
COMBINING LABELED AND UNLABELED DATA IN

STATISTICAL NATURAL LANGUAGE PARSING

Anoop Sarkar

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2002

Professor Aravind Joshi
Supervisor of Dissertation

Val Tannen
Graduate Group Chair



COPYRIGHT

Anoop Sarkar

2002



Acknowledgements

Prof. Aravind Joshi, my dissertation advisor has been my guide and mentor for the entire time that

I spent at Penn. I thank him for all his academic help and personal kindness. The external member

on my dissertation committee was Steven Abney, whose suggestions and advice have made the

ideas presented here stronger. My dissertation committee members from Penn: Mitch Marcus,

Mark Liberman and Martha Palmer provided questions whose answers shaped my dissertation

proposal into the finished form in front of you. Many thanks to my academic collaborators; the

work on prefix probabilities was done with Mark-Jan Nederhof and Giorgio Satta when they visited

IRCS in 1998, the work on subcategorization frame learning was done in collaboration with Daniel

Zeman when he visited IRCS in 2000. Thanks to B. Srinivas whose previous work provided

the path to the experimental work in this dissertation. Thanks also to Paola Merlo and Suzanne

Stevenson for discussions on their work on verb alternation classes. I also acknowledge the help

of Woottiporn Tripasai in the extension of their work presented in this dissertation. Thanks to

Mike Collins, Adwait Ratnaparkhi, Mark Dras, David Chiang, Dan Bikel, Tom Morton and Dan

Gildea for helpful discussions. Fernando Pereira helped invaluably with his insightful suggestions.

Moses Kimanzi and William Schuler worked with me in implementing parts of the XTAG parser

which is documented within these pages. Past and current office-mates: Christy Doran, Fei Xia

and Carlos Prolo were helpful, patient and accomodating. The linguists: John Bell, Tonia Bleam,

David Embick, Alan Lee, Rashmi Prasad and Alexander Williams were personal and professional

friends. Finally, without the help and support of Chung-hye Han and the patience of my parents,

Leela and Dipesh Sarkar this thesis would remain unwritten.

iii



Abstract

COMBINING LABELED AND UNLABELED DATA IN

STATISTICAL NATURAL LANGUAGE PARSING

Anoop Sarkar

Supervisor: Professor Aravind Joshi

Ambiguity resolution in the parsing of natural language requires a vast repository of knowl-

edge to guide disambiguation. An effective approach to this problem is to use machine learning

algorithms to acquire the needed knowledge and to extract generalizations about disambiguation

decisions. Such parsing methods require a corpus-based approach with a collection of correct

parses compiled by human experts. Current statistical parsing models suffer from sparse data

problems, and experiments have indicated that more labeled data will improve performance. In

this dissertation, we explore methods that attempt to combine human supervision with machine

learning algorithms to try and extend accuracy beyond what is possible with the use of limited

amounts of labeled data. In each case we do this by exposing a machine learning algorithm to

unlabeled data in addition to the existing labeled data.

Most recent research in parsing has shown the advantage of having a lexicalized model, where

the word relationships mediate knowledge about disambiguation decisions. We use Lexicalized

Tree Adjoining Grammars (TAGs) as the basis of our machine learning algorithm since they arise

naturally from the lexicalization of Context Free Grammars (CFGs). We show in this dissertation

that probability measures applied to TAGs retain the simplicity of probabilistic CFGs along with

its elegant formal properties and that while PCFGs need additional independence assumptions to

be useful in statistical parsing, no such changes need to be made to probabilistic TAGs.
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The main results presented in this dissertation are:

• We extend the Co-Training algorithm (Yarowsky 1995; Blum and Mitchell 1998), a machine

learning technique for combining labeled and unlabeled data previously used with classifiers

with 2/3 labels to the more complex problem of statistical parsing. Using empirical results

based on parsing the Wall Street Journal corpus we show that training a statistical parser on

the combined labeled and unlabeled data strongly outperforms training only on the labeled

data.

