘s	

CD	

NP	
 NP	

VP	
NP	

S	

TAG-based discriminative parsing	

Constituency
evaluation

TAG-based discriminative parsing	

•  All components have been specified except
for f(x,y)	

•  Any useful feature functions can be used,
aimed at reducing uncertainty in parsing	

•  (Carreras, Collins and Koo, 2008) used
several features from the existing literature	

•  Plus several TAG based features	

151

Features	

•  Lexical features e(x,(i,t))	

–  e.g. marked takes (S(VP(VBD)))	
•  Dependency features d(x,(h,m,l))	

–  e.g. economic -> achievements	

•  Grammatical relations	

–  e.g. NP JJ NNS defines the above dependency	

•  Sibling dependencies	

•  Two types of Grandparent dependencies	

152

border	
 cities	
 marked	
 economic	

NNS	
 VBD	

VP	
NP	

S	

economic	
 achievements	

JJ	
 NNS	

NP	

Efficient Parsing	

•  The algorithm used for TAG parsing adapts

Eisner’s dependency parsing algorithm	

•  Complexity for second order inference

(using grandparents) is O(n4)	

•  Too slow to be tractable in large scale data

driven experiments	

•  (Carreras, Collins and Koo, 2008) use

coarse to fine parsing techniques to speed
up inference.	

153

TAG for discriminative parsing	

•  1st step: Uses dependency parsing (without
TAG trees) to eliminate unlikely
attachments	

•  2nd step: Uses full TAG model for accurate
parsing as second step	

•  State of the art accuracy	

– Phrase structure: 91.1 F1 (versus best 91.7 F1)	

– Dependencies: 93.5% (versus 92.5%)	

154 (arguably with less effort than competing re-ranking methods)

155

Synchronous TAG	

Slides adapted from Chung-hye Han’s slides

156

Synchronous TAG ���
(Shieber, 1994)	

•  Just like TAG we have derivation trees	

•  Except each node in the derivation is not a single

elementary tree but rather a pair of trees	

•  The derivation tree now can be used to build a pair

of derived trees	

•  Synchronous TAG can be used to generate a pair

of derived trees or map a source input string to
target output string	

•  Applications: NL semantics (scope ambiguity,
etc.) and syntax-based machine translation	

Principle of Compositionality	

‣  The Fregean program	

•  The meaning of a

sentence is determined
by the meaning of its
parts and how they are
put together. 	

‣  Importance of syntax in
the computation of
meaning 	

Illustration of Compositionality	

John saw a woman with binoculars.	

Scope Ambiguity	

John

Fred

Pete

Mary

Jane

Sue

John

Fred

Pete

Mary

Jane

Sue

There is a boy who is
dating every girl.
(some>every)

For each girl, there is a
boy who is dating her.
(every>some)

Some boy is dating every girl.	

But No Syntactic Ambiguity	

Some boy is dating every girl.	

Covert Movement of the Quantified Phrase:
Quantifier Raising	

•  	
some>every	
 every>some	

Tree Adjoining Grammar: Syntax	

Apparently, some boy is dating every girl. 	

Synchronizing Syntax and Semantics:
Synchronous Tree Adjoining Grammar 	

•  A pairing of TAGs, a TAG for syntax and a TAG
for semantics (Shieber and Schabes 1990, Shieber
1994)	

•  Each syntactic elementary tree is paired with one
or more semantic trees.	

•  As syntactic elementary trees compose,
corresponding semantic elementary trees compose
in parallel.	

•  Syntactic derivation is isomorphic to semantic
derivation.	

Synchronous Tree Adjoining Grammar (STAG) 	

Some boy is dating every girl.	

(Shieber and Nesson2006, Han et. al.
2008)

Semantic Composition for SOME>EVERY	

is-dating’(x,y)	

Semantic Composition for SOME>EVERY	

Semantic Composition for SOME>EVERY	

Semantic Composition for SOME>EVERY	

every’y [girl(y)] [is-dating’(x,y)]	

Semantic Composition for SOME>EVERY	

Semantic Composition for SOME>EVERY	

Semantic Composition for SOME>EVERY	

some’x [boy(x)] [every’y [girl(y)] [is-dating’(x,y)]]	

There is a boy who is dating every girl.	

Semantic Composition for EVERY>SOME	

is-dating’(x,y)	

Semantic Composition for EVERY>SOME	

Semantic Composition for EVERY>SOME	

Semantic Composition for EVERY>SOME	

some’x [boy’(x)][is-dating’(x,y)]	

Semantic Composition for EVERY>SOME	

some’x [boy’(x)][is-dating’(x,y)]	

Semantic Composition for EVERY>SOME	

Semantic Composition for EVERY>SOME	

every’y [girl(y)] [some’x [boy’(x)] [is-dating’(x,y)]]	

For each girl, there is a boy who is dating her.	

STAG as a Theory of Syntax and
Semantics Interface	

•  No intermediate level between syntax and
semantics where covert syntactic
operations take place	

•  Syntax directly interfaces with semantics.	

