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High Level Overview	


•  1st session (90 minutes)	

1.  Motivating Tree-Adjoining Grammars 

(TAGs) from a Computational Linguistics 
perspective	


2.  Relation to Monadic Simple Context-free 
Tree Grammars	


3.  Relation to algebraic notions of crossing 
dependencies in Dependency Grammar	
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High Level Overview	


•  2nd session (90 minutes)	

1.  TAGs as a formalism for natural language 

syntax	

2.  Statistical Parsing with weighted TAG	

3.  Synchronous Tree-adjoining grammar	




5 

Preliminaries ���
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Sentences as Strings	

David likes peanuts 

Noun Verb Noun 

David Mary left said that 

Noun Noun Verb Verb Comp 

•  Linear order: all important information is contained in the 
precedence information, e.g. useful “feature functions” are 
w-2, w-1, t-2, t-1, w0, w+1, w+2, t+2, t+1, etc.	

•  No hierarchical structure but every part-of-speech is 
lexicalized, e.g. Verb is lexicalized by likes	

•  Language (set of strings) generated by finite-state 
grammars 
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Finite State Grammars	


 A → a A 
 A → a 

 A1 ⇒ a1 A2 
 ⇒ a1 a2 A3 
 ⇒ a1 a2 a3 A4 
 ⇒ a1 a2 ... aN 

A 

a2 A 

a1 A 

a3 A 

aN Terminal symbol: a	

Non-terminal symbol: A	
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Context-Free Grammars	


 S → NP VP 
 VP → V NP | VP ADV 
 NP → David | peanuts 
 V → likes 
 ADV → passionately 

•  CFGs generate strings, e.g. language of G above is the set:	

 { David likes peanuts,	

    David likes peanuts passionately, 	

    ... }	


•  Lexical sensitivity is lost 	

•  CFGs also generate trees: hierarchical structure produced is 
non-trivial	
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CFG: Derived/Parse Tree	


S 

NP VP 

VP ADV 

V NP 

David likes peanuts passionately 
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CFG: Derivation Tree	


S → NP VP 

NP → David VP → VP ADV 

VP → V NP ADV → passionately 

V → likes NP → peanuts 

David likes peanuts passionately 

derivation tree is identical to 
derived tree: may not be true 
for other grammar formalisms 
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Preliminaries	


•  Rules of the kind α → β where α, β are strings of 
terminals and non-terminals	


•  Chomsky hierarchy: regular, context-free, context-
sensitive, recursively enumerable	


•  Automata: finite-state, pushdown, LBA, Turing 
machines (analysis of complexity of parsing)	


•  A rule α → β in a grammar is lexicalized if β 
contains a terminal symbol	


•  Lexicalization is a useful property, e.g. a rule like 
NP → NP creates infinite valid derivations	
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Strong vs. Weak Generative 
Capacity	


•  A property of a formal grammar, e.g. of a regular 
grammar or a CFG	


•  Weak Generative Capacity of a grammar is the 
set of strings or the string language	


•  Strong Generative Capacity of a grammar is the 
set of structures (usually the set of trees) produced 
by the grammar or the tree language	
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Tree Languages	

 S → A B 
 A → a A | a 
 B → B b | b 

This grammar generates the 
tree language informally 
shown below	


S 

A B 

a b 

S 

A 

B 

a 

b 

A 

a 

S 

A 

B 

a 

b 

A 

a B 

b 

S 

A 

B 

a 

b 

A 

a B 

b 

A a b B 

Note that the heights of the two 
branches do not have to be equal	
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Grammars that generate trees	
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A Tree Language with no CFG	

Claim: There is no CFG that can 
produce the tree lang below:	


S 

A A 

a b 

S 

A 

A 

a 

b 

A 

a 

S 

A 

A 

a 

b 

A 

a A 

b 

S 

A 

A 

a 

b 

A 

a A 

b 

A a b A 

Note that the heights of the two 
branches do not have to be equal	


 S → A A 
 A → a A | a 
 A → A b | b 
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Grammars for Tree Languages	

•  A simple trick: start with a 

CFG that almost works	

•  Then re-label the node 

labels, map B to A to get 
the desired tree set	


•  But how can we directly 
generate the tree sets?	


•  We need a generative 
device that generates 
trees, not strings	


•  (Thatcher, 1967) 
(Brainerd, 1969) and 
(Rounds, 1970) provided 
such a generative device	


 S → A B 
 A → a A | a 
 B → B b | b 

S 

A 

B 

a 

b 

A 

a B 

b 

Map B to A	


Local set: 
tree sets 
from CFGs 

Recognizable 
set: local set 
closed under 
node relabeling 
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Regular Tree Grammars	

 start state: q 
 q → S(x0 x1) 
 x0 → A(a x0) 
 x1 → A(x1 b) 
 x0 → A(a) 
 x1 → A(b) 

•  RTGs = Top-down tree automata	

•  Can generate infinite tree sets	

•  Found useful in syntax-based 
statistical machine translation (May & 
Knight, 2006)	


note: rhs can be a 
tree of any size!	


S 

A 

A 

a 

b 

A 

a A 

b 

S 

A 

A 

a 

b 

A 

a 

q 

q 

x1 

x0 

x0 

x1 

x1 x0 

x0 
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Regular Tree Grammars	


•  RTGs generate tree languages	

•  The yield of each tree in this language 

produces a string	

•  yield(RTG) provides a string language	

•  For each RTG: yield(RTG) = CFL	

•  But the set of tree languages of CFGs is 

contained within that of RTGs	
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A Tree Language with no RTG	

Claim: There is no RTG that can 
produce the tree language below:	


S 

A A 

a b 

S 

A 

A 

a 

b 

A 

a A 

b 

S 

A 

A 

a 

b 

A 

a A 

b 

A a b A 

 q → S(x0 x1) 
 x0 → A(a x0) | A(a) 
 x1 → A(x1 b) | A(b) 

Now consider the tree lang where the 
depth of the two branches is equal	


RTG is like 
a finite-state 
machine, the 
state cannot 
count how 
many times 
it was 
reached	
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Context-free Tree Languages	

R1: S → C(a) 
R2: C(x1) → x1 
R3: C(x1) → C(b(x1 x1)) 

S b 

b b 

a a a a 

⇒ 
R3 

⇒ 
R2 R1 

⇒
R3 
⇒

(Rounds 1970)	


String language	


C 

a b 

a a 

C 

C 

b 

b b 

a a a a 
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Context-free Tree Languages	


•  yield(CFTLs) = Indexed Languages (Fischer, 1968)	

•  Indexed languages: does not have the constant 

growth property	

•  Also, recognition algorithm is NP-complete 

(Rounds, 1973)	

•  Perhaps there is a tree grammar formalism 

between RTG and CFTG?	