• We present a machine learning algorithm that can be used to discover previously unknown

subcategorization frames. The algorithm can then be used to label dependents of a verb in

a treebank as either arguments or adjuncts. We use this algorithm to augment the Czech

Dependency Treebank with argument/adjunct information.

• We extend a supervised classifier for automatically identifying verb alternation classes for

a set of verbs so that it can be used on minimally annotated data. Previous work (Merlo

and Stevenson 2001) provided a classifier for this task that used automatically parsed text.

With the use of learning of subcategorization frames we construct the same type of classifier

which now requires text annotated with part-of-speech tags and phrasal chunks.

In each of these results we use some existing linguistic resource that has been annotated by humans

and add some further significant linguistic annotation by applying statistical machine learning

algorithms.
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Chapter 1

Introduction

Ambiguity resolution in the parsing of natural language requires a vast repository of knowledge

to guide disambiguation. An effective approach to this problem is to use machine learning algo-

rithms to acquire this knowledge and extract generalizations about disambiguation decisions. Such

parsing methods require a corpus-based approach with a collection of correct parses compiled by

human experts. Current statistical parsing models suffer from sparse data problems, and exper-

iments have indicated that more labeled data will improve performance. In this dissertation, we

explore methods that attempt to combine human supervision with machine learning algorithms that

try and extend accuracy beyond what is possible with the use of limited amounts of labeled data.

In each case we do this by exposure to unlabeled data in addition to the existing labeled data.

Most recent research in parsing has shown the advantage of having a lexicalized model, where

the word relationships mediate knowledge about disambiguation decisions. We use Lexicalized

Tree Adjoining Grammars (TAGs) as the basis of our machine learning algorithm since they arise

naturally from the lexicalization of Context Free Grammars (CFGs). We show that statistical mod-

els of parsing with TAGs provide a natural boundary between statistical models that build clausal

structure and full-blown statistical parsing which combines clauses to form sentence structures.

We show in this dissertation that probability measures applied to TAGs retain the simplicity of

probabilistic CFGs along with its elegant formal properties.
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1.1 Outline of the Dissertation

This dissertation presents several results that are related to statistical parsing. In each of these

results we use some existing linguistic resource that has been annotated by humans and added

some further significant linguistic annotation by applying statistical machine learning algorithms.

The various results that relate to this overall theme are organized into the following parts in this

dissertation.

• Chapter 3 presents a novel Co-Training method for statistical parsing. Using empirical re-

sults based on parsing the Wall Street Journal corpus we show that training a statistical

parser on the combined labeled and unlabeled data strongly outperforms training only on the

labeled data.

• Chapter 4 presents a machine learning algorithm that can be used to discover previously

unknown subcategorization frames. The algorithm can then be used to label dependents of

a verb in a treebank as either arguments or adjuncts.

• Chapter 5 presents a classifier for automatically identifying verb alternation classes for a

set of verbs which extracts features from distributional information about the local clausal

context of verbs exploiting very minimal annotation of the data such as part-of-speech tags

and phrasal chunks.

The rest of this chapter provides an introduction to the problem of statistical parsing and gives

a historical overview of the methods and important concepts used in this field. Chapter 2 pro-

vides some motivation for the use of Tree Adjoining Grammars (TAGs) for statistical parsing and

introduces some basic results in the field of probabilistic TAGs. This chapter also shows that prob-

abilistic TAGs retain the simplicity of probabilistic CFGs along with its elegant formal properties

and while PCFGs need additional independence assumptions to be useful in statistical parsing, no

such changes need to be made to probabilistic TAGs.

In Chapter 6 we provide the parsing algorithm used in the experiments that use a TAG-based

statistical parser in this dissertation. We also include various performance evaluations of the parser

in this chapter.
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Appendix A gives a formal justification for the algorithm given in Chapter 2 showing whether

a given stochastic TAG is consistent by showing a reduction of the TAG derivation process to a

multitype Galton-Watson branching process [Har63].