•  Makes compositional semantics

computationally feasible and tractable	

180

Summary	

1.  Motivating Tree-Adjoining Grammars
(TAGs) from a Computational Linguistics
perspective	

2.  Relation to Monadic Simple Context-free
Tree Grammars	

3.  Relation to algebraic notions of crossing
dependencies in Dependency Grammar	

181

Summary	

4.  TAGs as a formalism for natural language
syntax	

5.  Statistical Parsing with weighted TAG	

6.  Synchronous Tree-adjoining grammar	

182

Bibliography	

(Thatcher, 1967): J. W. Thatcher, Characterizing derivation trees of
context-free grammars through a generalization of finite-automata
theory, J. Comput. Sys. Sci., 1 (1967), pp. 317-322	

(Rounds, 1970): W. C. Rounds, Mappings and grammars on trees, Math.
Sys. Theory 4 (1970), pp. 257-287	

(Peters & Ritchie, 1969): P. S. Peters and R. W. Ritchie, Context sensitive
immediate constituent analysis -- context-free languages revisited,
Proc. ACM Symp. Theory of Computing, 1969.	

(Joshi & Levy, 1977): A. K. Joshi and L. S. Levy, Constraints on
Structural Descriptions: Local Transformations, SIAM J. of Comput.
6(2), June 1977.	

(May & Knight, 2006): J. May and K. Knight, Tiburon: a weighted
automata toolkit, In Proc. CIAA, Taipei, 2006	

(Graehl & Knight, 2004): J. Graehl and K. Knight, Training tree
transducers, In Proc. of HLT-NAACL, Boston, 2004	

183

Bibliography	

(Joshi, 1994): A. K. Joshi, From Strings to Trees to Strings to Trees ...,
Invited Talk at ACL’94, June 28, 1994.	

(Joshi & Schabes, 1997): Joshi, A.K. and Schabes, Y.; Tree-Adjoining
Grammars, in Handbook of Formal Languages, G. Rozenberg and A.
Salomaa (eds.), Vol. 3, Springer, Berlin, New York, 1997, 69 - 124.	

(Schabes & Shieber, 1994): Yves Schabes and Stuart M. Shieber. An
Alternative Conception of Tree-adjoining Derivation. Computational
Linguistics, 20(1), March 1994.	

(Shieber, 1994): Stuart M. Shieber. Restricting the weak-generative
capacity of synchronous tree-adjoining grammars. Computational
Intelligence, 10(4):371-385, November 1994. cmp-lg/9404003.	

184

(Brainerd, 1969): W. S. Brainerd, Tree generating regular systems, Inf. and Contr.
14 (1969), 217-231	

(Fujiyoshi & Kasai, 2000): A. Fujiyoshi and T. Kasai. Spinal-formed context-free
tree grammars. Theory of Comp. Sys. 33, 59-83. 2000.	

(Fujiyoshi, 2005): A. Fujiyoshi. Linearity and nondeletion on monadic context-
free tree grammars. Inf. Proc. Lett. 93 (2005), 103-107.	

(Fischer, 1968): Michael J. Fischer. 1968. Grammars with Macro-Like
Productions. Ph.D. dissertation. Harvard University.	

(Joshi & Levy, 1977): A. K. Joshi and L. S. Levy, Constraints on Structural
Descriptions: Local Transformations, SIAM J. of Comput. 6(2), June 1977.	

(Joshi, 1994): A. K. Joshi, From Strings to Trees to Strings to Trees ..., Invited
Talk at ACL’94, June 28, 1994.	

(Joshi & Schabes, 1997): Joshi, A.K. and Schabes, Y.; Tree-Adjoining Grammars,
in Handbook of Formal Languages, G. Rozenberg and A. Salomaa (eds.), Vol.
3, Springer, Berlin, New York, 1997, 69 - 124.	

(Kanazawa, 2006): M. Kanazawa. Mathematical Linguistics, lecture notes. 2006.
http://research.nii.ac.jp/~kanazawa/Courses/2006/MathLing/	

Bibliography	

185

(Kepser & Mönnich, 2006): S. Kepser and U. Mönnich. Closure properties of
linear CFTLs with an application to optimality theory. Theor. Comp. Sci. 354,
82-97. 2006.	

(Kepser & Rogers, 2007): S. Kepser and J. Rogers. The equivalence of TAG and
Monadic Linear CFTGs. In MOL-10. Jul 28-30, 2007.	

(Lang, 1994): B. Lang. Recognition can be harder than parsing. Computational
Intelligence, Vol 10, No 4, Nov 1994.	

(May & Knight, 2006): J. May and K. Knight, Tiburon: a weighted automata
toolkit, In Proc. CIAA, Taipei, 2006.	

(Mönnich, 1997): Uwe Mönnich. Adjunction as substitution: An algebraic
formulation of regular, context-free and tree adjoining languages. In
Proceedings of the Third Conference on Formal Grammar. 1997.	

(Peters & Ritchie, 1969): P. S. Peters and R. W. Ritchie, Context sensitive
immediate constituent analysis -- context-free languages revisited, Proc. ACM
Symp. Theory of Computing, 1969.	

(Rounds, 1970): W. C. Rounds, Mappings and grammars on trees, Math. Sys.
Theory 4 (1970), pp. 257-287	

Bibliography	

186

(Rounds, 1973): William C. Rounds. Complexity of recognition in intermediate-
level languages. In 14th Annual IEEE Symposium on Switching and Automata
Theory, pages 145-158. 1973.	

(Thatcher, 1967): J. W. Thatcher, Characterizing derivation trees of context-free
grammars through a generalization of finite-automata theory, J. Comput. Sys.
Sci., 1 (1967), pp. 317-322	

Bibliography	