•  How much context-sensitivity over RTGs should 

this tree grammar have?	
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Motivation #1 ���
Context-sensitive predicates on trees 

bear less fruit than you think*	


* borrowed from a title of a paper by A. Joshi	
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Tree Languages: Another Example	

A more practical example	


E → E + E	

E → E * E	

E → ( E )	

E → N 	


E	


E	
 E	
+	


E	
 E	
*	
2	


3	
 5	


E	


E	
E	
 *	


E	
 E	
+	
 5	


2	
 3	
2+3*5 is ambiguous	

either 17 or 25	


Ambiguity resolution: * 
has precedence over +	

cannot use RTGs!	
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Tree Languages: Context-sensitivity	

Eliminating ambiguity	


E → E + E  
  ¬(+__)∧¬(*__)∧¬(__*)	

E → E * E 
  ¬(*__)	

E → ( E )	

E → N 	


E	


E	
 E	
+	


E	
 E	
*	
2	


3	
 5	


E	


E	
E	
 *	


E	
 E	
+	
 5	


2	
 3	


similar to context-
sensitive grammars!	
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Context-sensitive Grammars	


•  Rules of the form αAβ → αγβ where γ cannot be 
the empty string, also written as A → γ / α__β 	


•  CSGs are very powerful: they can generate 
languages like { 1p : p is prime }	


•  This kind of computational power is unlikely to be 
needed to describe natural languages	


•  Like other grammar formalisms in the Chomsky 
hierarchy CSGs generate string sets	


•  What if they are used to recognize tree sets?	
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Context-sensitive Grammars	


1: S → S B C 
2: S → a C 
3: a B → a a 
4: C B → B C 
5: B a → a a 
6: C → b 

 S ⇒ S B C (1) 
 ⇒ S B C B C (1)  
 ⇒ a C B C B C (2) 
 ⇒ a B C C B C (4) 
 ⇒ a a C C B C (3) 
 ⇒ a a C B C C (4) 
 ⇒ a a B C C C (4) 
 ⇒ a a a C C C (3) 
 ⇒ a a a b C C (6) 
 ⇒ a a a b b C (6) 
 ⇒ a a a b b b (6) 
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Context-sensitive predicates	


•  Consider each CSG rule A → γ / α__β to be a 
predicate (i.e. either true or false)	


•  Apply all the rules in a CSG as predicates on an 
input tree	


•  If all predicates are true then accept the tree, else 
reject the tree	


•  Can be easily extended to a set of trees and used to 
accept a tree set	


•  Can we precisely describe this set of tree 
languages?	
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Peters-Ritchie Theorem	


•  The Peters-Ritchie Theorem (Peters & Ritchie, 
1967) states a surprising result about the 
generative power of CSG predicates	


•  Consider each tree set accepted by CSG predicates	

•  Theorem: The string language of this tree set is a 

context-free language	

•  Each CSG when applied as a set of predicates can 

be converted into a weakly equivalent CFG	

•  See also: (McCawley, 1967) (Joshi, Levy & Yueh, 

1972) (Rogers, 1997)	
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Local Transformations	


•  This theorem was extended by (Joshi & Levy, 
1977) to handle arbitrary boolean combinations 
and sub-tree / domination predicates	


•  Proof involves conversion of all CSG predicates 
into top-down tree automata that accept tree sets	


•  (Joshi & Levy, 1977) showed transformations 
used in transformational grammar can be written 
in this way	


•  Important caveat: we assume some source GEN 
generating trees which are then validated. 
(connection to Optimality Theory)	




30 

Tree-Adjoining Grammars	


•  Construct a tree set out of tree fragments	

•  Each fragment contains only the structure needed 

to express the locality of various CSG predicates	

•  Each tree fragment is called an elementary tree	

•  In general we need to expand even those non-

terminals that are not leaf nodes: leads to the 
notion of adjunction	
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Tree-Adjoining Grammars	


E	


E	
 E *	


3	


E	


2	


E	


3	


E	


5	


E	


E	
 E	
+	


2	


t1 t2 t3 t4 t5 

all constraints are checked 
locally in the tree where 
adjunction occurs	


E	


5	


t3 

E	


E	
 E	
*	


3	


t5 

E	


E	
 E	
+	


2	
t4 

derivation tree	
 derived tree	


(¬t5) 

(¬t4) 

notice how the root node 
and frontier node are the 
same label	


Input string: 2 + 3 * 5	
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Tree-Adjoining Grammars	


E	


E	
 E *	


3	


E	


2	


E	


3	


E	


5	


E	


E	
 E +	


2	


t1 t2 t3 t4 t5 

E	


5	


t3 

t4 
E	


E	
 +	


2	


derivation for 3*2+5	


(¬t5) 

(¬t4) 
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Tree-Adjoining Grammars	


E	


E	
 E *	


3	


E	


2	


E	


3	


E	


5	


E	


E	
 E +	


2	


t1 t2 t3 t4 t5 

t3 
E	


E	
 E	
*	


3	


t4 

t5 

derivation for 3*2+5	


(¬t5) 

(¬t4) 

E	


5	


E	


+	
E	


2	


E	
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Tree-Adjoining Grammars	


E	


E	
 E *	


3	


E	


2	


E	


3	


E	


5	


E	


E	
 E +	


2	


t1 t2 t3 t4 t5 

E	


5	


t3 

E	


E	
 E	
*	


3	


t4 

E	


+	


2	


t5 

derivation for 3*2+5	


(¬t5) 

(¬t4) 
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Tree-Adjoining Grammars	


•  A TAG G = (N, T, I, A, S) where	

–  N is the set of non-terminal symbols	

–  T is the set of terminal symbols	

–  I is the set of initial or non-recursive trees built from N, 

T and domination predicates	

–  A is the set of recursive trees: one leaf node is a non-

terminal with same label as the root node	

–  S is set of start trees (has to be initial)	

–  I and A together are called elementary trees	
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Adjunction Constraints	


•  Adjunction is the rewriting of a non-
terminal in a tree with an auxiliary tree	


•  We can think of this operation as being 
“context-free”	


•  Constraints are essential to control 
adjunction: both in practice for NL syntax 
and for formal closure properties	
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Adjunction Constraints	


•  Three types of constraints:	

–  null adjunction (NA): no adjunction allowed at 

a node	

–  obligatory adjunction (OA): adjunction must 

occur at a node	

–  selective adjunction (SA): adjunction of a pre-

specified set of trees can occur at a node	
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Adjunction Constraints	


This TAG can generate the language 	

L = { anbncndn : n ≥ 1 }	

Note that the OA & NA constraints are 
crucial to obtain the correct language	


S 

S 

S* 

a d 

c b 

NA 

NA 

S 

S a d 

c b S 

ε 

NA 

NA 

S 

a d 

c b S 

ε 

S 

a d 

c b S 

S 

NA 

NA 

NA 

NA 

S 

ε 

OA 
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Tractable Descriptions	


•  Why not use context-sensitive grammars?	

•  For G, given a string x what is the complexity of 

an algorithm for the question: is x in L(G)?	

–  Unrestricted Grammars/Turing machines: undecidable	

–  Context-sensitive: NSPACE[n] linear non-deterministic 

space	

–  Indexed Grammars: NP-complete	

–  Tree-Adjoining Grammars: O(n6)	

–  Context-free: O(n3)	

–  Regular: O(n)	
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Connections with���
Context-free tree grammars	
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Indexed languages 

Context-free languages 

Regular languages 

Context-free tree grammars 

Regular tree grammars 

Tree-adjoining languages 

?? 

yield 

yield 

yield 

Strings Trees 
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      CFLs :: RTLs ���
TALs :: ??	