Appendix B gives a full treatment of the computation of prefix probabilities introduced in

Chapter 2. It uses a program transformation approach to translate the inside probability computa-

tion into a prefix probability computation for stochastic TAGs.

1.2 Introduction to Statistical Parsing

Parsing and the general issue of syntactic analysis is part of the general scientific analysis within

the fields of artificial intelligence and cognitive science of the human ability to map sounds into

complex (recursive) semantic structures. Syntactic processing also is relevant for issues in human-

computer interaction (through both speech and text). Also, breakthroughs in parsing are likely to

benefit various engineering problems such as machine translation, information extraction, summa-

rization, among others.

Statistical parsing tries to solve one problem among many others in the overall field of syn-

tactic analysis. This problem is that of ambiguity. Ambiguity resolution in the parsing of natural

language requires a vast repository of knowledge to guide disambiguation. An effective approach

to this problem is to use machine learning algorithms to acquire this knowledge and extract gener-

alizations about disambiguation decisions. Such parsing methods require a corpus-based approach

with a limited collection of correct parses compiled by human experts.

1.2.1 Types of Syntactic Analysis

There are three major types of syntactic analyses that are produced by current parsers:

• Constituent structures

• Dependency analysis

• Non-recursive analysis into text chunks
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Pierre/NNP Vinken/NNP

NP

will/MD

join/VB

the/DT board/NN

NP

as/IN

a/DT non−executive/JJ director/NN

NP

PP

VP

VP

S

Figure 1.1: A sample constituent analysis of a sentence

Constituent Structures

Constituent structures for language exploit the use of abstract labels for their description. They typ-

ically also employ various complex relationships over these abstract labels such as the annotation

of the dislocation of various constituents in various natural language phenomena like relativization,

ellipsis, right-node raising, among others.

Examples of such a kind of analysis in building Treebanks is the Penn English Treebank,

the Penn-Helsinki Middle-English Treebank, the Penn Korean Treebank and the German Negra

Treebank.

An example of constituent analysis is given in Figure 1.1. Evaluation of parsers that are trained

on this kind of data is usually done on the brackets recovered by the parser.

Complex structural labels and descriptions in the representation that includes empty elements

means that such parses are hard to induce using purely self-organizing methods.

The recovery of recursive constituent structures is at least polynomial in the length of the

input. Techniques vary from O(n3) to O(n6) for fully bottom-up techniques. Left to right shift

reduce algorithms can be exploited to get observable linear time performance.

Dependency Analysis

Dependency analysis provides word to word relationships that are often typed by the assignment

of a label. Typically dependency analyses shun the use of abstract relationships between phrases
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0 Pierre/NNP 1
1 Vinken/NNP 3
2 will/MD 3
3 join/VB TOP
4 the/DT 5
5 board/NN 3
6 as/IN 3
7 a/DT 9
8 non-executive/JJ 9
9 director/NN 6

Figure 1.2: A sample dependency analysis of a sentence

relying only on word relationships. As a result, different corpora annotated with dependency struc-

ture typically give very different (and usually ad-hoc) treatments of crossing dependencies, and

phenomena that target constituents (e.g: relativization and ellipsis).

Examples of such dependency structure corpora include the Czech Prague Treebank, Japanese

EDR corpus and the Hindi Treebank from LTRC, Hyderabad.

An example of dependency analysis is given in Figure 1.2. Most dependency annotations

also add some more information such as a label indicating linguistic information (such as subject,

object, etc.) about the type of link between two words. Evaluation of parsers that are trained on

this kind of data is usually done on accuracy of the dependency links produced by the parser.

It is important to note that it is possible to map between dependency analyses and constituent

structures. This is has been done when parsing the Czech Treebank (from dependencies to con-

stituent structure [CHRT99]). And also when parsing the Penn Treebank (from constituent struc-

ture to word-word dependencies [Eis96].

While the structures are simpler in dependency analysis, the worst time complexity analysis

for dependency parsing is at least as bad as that for constituent analysis.

Chunking and Shallow Parsing

A third type of syntactic analysis is to find non-recursive or basal phrases in text which is often

useful in many applications where a full syntactic analysis is unnecessary. Since only non-recursive

constituent analysis is done, typically the complexity of this task in linear in the length of the input.
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>> [ John/NNP ] saw/VBD [the/DT cat/NN]

[the/DT dog/NN] liked/VBD ./.

>> [ John/NNP Smith/NNP ] ,/, [ president/NN ]

of/IN [ IBM/NNP ] ./.

>> [ Pundits/NNS ] condemned/VBD [ terrorism/NN ]

and [ assassination/NN ] ./.

Figure 1.3: Chunking analysis of a sentence

[nx

nns techniques

[pp

in for

[nx

vbg bootstrapping

jj broad

nn coverage

nns parsers

]

]

]

Figure 1.4: Cascades of chunks in a sentence

Figure 1.3 shows the basal noun phrases that can be recovered by a chunk parser. Cascades

of chunkers can be used to extend such shallow parsing techniques towards full syntactic analysis

(see for example a sample output from Steve Abney’s chunker [Abn97] in Figure 1.4). For more

on chunking see [Abn97]. These techniques typically have problems recovering sentential phrase

boundaries accurately when they rely on exclusively finite-state methods.

1.2.2 Parsing Algorithms

A generative linguistic theory is implemented in a formal system to produce the set of grammat-

ical strings and rule out ungrammatical strings. In a probabilistic setting, this system produces a

probability distribution over the strings in the language, assigning probability of zero to strings not

in the language. Such a formal system has an associated decision problem: given a string, can it

be recognized by the formal system. An algorithm for this decision problem is called a recognizer.
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• Consider the CFG G:

1. S → S S

2. S → a

L(G) = ai for i >= 1

• The recognition question: does the string aaa belong to L(G) ?

– Input: aaa

– Output: {yes, no}

Figure 1.5: The recognition problem for a grammar formalism

If a string is generated by a grammar, the record of the steps taken to recognize the string is called

a parse derived by a parsing algorithm.

Recognition and parsing algorithms should be decidable. Preferably the algorithm should

be polynomial since this enables computational implementations of linguistic theories. Elegant,

polynomial-time algorithms exist for formalisms like context-free grammars and tree-adjoining

grammars. See for example a simple parser for probabilistic CFGs shown in Figure 1.7 which takes

as input a PCFG of the kind shown in Figure 1.2.2. In this algorithm the function extractbest

traverses the back pointers stored in the B array to find the best derivation for an input string. A

simple analysis of the algorithm shows that the worst case complexity of the parser for any input

string is O(G2n3) where n is the length of the input and G is a constant depending on the gram-

mar. Since the grammar is considered invariant, the G2 term is usually ignored. However, if each

non-terminal also refers to some terminal symbol (the so-called bi-lexical CFGs) in the input then

the complexity becomes O(n5). [ES99] has shown that this worst case complexity for bi-lexical

grammars can be reduced back to O(n3) with some grammar constant.

1.2.3 Ambiguity in Natural Language Grammars

Statistical parsing deals with the problem of ambiguity which causes the number of derivations to

grow exponentially. For example, for increasing lengths of the input string the number of deriva-

tions obtained by the grammar is shown in Figure 1.2.3.
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$grammar{"S S"} = ["S"];

$grammar{"a"} = ["S"];

@start = ("S");

$prob{"S -> S S"} = 0.3;

$prob{"S -> a"} = 0.7;

@input = (a, a, a, a, a);

Figure 1.6: Example probabilistic CFG grammar as input for parser in Figure 1.7

The issue of syntactic ambiguity in natural language is brought into sharp focus when you con-

sider the algebraic character of parses produced by a CFG. Using the description of CFG deriva-

tions in terms of power series the paper by [CP82] showed how even simple natural language

grammars can be highly ambiguous. See [Sal73] for further background to the use of power series

to describe derivations of context-free grammars.