Regular 
Tree 

Languages 

Context 
Free 

Languages 

Tree 
Adjoining 

Languages 

ATLs: 
• Tree language 
defn for TALs 
• Rid TAG of adj 
constraints 
• Cf. CFTGs 
• Useful for ling? 
• Prob version is 
interesting 
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Context-free Tree Languages	

R1: S → C(a) 
R2: C(x1) → x1 
R3: C(x1) → C(b(x1 x1)) 

S b 

b b 

a a a a 

⇒ 
R3 

⇒ 
R2 R1 

⇒
R3 
⇒

(Rounds 1970)	


String language	


C 

a b 

a a 

C 

C 

b 

b b 

a a a a 
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Modifying Context-free Tree Grammars	


•  Simple CFTG = linear and non-deleting	

•  Linear = tree variables shalt not multiply	

•  Non-deleting = tree variables shalt not be 

matched on the lhs and dropped in the rhs	

•  The non-deleting condition can be dropped 

(Fujiyoshi, 2005)	

•  Monadic CFTG = only one subtree can be 

matched on the lhs of any rule, A(x) → T	
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Monadic Simple Context-free Tree Languages	

R1: q → C(S(e)) 
R2: C(x1) → S(a C(S(b x1 c)) d) 
R3: C(x1) → x1 

q 
⇒ 
R3 R1 

⇒
R2 
⇒

R2 
⇒

S 

d a 

S 

c b S 

e 

S 

d a S 

c b 

S 

d a C 

S 

c b S 

e 

S 

d a S 

d a 

S 

c b S 

e 

S 

c b 

C 

S 

e 

C 
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Monadic Simple CFTGs	


•  Tree language of TAGs is contained within 
monadic simple CFTGs	


•  TAGs are weakly equivalent to CFTGs 
(Fujiyoshi & Kasai, 2000; Mönnich 1997)	


•  Focus of this talk: how about extending 
RTGs instead? (Lang, 1994)	


•  Another way to limit CFTGs is the so-called 
spinal form CFTG (Fujiyoshi & Kasai, 2000)	
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From Trees to Strings	
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Adjoining Tree Grammars	

•  ATG is a tree grammar formalism over strings	

•  Rules are of the form q(x) → T; q is a state, x is 

tree variable, T is a tree	

•  The rhs tree T is built with terminals a, b, … and 

non-terminals A, B, …	

•  Tree T can also contain tree variables which can 

be internal nodes dominating a single subtree 
(unlike RTGs where they occur on the frontier)	


•  Finally, ATGs have a start tree variable	

•  An ATG is well-formed if for every sentential 

form w (q ⇒* w) is a well-formed tree.	
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q 

ε 

s → R1: q(x) → 	
R2: R3: 

s 

⇒ 
R3 

⇒ 
R2 

R1 
⇒

R3 
⇒

q 

ε 

S 

q 

S 

a d 

c b 

ε 

S 

a d 

S c b 

ε 

S 

q 

S 

a d 

c b 

S 

a d 

S c b 

ε 

S 

S 

S 

a d 

c b 

S 

q 

S 

a d 

c b 

q(x) → 

x 

Using a tree grammar 
notation, x matches a 
subtree in the lhs and is 
copied over to the rhs	


S 

x 
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q 

ε 

s → R1: q(x) → 	
R2: R3: 

s 

⇒ 
R3 

⇒ 
R2 

R1 
⇒

R3 
⇒

q 

ε 

A 

q 

B 

a d 

c b 

ε 

A 

a d 

B c b 

ε 

A 

q 

B 

a d 

c b 

A 

a d 

B c b 

ε 

A 

S 

B 

a d 

c b 

Notice that the path from 
root to frontier is AnSBn	


S 

x 

A 

q 

B 

a d 

c b 

q(x) → 

x 
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Adjoining Tree Grammars	


•  Similar to defn by (Lang, 1994)	

•  No adjoining constraints required	

•  Weakly equivalent to TAGs	

•  Set of tree languages for TAGs contained within 

that for ATGs	

•  Is ATG attractive for simplifying some TAG-

based linguistic analysis?	

–  Analyses that use adjoining constraints (feature 

structures)	

–  Analyses that require different labels on rootnode and 

footnode	
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Adjoining Tree Grammars	


•  Closure properties for TALs (union, concat, 
homomorphism, substitution) can be shown using 
ATGs instead of TAGs.	

–  By taking yield of the tree language	

–  Without using adjunction constraints	


•  Intersection with regular languages (Lang, 1994)	

•  What about pumping lemma? cf. (Kanazawa, 2006)	

•  Polynomial time parsing algorithm provided by 

(Lang, 1994) = takes a string as input not a tree.	
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ATGs and monadic simple CFTGs	


•  Are ATGs strongly equivalent to monadic 
simple CFTGs?	


•  First step: what is strong equivalence?	

•  For each m.s. CFTG construct an ATG that 

produces the same tree set, and vice versa	

•  Shown by (Kepser & Rogers, 2011): TAGs 

closed under node relabeling are equal to 
monadic simple CFTGs.	
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Motivation #2 ���
Lexicalization of Context-Free 

Grammars	
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Lexicalization of Grammars	


•  We know that a CFG can be ambiguous: provide 
more than one parse tree for an input string	


•  A CFG can be infinitely ambiguous	

•  Structure can be introduced without influence 

from input string, e.g. the chain rule NP → NP 
has this effect	


•  Lexicalization of a grammar means that each rule 
or elementary object in the grammar is associated 
with some terminal symbol	
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Lexicalization of Grammars	


•  Lexicalization is an interesting idea for syntax, 
semantics (in linguistics) and sentence processing 
(in psycho-linguistics)	


•  What if each word brings with it the syntactic and 
semantic context that it requires?	


•  Let us consider lexicalization of Context-free 
Grammars (CFGs)	
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Lexicalization of CFGs	


•  A normal form is a grammar transformation that 
does not change the language of the grammar	


•  Can we transform every CFG to a normal form 
where there is guaranteed to be a terminal symbol 
on the right hand side of each rule	


•  Answer: yes - using Greibach Normal Form 
(GNF)	


•  GNF: every CFG can be transformed into the form 
A → aα where A is a non-terminal, a is a terminal 
and α is a string of terminals and non-terminals	
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T(G) ≠ T(GNF(G))	

 A1 → A2 A3 
 A2 → A3 A1 | b 
 A3 → A1 A2 | a 

A1 

A2 A3 

A3 A1 

A2 A3 

a b a a 

A1 

a b a a 

A1 A3 

A3 

Greibach Normal Form does not provide a 
strongly equivalent lexicalized grammar: 
the original tree set is not preserved	
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Tree Substitution Grammar	

 S → S S 
 S → a 

Consider a simple expansion of each 
context-free rule into a tree fragment where 
each fragment is lexicalized	


S 

S S↓ 

a 

S 

S↓ S 

a 

S 

a 
S 

S S 

a 

  

S S 

a 

  

a 

S   

S S 

a 

  

a 

S   

S S 

a 

  

a 

S 

this tree cannot be derived	
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Tree Adjoining Grammar	

 S → S S 
 S → a 

S 

S S* 

a S 

S* S 

a 

S 

a 
S   

S S 

a 

  

a 

S   

S S 

a 

  

a 

S 

S 

a 

S 

S S* 

a 

+ 

S 

a 

S 

S 

a 
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Tree Adjoining Grammar	

 S → S S 
 S → a 

S 

S S* 

a S 

S* S 

a 

S 

a 
S   

S S 

a 

  

a 

S   

S S 

a 

  

a 

S 
S 

S S* 

a 

+ 

S 

a 

S 

S 

a 

S 

a 

S 

S 

a 
S 

S 

a 
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Tree Adjoining Grammar	

 S → S S 
 S → a 

S 

S S* 

a S 

S* S 

a 

S 

a 
S   

S S 

a 

  

a 

S   

S S 

a 

  

a 

S 
S 

S S* 

a 

+ 

S 

a 

S 

S 

a 

S 

S 

a 

S 

a 

S 

S S* 

a 

S 

S 

a 

S 

S 

a 

S 
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Tree Adjoining Grammar	

 S → S S 
 S → a 

S 

S* S 

a 

S 

a 
S   

S S 

a 

  

a 

S   

S S 

a 

  

a 

S 
S 

S S* 

a 

S 

a 

S 

S 

a 

S 

S 

a 

S 

S 

a 
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Lexicalization Through TAG	