Let us take, for example, the power series for the grammar: NP → cabbages | kings | NP

and NP:

NP = cabbages + cabbages and kings

+ 2 (cabbages and cabbages and kings)

+ 5 (cabbages and kings and cabbages and kings)

+ 14 ...

The coefficients equal the number of parses for each NP string. These ambiguity coefficients

are Catalan numbers:

Cat(n) =


2n

n

 −


2n

n − 1




a

b

 is the binomial coefficient.


a

b

 =
a!

(b!(a − b)!)

Cat(n) also provides exactly the number of parses for sentences that contain multiple preposi-

tional phrases with multiple possibilities of attachment, such as:
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$N = $#input + 1;

@A = (); # lenˆ2

%B = (); # backpointers: lenˆ2 * NTs

%P = (); # prob: lenˆ2 * NTs

$HUGE_VAL = 1048576; $DEFAULT = -$HUGE_VAL;

for ($i = 0; $i < $N; $i++) {

# nt -> input[i]

foreach $nt (@{$grammar{"$input[$i]"}}) {

$j = $i+1;

if (!(defined $B{$i}{$j}{$nt})) {

push @{$A[$i][$j]}, $nt;

print STDERR "inserting A[$i][$j] = $nt\n";

}

$np = log($prob{"$nt -> $input[$i]"});

$op = (defined $P{$i}{$j}{$nt}) ? $P{$i}{$j}{$nt} : $DEFAULT;

if ($np >= $op) {

$P{$i}{$j}{$nt} = $np;

$B{$i}{$j}{$nt} = "/$input[$i]/";

}}}

for ($j = 2; $j <= $N; $j++) {

for ($i = $j-2; $i >= 0; $i--) {

for ($k = $i+1; $k < $j; $k++) {

foreach $nt1 (@{$A[$i][$k]}) {

foreach $nt2 (@{$A[$k][$j]}) {

# nt -> nt1 nt2

foreach $nt (@{$grammar{"$nt1 $nt2"}}) {

if (!(defined $B{$i}{$j}{$nt}))

push @{$A[$i][$j]}, $nt;

print STDERR "inserting A[$i][$j] = $nt\n";

}

$np = $P{$i}{$k}{$nt1} + $P{$k}{$j}{$nt2} +

log($prob{"$nt -> $nt1 $nt2"});

$op = (defined $P{$i}{$j}{$nt}) ? $P{$i}{$j}{$nt} : $DEFAULT;

if ($np >= $op) {

$P{$i}{$j}{$nt} = $np;

$B{$i}{$j}{$nt} = "$k $nt1 $nt2";

}}}}}}}

$bp = $DEFAULT;

$best = ’’;

foreach $s (@start) {

my $rx = extractbest(0, $N, $s);

next if ($rx eq ’’);

$np = $P{0}{$N}{$s};

if ($np >= $bp) { $best = $rx; $bp = $np; }

}

print "$best\n";

Figure 1.7: Simple Perl implementation of a parser for Probabilistic CFGs which reports a single
best parse given an input string
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Figure 1.8: Number of derivations for strings in L(G) = a a ... for the grammar G = S → S
S

John saw the man

on the hill

with the telescope

The various attachments describe the five different meanings possible in this sentence.

Other sub-grammars that can be written in a natural language grammar are simpler:

ADJP → ad j ADJP | ε

ADJP = 1 + ad j + ad j2 + ad j3 + . . .