•  This was an instructive example of how adjoining 
can be used to lexicalize CFGs while preserving 
the tree sets (strong generative capacity)	


•  (Joshi & Schabes, 1997) show that every CFG can 
be strongly lexicalized by TAG	


•  Later work by Schabes et al shows that CFGs can 
be lexicalized by Tree-insertion grammars 
which are weakly equivalent to CFGs	




65 

Tree-Insertion with adjoining	


+ X 

X 

X 

X 

X 
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Tree-Insertion with adjoining	


+ X 

X 

X 

X 

X 
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Wrapping with adjoining	


+ X 

X 

X 

X 

X 

A new possible way of using adjoining: to 
wrap strings. More weak generative power 
than concatenation possible in CFGs.	


u 

v 

w 

x y 
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Lexicalization and TAG	


•  (Kuhlmann & Satta, CL 2012) show that 
Tree-Adjoining Languages are not closed 
under lexicalization	


•  Every TAL does not have a lexicalized 
TAG grammar	


•  (Maletti and Engelfriet, ACL 2012) show 
that Context-free Tree Grammars of rank 2 
can lexicalize TAGs	
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Parsing Complexity: CKY for TAG	


+ X 

X 

X 

X 

X i j k l 

j k 

To recognize X with span (i,l), we need to recognize 
span (j,k) and also deduce the span (i,j,k,l) for X	
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Parsing Complexity: CKY for TAG	


+ X 

X 

X 

X 

X i j k l 

j k 

To recognize X with span (i,l), we need to recognize 
span (j,k) and also deduce the span (i,j,k,l) for X	


•  Each substring (i,l) can be a constituent, there 
are O(n2) substrings, 	

•  For each of them we need to check for each 
non-terminal if it dominates an adjunction 
span (i,j,k,l) 	

•  There are O(n4) such spans	

•  Hence we have complexity of recognizing 
membership of a string in a TAG to be O(n6)	
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TAG Formal Properties ���
(Vijay-Shanker, 1987)	


•  Membership is in P: O(n6)	

•  Tree-Adjoining Languages (TALs) are closed 

under union, concatenation, Kleene closure (*), h, 
h-1, intersection with regular languages, and 
regular substitution	


•  There is also a pumping lemma for TALs	

•  TALs are a full abstract family of languages 

(AFL)	

•  TALs are not closed under intersection, 

intersection with CFLs, and complementation	
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Motivation #3 ���
Is Human Language Regular, 

Context-free or Beyond?	
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Natural Language & Complexity	


•  One notion of computational complexity: the complexity 
of various recognition and generation algorithms	


•  Another notion: the complexity of the description of 
human languages	


•  What is the lowest upper bound on the description of all 
human languages? regular, context-free or beyond?	


•  Describes a class of languages, including closure 
properties such as union, intersection, etc.	


•  Automata theory provides recognition algorithms, 
determinization, and other algorithms	
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Grammar Size	


•  Consider the set of strings 
that includes enjoy, 
enrich, enjoyable, 
enrichment but not 
*joyable, *richment	


•  The CFG is clearly more 
compact	


•  Argument from learning: 
if you already know 
enjoyment then learning 
rich means you can 
generate enrichment as 
well	


 V → X 
 A → X -able | X -ment 
 X → en- NA 
 NA → joy | rich 

en- 
joy 
rich 

joy 
rich 

-able 
-ment 

Regular grammars can be 
exponentially larger than 
equivalent CFGs 
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Sufficient Generative Capacity	


•  Does a formal grammar have sufficient generative 
capacity?	


•  Two cases: weak and strong generative capacity	

•  For strong GC: does the grammar permit the right 

kind of dependencies, e.g. nested dependencies	

•  For weak GC: usually requires some kind of 

homomorphism into a formal language whose 
weak GC can be determined (the formal language 
class should be closed under homomorphisms)	
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Is NL regular: strong GC	


•  Regular grammars cannot derive nested 
dependencies	


•  Nested dependencies in English:	

–  the shares that the broker recommended were bought	

    N1 N2 V2 V1	

–  the moment when the shares that the broker 

recommended were bought has passed	

    N1 N2 N3 V3 V2 V1	


•  Can you provide an example with 4 verbs?	

•  Set of strings has to be infinite: competence vs. 

performance	
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Is NL regular: strong GC	


•  Assume that in principle 
we could process infinitely 
nested dependencies: 
competence assumption	


•  The reason we cannot is 
because of lack of 
memory in pushdown 
automata: performance 
can be explained	


•  CFGs can easily obtain 
nested dependencies	


 S → a S b 
 S → ε 

 S1 ⇒ a1 S2 b1 
 ⇒ a1 a2 S3 b2 b1 
 ⇒ a1 a2 ... aN S bN ... b2 b1 
 ⇒ a1 a2 ... aN bN ... b2 b1 
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Is NL regular: Weak GC	


•  Consider the following set of strings (sentences):	

– S = if S then S	

– S = either S or S	

– S = the man who said S is arriving today	


•  Map if, then to a and either, or to b	

•  Map everything else to the empty string	

•  This results in strings like abba, abaaba, or 

abbaabba	




79 

Is NL regular: Weak GC	


•  The language is the set of strings 	

L = { ww’ : w from (a|b)* and w’ is 

reversal of w }	

•  L can be shown to be non-regular using the 

pumping lemma for regular languages	

•  L is context-free	




80 

Is NL context-free: Strong GC	


•  CFGs cannot handle crossing dependencies	

•  Dependencies like aN... a2 a1 bN... b2 b1 are not 

possible using CFGs	

•  But some widely spoken languages have clear 

cases of crossing dependencies	

–  Dutch (Bresnan et al., 1982)	

–  Swiss German (Shieber, 1984)	

–  Tagalog (Rambow & MacLachlan, 2002)	


•  Therefore, in terms of strong GC, NL is not 
context-free	
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Is NL context-free: Weak GC	


•  Weak GC of NL being greater than context-free 
was harder to show, cf. (Pullum, 1982)	


•  (Huybregts, 1984) and (Shieber, 1985) showed 
that weak GC of NL was beyond context-free 
using examples with explicit case-marking from 
Swiss-German	


mer d’ chind em Hans es huus lönd hälfed aastriiche 

we children-acc Hans-dat house-acc let-acc help-dat paint-acc 

[ ( { ] ) } 

this language is not context-free	
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Generating Crossing Dependencies	


1: S → S B C 
2: S → a C 
3: a B → a a 
4: C B → B C 
5: B a → a a 
6: C → b 

 S1 ⇒ S2 B1 C1 (1) 
 ⇒ S3 B2 C2 B1 C1 (1)  
 ⇒ a3 C3 B2 C2 B1 C1 (2) 
 ⇒ a3 B2 C3 C2 B1 C1 (4) 
 ⇒ a3 a2 C3 C2 B1 C1 (3) 
 ⇒ a3 a2 C3 B1 C2 C1 (4) 
 ⇒ a3 a2 B1 C3 C2 C1 (4) 
 ⇒ a3 a2 a1 C3 C2 C1 (3) 
 ⇒ a3 a2 a1 b3 C2 C1 (6) 
 ⇒ a3 a2 a1 b3 b2 C1 (6) 
 ⇒ a3 a2 a1 b3 b2 b1 (6) 
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Simple Generation of Crossing 
Dependencies	


•  Instead of using powerful swapping operations 
(corresponding to more powerful automata)	


•  We instead build local dependencies into 
elementary trees	


•  Strong GC: Crossing dependencies arise by simple 
composition of elementary trees	


•  The context-sensitive part is built into each 
elementary tree: the remaining composition is 
“context-free”	


•  Weak GC: Crossing dependencies = string 
wrapping 	
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Crossing Dependencies with Adjoining	

q 

ε 

s → R1: q(x) → 	
R2: R3: S 

x 

q(x) → S 

q 

S 

b 

a 

x s 
R1 
⇒ q 

ε 

R3 
⇒

S 

q 

S 

b1 

a1 

ε 
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Crossing Dependencies with Adjoining	

q 

ε 

s → R1: q(x) → 	
R2: R3: S 

x 

q(x) → S 

q 

S 

b 

a 

x 
S 

q 

S 

b1 

a1 

ε 

R3 
⇒

S 

ε 

S 

b1 

a1 

S 

q 

S 

b2 

a2 
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Crossing Dependencies with Adjoining	

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

R3: q(x) → S 

q 

S 

b 

a 

x 

S 

ε 

S 

b1 

a1 

S 

q 

S 

b2 

a2 

R3 
⇒

ε 

S 

S 

b1 

a1 

S 

S 

b2 

a2 

S 

q 

S 

b3 

a3 
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Crossing Dependencies with Adjoining	


R2 
⇒

ε 

S 

S 

b1 

a1 

S 

S 

b2 

a2 

S 

q 

S 

b3 

a3 

ε 

S 

S 

b1 

a1 

S 

S 

b2 

a2 

S 

S 

S 

b3 

a3 

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

R3: q(x) → S 

q 

S 

b 

a 

x 
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Crossing Dependencies with Adjoining	


ε 

S 

S 

b1 

a1 

S 

S 

b2 

a2 

S 

S 

S 

b3 

a3 

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

R3: q(x) → S 

q 

S 

b 

a 

x 

R1 

R3 

R3 

R3 

R2 
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Crossing Dependencies with Adjoining	

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

R3: q(x) → S 

q 

S 

b 

a 

x 

a3 b3 a2 b2 a1 b1 

R1 

R3 

R3 

R3 

R2 
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Nested Dependencies with Adjoining	

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

R3: q(x) → S 

q 

S 

b 

a 

x ε 

S 

S 

b1 

a1 

S 

S 

b2 

a2 

S 

S 

S 

b3 

a3 

R1 

R3 

R3 

R3 

R2 
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Nested Dependencies with Adjoining	

q 

ε 

s → R1: 

q(x) → 	
R2: S 

x 

b2 a2 b1 a1 a3 b3 

R1 

R3 

R3 

R3 

R2 R3: q(x) → S 

q 

S 

b 

a 

x 
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Related Formalisms	


•  Another route to lexicalization of CFGs: categorial 
grammars (CG is not strongly equivalent to CFGs 
but can weakly lexicalize them) 	


•  Several different mathematically precise formal 
grammars were proposed to deal with the 
motivations presented here	


•  Some examples: 	

– Multiple context-free grammars (MCFG)	

–  head grammars (HG does string wrapping); 	
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Related Formalisms	


•  Some examples: 	

–  combinatory categorial grammars (CCG; 

extends CG); 	

–  linear indexed grammars (LIG; less powerful 

than indexed grammars)	

•  (Vijay-Shanker, 1987) and (Weir, 1988) showed 

that HG, CCG, LIG and TAG are all weakly 
equivalent!	


•  They also provide a powerful formalism called 
Linear Context-Free Rewriting System (LCFRS)	




Mildly Context-Sensitive Formalism	


•  Proper extension of Context-free Languages	

– Should contain CFLs	


•  Limited crossing dependencies	

– Less powerful than full context-sensitive 

languages	

•  Constant growth property	


– Relation of derivation to string is linear	

•  Tractable: polynomial time parsing	
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(Joshi, 1985)	
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Tree-adjoining grammars and 
crossing dependencies	


Material adapted from Marco Kuhlmann’s slides 



Dependency structures	
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I cooked the beans that you ate yesterday 

Lexicalized Grammars produce dependencies 

1 2 3 4 6 7 8 5 



Projective Dependencies	
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•  Intervals define contiguous sub-strings 
•  Projective dependencies: all subtrees form 

intervals 

I cooked the beans that you ate 
1 2 3 4 5 6 7 



Projective Dependencies	
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•  Intervals define contiguous sub-strings 
•  Projective dependencies: all subtrees form 

intervals, e.g. [5,7] 

I cooked the beans that you ate 
1 2 3 4 5 6 7 



Projective Dependencies	
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•  Intervals define contiguous sub-strings 
•  Projective dependencies: all subtrees form 

intervals, e.g. [3,7] 

I cooked the beans that you ate 
1 2 3 4 5 6 7 



Projective Dependencies	
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•  Context-free grammars can model projective 
dependencies 

•  Are projective dependencies sufficient for 
natural language? 

I cooked the beans that you ate 
1 2 3 4 5 6 7 



Projective Dependencies	
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Language	
 Crossing 
Dependencies %	


Sentences with 
crossing deps %	


Arabic	
 0.4	
 10.1	

Basque	
 2.9	
 26.2	

Catalan	
 0.1	
 2.9	

Chinese	
 0.0	
 0.0	

Czech	
 1.9	
 23.2	

English	
 0.3	
 6.7	

Greek	
 1.1	
 20.3	


Hungarian	
 2.9	
 26.4	

Italian	
 0.5	
 7.4	


Turkish	
 5.5	
 33.3	




Block Degree	
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•  Block degree measures non-projectivity 
•  Block degree = number of intervals per sub-tree, 

e.g. { [3,4], [6,8] } is block degree 2 

I cooked the beans that you ate yesterday 
1 2 3 4 6 7 8 5 

Block 1 Block 2 



Block Degree	
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•  Block degree measures non-projectivity 
•  Block degree = number of intervals per sub-tree, 

e.g. { [3,4], [6,8] } is block degree 2 

I cooked the beans that you ate yesterday 
1 2 3 4 6 7 8 5 

Gap 



Ill-nested Dependencies	
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1 2 3 4 6 7 8 5 



Ill-nested Dependencies	
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1 2 3 4 6 7 8 5 



Ill-nested Dependencies	
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1 2 3 4 6 7 8 5 

u1 

u2 

v1 

v2 

•  Well-nested dependencies: constraint on pairs of 
edges 

•  If u1 < u2 and v1 < v2 and v1 < u2 then u1 must 
dominate v1 or vice versa 



Well-nested Dependencies	
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I cooked the beans that you ate yesterday 
1 2 3 4 6 7 8 5 

u1 

u2 
v1 v2 

•  In this example, u1 < v1 < u2 < v2 
•  And u1 dominates v1 and u2 



Block Degree and Well-nestedness	


•  Prague Dependency Treebank 1.0 with 
73,088 sentences.	