ADJP = 1
1−ad j

Since in a natural language grammar these individual constructions have to be combined. So

we also have to consider power series of combinations of sub-grammars. For example the combi-

nation of NP and VP grammars is given by the rule: S = NP · VP . This gives analyses for strings

such as:

( The number of products over sales ... )

( is near the number of sales ... )

As can be seen in this example, both the NP subgrammar and the VP subgrammar power series

have Catalan coefficients. The power series for the S → NP VP grammar is the multiplication:
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In a parser for this grammar, this leads to a cross-product:

L × R = {( l, r ) | l ∈ L & r ∈ R }

These examples show in concrete terms that ambiguity is pervasive in any grammar that aims

to capture natural language sentences. Rather than produce massively ambiguous outputs when

analysing naturally occuring sentences we wish to find a method for ambiguity resolution that will

produce a single best parse (or at least a ranked list of parses). We shall see how statistical parsing

aims to solve this problem.

Ambiguity Resolution: Prepositional Phrases in English

One method to deal with the ambiguity prevalent in prepositional phrase grammars is to use a

supervised learning method which learns proper attachments. We can use the words such as for

example, the preposition used, as indicative features to disambiguate the attachment. As we shall

see, this provides a simple method to deal with the ambiguity in prepositional phrase grammars.

In order to have an effective supervised learning method we need an adequate amount of data

labeled with the right answer. The supervised learner will learn from this annotated data how to

make decisions on unseen data. Figure 1.9 shows an example of a list of attachment decisions

given for a set of simple PP attachment decisions (only disambiguating between a single noun and

verb phrase attachment) which were extracted from the Penn Treebank [RRR94].

The difficulty of the task can be observed in the table shown in Figure 1.2.3. The average

human refers to the average performance of a team of annotators on this task. Inter-annotator

disagreement can be seen in the figure of 93.2% even when the full sentence is available. This

disagreement increases noise in the data and affects performance of supervised learning methods

including supervised statistical parsing1.

There have been several methods which have been proposed for the supervised learning of
1Perhaps methods such as those given in [ASS99] can be used to deal with this kind of problems
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V N1 P N2 Attachment
join board as director V
is chairman of N.V. N
using crocidolite in filters V
bring attention to problem V
is asbestos in products N
making paper for filters N
including three with cancer N

Figure 1.9: Annotated data providing prepositional phrase attachments

Method Accuracy
Always noun attachment 59.0
Most likely for each preposition 72.2
Average Human (4 head words only) 88.2
Average Human (whole sentence) 93.2

Figure 1.10: Baseline models and annotator agreement on the PP attachment task

PP attachment. Let us take one example of a supervised learning method for learning preposi-

tional phrase attachment as explored in [CB95]. The method involves the learning of a proba-

bility model p(d | v, n1, p, n2) where d is a binary decision {0, 1} between verb and noun attach-

ment and v, n1, p, n2 are the head-words in each position involved in a attachment decision. So if

p(1 | v, n1, p, n2) >= 0.5 the learner chooses noun attachment. The main problem with this proba-

bility model is that of sparse data: the learner is unlikely to see each of the four words v, n1, p, n2

in unseen data. To deal with this issue, the model proposed in [CB95] for PP attachment adds

several back-off levels ([Kat87]). The entire model is given in Figure 1.2.3.

The results obtained by this model are 84.1% accuracy (cf. the accuracy of the various baseline

models and human performance in Figure 1.2.3). If we analyze why this particular algorithm

works as well it does we encounter the following points in its favor (some of these were also used

in previous models).

• Lexicalization helps disambiguation by capturing selectional preferences. This was also the

insight behind early work in statistical parsing [BJL+93, Mag95]

• Smoothing deals with sparse data and improves prediction. Further improvements can
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p(1 | v, n1, p, n2) = λ(c1) · p(1 | c1 = v, n1, p, n2)

+ λ(c2 + c3 + c4) · p(1 | c2 = v, n1, p)
· p(1 | c3 = v, p, n2)
· p(1 | c4 = n1, p, n2)

+ λ(c5 + c6 + c7) · p(1 | c5 = v, p)
· p(1 | c6 = n1, p)
· p(1 | c7 = p, n2)

+ λ(c8) · p(1 | c8 = p)

+ (1 −
∑

i λ(ci)) · 1.0 (default is noun attachment)

Figure 1.11: The back-off probability model for PP attachment

be seen in PP attachment accuracy if we add information about word classes and senses,

see [SN97].

• Uses the head of the phrase, in this case, the preposition as privileged.

• Even single counts are trusted instead of treating them as noise due to limited amount train-

ing data and the sparse nature of lexical information.

Similar insights about lexicalization and the priviliged status of the semantic head of a con-

struction led to lexicalization of grammars in mathematical linguistics and all-paths parsing; cf.

tree-adjoining grammars (TAG) and combinatory categorial grammars (CCG).

By dealing with the sparse data problem by bringing in external resources such as Wordnet

to back off to word classes and doing some simple word-sense disambiguation as was pursued

in [SN97] leads to improvement in performance on this task to 88%.

The question subsequently asked by many researchers was whether we can take this insight

about PP attachment models and improve on parsing performance using Probabilistic CFGs in

finding the best parse for a given sentence.
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Pierre/NNP Vinken/NNP

NP

will/MD

join/VB

the/DT board/NN

NP

as/IN

a/DT non−executive/JJ director/NN

NP

PP

VP

VP

S

Figure 1.12: Annotated data for statistical parsing: an example sentence from the Penn WSJ Tree-
bank.

Supervised Models for Parsing

Analogous to the PP attachment task, in order to build supervised models for parsing we need

annotated data with which to train our parsers. Such annotated data is stored in the form of a

Treebank where the correct analysis according to some linguistic theory is stored for each sentence

in a corpus of text. The largest such collection to date is the Penn Treebank which is an annotated

collection of a million words of Wall Street Journal text. An example sentence from the Penn

Treebank with its annotation is shown in Figure 1.2.3.

In order to apply our experience with prepositional phrase attachment to this more complex

problem of finding the best parse for a given sentence, we would like to exploit lexical information.

Such information can be used to improve our conditioning context when building up a parse tree.

A common method to add such information is the use of heuristic head-percolation rules (see

Figure 1.13). We discuss the role of lexical information in statistical parsing in detail in Chapter 2.

Given annotated data of the type shown in Figure 1.2.3 we can frame parsing as a supervised

learning task. The problem is reduced to to the induction of a function (see [Col97]):

f : S → T

where S are sets of sentences and T (S ) are sets of trees for a given sentence S . This function

can be used to produce the best tree Ti ∈ T (S ) given a sentence S i ∈ S. A statistical parser builds

model P(T, S ) for each (T, S ). The best parse is then:
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will/MD

join/VB

the/DT board/NN

NPB~board~2~2

as/IN

a/DT nonexecutive/JJ director/NN

NPB~director~3~3

PP~as~2~1

VP−A~join~4~1

VP~will~2~1

Figure 1.13: Lessons learned from prepositional phrase attachment applied to parsing [Mag95].

arg max
T∈T (S ) P(T, S )

A history-based approach to statistical parsing maps (T, S ) into a decision sequence d1, . . . , dn.

The probability of tree T for sentence S is:

P(T, S ) =
∏

i=1...n

P(di | φ(d1, . . . , di−1))

where, φ is a function that groups histories into equivalence classes.

PCFGs can be viewed as a history-based model using leftmost derivations. A tree with rules

〈γi → βi〉 is assigned a probability
∏n

i=1 P(βi | γi) for a derivation with n rule applications.

Tbest =
arg max

T P(T | S )

=
arg max

T

P(T, S )
P(S )

=
arg max

T P(T, S )

=
∏

i=1...n

P(RHS i | LHS i)
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Bracketing recall = num of correct constituents
num of constituents in the goldfile

Bracketing precision = num of correct constituents
num of constituents in the parsed file

Complete match = % of sents where recall & precision are both 100%

Average crossing =
num of constituents crossing a goldfile constituent

num of sents

No crossing = % of sents which have 0 crossing brackets

2 or less crossing = % of sents which have ≤ 2 crossing brackets

Figure 1.14: Parseval metrics for parser evaluation

Evaluation of Statistical Parsers

An important requirement for the endeavour of statistical parsing, indeed for corpus based NLP

in general, is to have a consensus on the evaluation metrics for a given problem and its associated

corpus type.