•  99.48% of sentences have a block degree of 
2 and are well-nested.	


•  0.52% are either ill-nested or block degree 
is greater than 2.	


•  Similar analysis for other languages.	

•  Results from Marco Kuhlmann’s thesis	
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Generative Capacity ���
(Crossing Dependencies)	
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Formalism	
 Dependencies	

CFG	
 projective	

TAG	
 Block degree ≤ 2 and 

Well-nested	

Coupled CFG	
 Block degree ≤ k and 

Well-nested	

LCFRS	
 Block degree ≤ k 	
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Motivations for TAG	


•  NL is probably not weakly context-free, but also 
possibly not fully context-sensitive and so NL 
could be mildly context-sensitive	


•  Strong lexicalization of CFGs leads to the 
adjunction operation	


•  Some NLs clearly show crossing dependencies, 
but maybe of limited variety	


•  Many issues of locality in linguistics, e.g. 
constraints on long-distance dependencies, can be 
encoded within the notion of elementary tree	
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Tree-Adjoining Grammars: ���
Application to Natural Language	
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Lexicalized TAG	


•  A Lexicalized TAG (LTAG) is a TAG 
where each elementary tree has at least one 
terminal symbol as a leaf node	


•  Lexicalization has some useful effects: 	

– finite ambiguity: corresponds to our intuition 

about NL ambiguities, 	

–  statistical dependencies between words can be 

captured which can improve parsing accuracy	
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Lexicalized TAG	


•  TAGs do not need to be fully lexical	

– Tree to string rules are sometimes unlexicalized	

– Relative clause formation can be done using 

unlexicalized trees	
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Lexicalized TAG: example	


S 

NP↓ VP 

VBZ NP↓ 

bought 

t1 
NP 

NNP 

John 

t2 
NP 

NNS 

pockets 

t3 
NP 

NN 

a shirt 

t4 
VP 

VP* PP 

IN NP↓ 

with 

t5 
NP 

NP* PP 

IN NP↓ 

with 

t6 0 

1 2 

2.1 
2.2 

Gorn tree address: an index for each node in the tree	
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S 

NP↓ VP 

VBZ NP↓ 

bought 

t1 
NP 

NNP 

John 

t2 
NP 

NNS 

pockets 

t3 
NP 

NN 

a shirt 

t4 
VP 

VP* PP 

IN NP↓ 

with 

t5 
NP 

NP* PP 

IN NP↓ 

with 

t6 

derivation tree	
 derived tree	


t1(bought) 

S 

NP VP 

VBZ NP 

bought 
t2(John) 

1 NNP 

John 
t4(a shirt) 

2.2 

NN 

a shirt 
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S 

NP↓ VP 

VBZ NP↓ 

bought 

t1 
NP 

NNP 

John 

t2 
NP 

NNS 

pockets 

t3 
NP 

NN 

a shirt 

t4 
VP 

VP* PP 

IN NP↓ 

with 

t5 
NP 

NP* PP 

IN NP↓ 

with 

t6 

derivation tree	
 derived tree	


t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t3(pockets) 

t5(with) 

2 

2.2 

S 

NP VP 

VBZ NP 

bought 

NNP 

John 

NN 

a shirt 

VP 
PP 

IN NP 

with 

pockets 

NNS 
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S 

NP↓ VP 

VBZ NP↓ 

bought 

t1 
NP 

NNP 

John 

t2 
NP 

NNS 

pockets 

t3 
NP 

NN 

a shirt 

t4 
VP 

VP* PP 

IN NP↓ 

with 

t5 
NP 

NP* PP 

IN NP↓ 

with 

t6 

derivation tree	
 derived tree	


t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t6(with) 

t3(pockets) 

0 

2.2 

S 

NP VP 

VBZ NP 

bought 

NNP 

John 
NN 

a shirt 

PP 

IN 

with 

NP 

NP 

pockets 

NNS 
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Comparison with Dependency 
Grammar	


•  Compare the derivation tree with the usual notion 
of a dependency tree	


•  Note that a TAG derivation tree is a formal 
representation of the derivation	


•  In a Lexicalized TAG, it can be interpreted as a 
particular kind of dependency tree	


•  Different dependencies can be created by 
changing the elementary trees	


•  LTAG derivations relate dependencies between 
words to detailed phrase types and constituency	
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Localization of Dependencies	


•  Syntactic	

–  agreement: person, number, gender	

–  subcategorization: sleeps (null), eats (NP), 

gives (NP NP)	

– filler-gap: whoi did John ask Bill to invite ti	

– word order: within and across clauses as in 

scrambling, clitic movement, etc.	
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Localization of Dependencies	


•  Semantic	

–  function-argument: all arguments of the word 

that lexicalizes the elementary tree (also called 
the anchor or functor) are localized	


– word clusters (word idioms): non-
compositional meaning, e.g. give a cold 
shoulder to, take a walk	


– word co-occurences, lexical semantic aspects of 
word meaning	
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Localization of Dependencies	
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Idioms	

S 

NP↓ VP 

VBZ NP↓ 

kicked 

t1 
NP 

NNP 

John 

t2 
NP 

NN 

the bucket 

t3 

derivation tree #1	

t1(kicked) 

t2(John) 
1 

t3(the bucket) 
2.2 

derived tree	
 S 

NP VP 

VBZ NP 

kicked 

NNP 

John NN 

the bucket 

t4 
S 

NP↓ VP 

VBZ NP 

kicked NN 

the bucket 

t4(kicked the bucket) 

t2(John) 

1 derivation tree #2	
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Phrasal/Light Verbs	

S 

NP↓ VP 

VBZ NP↓ 

takes 

t1 
NP 

NNP 

John 

t2 
NP 

NN 

a walk 

t3 

derivation tree #1	

t1(takes) 

t2(John) 
1 

t3(a walk) 
2.2 

derived tree	
 S 

NP VP 

VBZ NP 

takes 

NNP 

John NN 

a walk 

t4 
S 

NP↓ VP 

VBZ NP 

takes NN 

a walk 

t4(takes a walk) 

t2(John) 

1 derivation tree #2	
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TAG and Generation	


•  TAG has some useful properties with respect to 
the problem of NL generation	


•  Adjunction allows a generation planning system to 
add useful lexical information to existing 
constituents	


•  Makes planning for generation output more 
flexible	

–  e.g. if the system has a constituent the book, it can 

choose to add new information to it: the red book, if 
there is a distractor for that entity for the hearer	


•  cf. Matthew Stone’s SPUD system	
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TAG with feature structures ���
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TAG with feature structures	


NP 

he 

NP 

him 

We want to rule out strings like *him likes he 

S 

NP↓ VP 

V NP↓ 

likes 

[case: nom] 

[case: nom] [case: acc] 

[case: acc] 

•  Use feature structure unification:	

•  [f:+] ∪ [f:-] = fail,      [f:+] ∪ [f:+] = [f:+]	

•  [f:+] ∪ [f: ] = [f:+],     [f:+] ∪ [g:+] = [f:+, g:+]	

•  unification of two feature structures = least most 
general feature structure that subsumes both	
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VP 

V NP↓ 

like 

S 

NP↓ VP 

[tense: -] 

TAG with feature structures	

We want to derive he wants to like him 

[tense: -] 

[tense: -] 

[] 

S 

NP↓ VP 

V NP↓ 

like 

VP 

V VP* 

to 

VP 

V VP* 

wants 

[tense: +] 

[] 

VP 

V VP* 

to 

[tense: -] 

[] 
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VP 

V NP↓ 

like 

VP 

V 

to 

S 

NP↓ VP 

[tense: -] 

[tense: -] 

TAG with feature structures	

We want to derive he wants to like him 

S 

NP↓ VP 

V NP↓ 

like 

[tense: -] 

VP 

V VP* 

to 

[tense: -] 

[] 

VP 

V VP* 

wants 

[tense: +] 

[] 

VP 

V VP* 

wants 

[tense: +] 

[] 
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TAG with feature structures	

We want to derive he wants to like him 

Top and bottom features must unify for a derivation to be valid. 	


S 

NP↓ VP 

V NP↓ 

like 

[tense: -] 

VP 

V VP* 

to 

[tense: -] 

[] 

VP 

V VP* 

wants 

[tense: +] 

[] 
VP 

V NP↓ 

like 

V 

to 

VP 

V 

VP 
wants 

S 

NP↓ 

[tense: -] 

[tense: -] 

[tense: +] 
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TAG with feature structures	

We want to derive he wants to like him 

Adjunction can be exploited to ensure that the 
feature structures never grow to an arbitrary size 
unlike context-free based unification grammars.	


S 

NP↓ VP 

V NP↓ 

like 

[tense: -] 

VP 

V VP* 

to 

[tense: -] 

[] 

VP 

V VP* 

wants 

[tense: +] 

[] 
VP 

V NP↓ 

like 

V 

to 

VP 

V 

VP 
wants 

S 

NP↓ [tense: +] 

[tense: -] 

[tense: -] 
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Mapping a TreeBank into 
Lexicalized TAG derivations ���

	




Penn Treebank for English	


•  Training data: 40K sentences with the 
correct syntactic phrase-structure tree	


•  Test data: ~2K sentences	

•  Evaluation: labeled constituents precision 

and recall	

•  Simple PCFGs can get ~84 F1 score.	

•  Also, Treebanks and TAG parsers exist for 

other languages: Chinese, Korean, German, 
French, …	
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LTAG Derivations from TreeBanks	


•  TreeBanks contain phrase structure trees or dependency 
trees	


•  Converting dependency trees into LTAG is trivial	

•  For phrase structure trees: exploit head percolation rules 

(Magerman, 1994) and argument-adjunct heuristic rules	

•  First mark TreeBank tree with head and argument 

information	

•  Then use this information to convert the TreeBank tree 

into an LTAG derivation	

•  More sophisticated approaches have been tried in (Xia, 

1999) (Chiang, 2000)  (Chen, 2000) and (Shen, 2006)	
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China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	


NNP	
POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	


‘s	


CD	


NP	
 NP	


VP-H	
NP-A	


S	


LTAG derivations from TreeBanks	
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LTAG derivations from TreeBanks	


NP-A	
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China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	


NNP	
POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	


‘s	


CD	


NP	
 NP	


VP-H	


NP	


S	


LTAG derivations from TreeBanks	


NP↓	
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LTAG derivations from TreeBanks	


China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	


NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	


‘s	


CD	


NP	
 NP	
VP-H	
NP	


S	


NP↓	


t(marked)	


t(economic)	


t(achievements)	


t(China)	


t(‘s)	
 t(14)	
 t(open)	
 t(border)	


t(cities)	
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Ambiguity Resolution ���
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Ambiguity Resolution	


t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t3(pockets) 

t5(with) 
2 

2.2 

t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t6(with) 

t3(pockets) 

0 

2.2 

•  Two possible 
derivations for John 
bought a shirt with 
pockets.	


•  One of them is more 
plausible than the 
other.	


•  Statistical parsing is 
used to find the most 
plausible derivation.	
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Statistical parsing	


•  Statistical parsing = ambiguity resolution 
using machine learning	


•  S = sentence, T = derivation tree	

•  Find best parse: 	


P(T,S) is a generative model: it contains parameters	

that generate the input string 
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Statistical Parsing with TAG	


P(tree1, John bought a shirt with 
pockets)=	


P(t1) * P(t1#0, NONE | t1#0) *	

P(t1#1, t2 | t1#1) *	

P(t1#2.2,  t4 | t1#2.2) * 	

P(t1#2, NONE | t1#2) *	

P(t2#0, NONE | t2#0) *	

P(t4#0, t6 | t4#0) *	

P(t6#0, NONE | t6#0) *	

P(t6#2, NONE | t6#2) *	

P(t6#2.2, t3 | t6#2.2) *	

P(t3#0, NONE | t3#0)	


P(tree2, John bought a shirt with 
pockets)=	


P(t1) * P(t1#0, NONE | t1#0) *	

P(t1#1, t2 | t1#1) *	

P(t1#2.2,  t4 | t1#2.2) *	

P(t1#2, t5 | t1#2) *	

P(t2#0, NONE | t2#0) *	

P(t4#0, NONE | t4#0) *	

P(t5#0, NONE | t5#0) *	

P(t5#2, NONE | t5#2) *	

P(t5#2.2, t3 | t5#2.2) *	

P(t3#0, NONE | t3#0)	


S 

NP↓ VP 

VBZ NP↓ 

bought 

t1 

VP 

VP* PP 

IN NP↓ 

with 

t5 

NP 

NNP 

John 

t2 
NP 

NNS 

pockets 

t3 

NP 

NN 

a shirt 

t4 

NP 

NP* PP 

IN NP↓ 

with 

t6 

t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t3(pockets) 

t5(with) 
2 

2.2 

t1(bought) 

t2(John) 
1 

t4(a shirt) 
2.2 

t6(with) 

t3(pockets) 

0 

2.2 
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Statistical Parsing with TAG	


•  PCFG	

•  Let tree T be built out of r CFG 

rules	

•  Note that in both PCFG and Prob. 

TAG, T is the derivation tree 	

•  (in contrast with DOP models)	

•  Find all T for given S in O(G2n3)	

•  For lexicalized CFG: O(n5)	


•  Prob. TAG	

•  Let tree T be built using r 

elementary trees, t1 … tr	

•  Let there be s nodes where 

substitution can happen	

•  And a nodes where adjunction can 

happen	

•  Find all T for given S in O(n6)	


a 
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Statistical Parsing with ATGs	

S 

 n  x 

VBZ   n 

bought 

q → R1:  y 

NNP 

John 

n → R2:  y 

NNS 

pockets 

n → R3:  y 

NN 

a shirt 

n → R4: 

 x 

VP PP 

IN  n 

with 

x(n) → R5: x(n) → VP(n) R6: 

y(n) → NP(n) R7: 

 y 

NP PP 

IN  n 

with 

y(n) → R8: 

P(R2) + P(R3) + P(R4) = 1 

P(R7) + P(R8) = 1 

P(R5) + P(R6) = 1 



144 derivation tree	
 derived tree	


S 

NP VP 

VBZ NP 

bought 

NNP 

John 

NN 

a shirt 

VP 
PP 

IN NP 

with 

pockets 

NNS 

R1:bought 

R2:John R4:shirt R5:with 

R3:pockets R6 R7 

R7 

R7 

P(R1) * P(R2) * P(R4) * P(R5) * P(R3) * P(R6) * (3 * P(R7)) 

Probabilities do not have to be bi-lexical!	




145 derivation tree	
 derived tree	


S 

NP VP 

VBZ NP 

bought 

NNP 

John 
NN 

a shirt 

PP 

IN 

with 

NP 

NP 

pockets 

NNS 

R1:bought 

R2:John R4:shirt 

R8:with 

R3:pockets R7 

R7 

R7 

R6 

P(R1) * P(R2) * P(R4) * P(R8) * P(R3) * P(R6) * (3 * P(R7)) 
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Statistical Parsing with TAG ���
(Carreras, Collins and Koo 2008)���

CoNLL 2008 Best Paper	




TAG-based discriminative parsing	


•  State of the art discriminative parsing using 
TAG	


•  Combines dependency parsing algorithms 
with phrase-structure parsing algorithms	


•  Does better on both phrase-structure and 
dependency evaluation	

– Phrase structure: 91.1 F1 (versus best 91.7 F1)	

– Dependencies: 93.5% (versus 92.5%)	
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TAG-based discriminative parsing	


•  Parse trees y for a given sentence x	

•  Each tree y comes from a set Y(x)	

•  Training: learn a weight vector w using 

perceptron updates on training data	

•  Representation: one weight per feature in a 

feature vector f(x, y)	

•  Discriminative parsing at test time: find the 

y in Y(x) that maximizes w . f(x,y)	

148 
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TAG-based discriminative parsing	


China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	


NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	


‘s	


CD	


NP	
 NP	
VP	
NP	


S	


t(marked)	


t(economic)	


t(achievements)	


t(China)	


t(‘s)	
 t(14)	
 t(open)	
 t(border)	


t(cities)	


Dependency 
evaluation 
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China	
 14	
open	
 border	
 cities	
 marked	
 economic	
 achievements	


NNP	
 POS	
 JJ	
 NN	
 NNS	
 VBD	
 JJ	
 NNS	


‘s	


CD	


NP	
 NP	


VP	
NP	


S	


TAG-based discriminative parsing	

Constituency
evaluation 



TAG-based discriminative parsing	


•  All components have been specified except 
for f(x,y)	


•  Any useful feature functions can be used, 
aimed at reducing uncertainty in parsing	


•  (Carreras, Collins and Koo, 2008) used 
several features from the existing literature	


•  Plus several TAG based features	
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Features	

•  Lexical features e(x,(i,t))	


–  e.g. marked takes (S(VP(VBD)))	
•  Dependency features d(x,(h,m,l))	


–  e.g. economic -> achievements	

•  Grammatical relations	


–  e.g. NP JJ NNS defines the above dependency	

•  Sibling dependencies	

•  Two types of Grandparent dependencies	
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border	
 cities	
 marked	
 economic	


NNS	
 VBD	


VP	
NP	


S	


economic	
 achievements	


JJ	
 NNS	


NP	




Efficient Parsing	

•  The algorithm used for TAG parsing adapts 

Eisner’s dependency parsing algorithm	

•  Complexity for second order inference 

(using grandparents) is O(n4)	

•  Too slow to be tractable in large scale data 

driven experiments	

•  (Carreras, Collins and Koo, 2008) use 

coarse to fine parsing techniques to speed 
up inference.	
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TAG for discriminative parsing	


•  1st step: Uses dependency parsing (without 
TAG trees) to eliminate unlikely 
attachments	


•  2nd step: Uses full TAG model for accurate 
parsing as second step	


•  State of the art accuracy	

– Phrase structure: 91.1 F1 (versus best 91.7 F1)	

– Dependencies: 93.5% (versus 92.5%)	


154 (arguably with less effort than competing re-ranking methods) 
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Synchronous TAG	


Slides adapted from Chung-hye Han’s slides 
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Synchronous TAG ���
(Shieber, 1994)	


•  Just like TAG we have derivation trees	

•  Except each node in the derivation is not a single 

elementary tree but rather a pair of trees	

•  The derivation tree now can be used to build a pair 

of derived trees	

•  Synchronous TAG can be used to generate a pair 

of derived trees or map a source input string to 
target output string	


•  Applications: NL semantics (scope ambiguity, 
etc.) and syntax-based machine translation	




Principle of Compositionality	

‣  The Fregean program	

•  The meaning of a 

sentence is determined 
by the meaning of its 
parts and how they are 
put together. 	


‣  Importance of syntax in 
the computation of 
meaning    	




Illustration of Compositionality	

John saw a woman with binoculars.	




Scope Ambiguity	


John 
 
Fred 
 
Pete 

Mary 
 
Jane 
 
Sue 

John 
 
Fred 
 
Pete 

Mary 
 
Jane 
 
Sue 

There is a boy who is 
dating every girl. 
(some>every) 

For each girl, there is a 
boy who is dating her. 
(every>some)  

Some boy is dating every girl.	




But No Syntactic Ambiguity	

Some boy is dating every girl.	




Covert Movement of the Quantified Phrase: 
Quantifier Raising	


•                   	
some>every	
 every>some	




Tree Adjoining Grammar: Syntax	

Apparently, some boy is dating every girl. 	




Synchronizing Syntax and Semantics: 
Synchronous Tree Adjoining Grammar 	


•  A pairing of TAGs, a TAG for syntax and a TAG 
for semantics (Shieber and Schabes 1990, Shieber 
1994)	


•  Each syntactic elementary tree is paired with one 
or more semantic trees.	


•  As syntactic elementary trees compose, 
corresponding semantic elementary trees compose 
in parallel.	


•  Syntactic derivation is isomorphic to semantic 
derivation.	




Synchronous Tree Adjoining Grammar (STAG) 	


Some boy is dating every girl.	


(Shieber and Nesson2006, Han et. al. 
2008) 



Semantic Composition for SOME>EVERY	


is-dating’(x,y)	




Semantic Composition for SOME>EVERY	




Semantic Composition for SOME>EVERY	




Semantic Composition for SOME>EVERY	


every’y [girl(y)] [is-dating’(x,y)]	




Semantic Composition for SOME>EVERY	




Semantic Composition for SOME>EVERY	




Semantic Composition for SOME>EVERY	


some’x [boy(x)] [every’y [girl(y)] [is-dating’(x,y)]]	


There is a boy who is dating every girl.	




Semantic Composition for EVERY>SOME	


is-dating’(x,y)	




Semantic Composition for EVERY>SOME	




Semantic Composition for EVERY>SOME	




Semantic Composition for EVERY>SOME	


some’x [boy’(x)][is-dating’(x,y)]	




Semantic Composition for EVERY>SOME	


some’x [boy’(x)][is-dating’(x,y)]	




Semantic Composition for EVERY>SOME	




Semantic Composition for EVERY>SOME	


every’y [girl(y)] [some’x [boy’(x)] [is-dating’(x,y)]]	


For each girl, there is a boy who is dating her.	




STAG as a Theory of Syntax and 
Semantics Interface	


•  No intermediate level between syntax and 
semantics where covert syntactic 
operations take place	


•  Syntax directly interfaces with semantics.	

•  Makes compositional semantics 

computationally feasible and tractable	
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Summary	


1.  Motivating Tree-Adjoining Grammars 
(TAGs) from a Computational Linguistics 
perspective	


2.  Relation to Monadic Simple Context-free 
Tree Grammars	


3.  Relation to algebraic notions of crossing 
dependencies in Dependency Grammar	
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Summary	


4.  TAGs as a formalism for natural language 
syntax	


5.  Statistical Parsing with weighted TAG	

6.  Synchronous Tree-adjoining grammar	
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