For statistical parsing this evaluation method was set at a workshop meeting of researchers

into parsing. The result was a group of measures with which to evaluate parsers that report la-

beled constituents in their output. This evaluation measure was called Parseval. A program called

EVALB was written by Collins and Sekine that encodes these metrics. Parseval evaluation metrics

are shown in Figure 1.2.3. The most commonly reported figures are the precision and recall of the

labeled brackets or constituents reported by the parser.

An exhaustive literature survey of supervised statistical parsing methods and results on proba-

bilistic grammars already appears in Chapter 2 of [Col98]. In the remainder of the chapter we shall

look at some more recent research in the field of statistical parsing particularly directed towards

the effective use of the existing amounts of labeled data available for training a parser.

1.2.4 Some Current Directions in Statistical Parsing

In this section we shall look at some current directions in statistical parsing. In particular we will

look at the following aspects of statistical parsing:
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≤ 40wds ≤ 40wds ≤ 100wds ≤ 100wds
System LP LR LP LR
(Magerman 95) 84.9 84.6 84.3 84.0
(Collins 99) 88.5 88.7 88.1 88.3
(Charniak 97) 87.5 87.4 86.7 86.6
(Ratnaparkhi 97) 86.3 87.5
(Charniak 99) 90.1 90.1 89.6 89.5
(Collins 00) 90.1 90.4 89.6 89.9
Voting (HB99) 92.09 89.18

Figure 1.15: Statistical parsing results using Parseval for various lexicalized PCFG models. LP =
labeled precision. LR = labeled recall

• Voting methods for parser combination

• Discriminative methods and parse re-ranking

• Combination of unlabeled data with labeled data

Voting methods for parser combination

A promising technique which has been pursued with great deal of success in speech recognition is

the combination of different systems by voting between their predictions using various methods.

[Hen98] and [HB00] explore various techniques in the combination of existing statistical parsers

that have been trained and tested on the WSJ Penn Treebank.

There are two main methods that can be used to combine the output of different statistical

parsers.

Parse Hybridization In this technique individual constituents are selected from each parser.

Parser Switching Learn which is the best parser for a given sentence by using features from the

input sentence.

For both of these methods [Hen98] gives some machine learning methods which can be trained

on some held-out data.

• Parse Hybridization
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arg max
π(c) P(π(c) | M1(c) . . . Mk(c)) =

arg max
π(c)

P(M1(c) . . . Mk(c) | π(c)) · P(π(c))
P(M1(c) . . . Mk(c))

arg max
π(c) P(π(c)) ·

k∏

i=1

P(Mi(c) | π(c))
P(Mi(c))

arg max
π(c) P(π(c)) ·

k∏

i=1

P(Mi(c) | π(c))

Figure 1.16: Naive Bayes classifier for parse hybridization

– Constituent Voting

– Naive Bayes

• Parser Switching

– Similarity Switching

– Naive Bayes

In parse hybridization, constituent voting is a simple vote among the different parsers involved

in the experiment (in [Hen98] the experiments used three parsers). The constituent that gets the

most votes wins with a priority given to the highest performing parser in case none of the parsers

agree.

The naive bayes method also does voting but it learns a classifier to perform the voting instead

of doing simple voting. Let π(c) = 1 when constituent c should be included in the output parse.

Mi(c) = 1 indicates that parser i suggests that constituent c should be in the output parse. The

model picks likely constituents (P > 0.5) to be in the output parse where P is chosen using a naive

bayes classifier shown in Figure 1.2.4.

Parser switching is simpler than combining consitutent since only one parser is chosen for a

given sentence. The rationale for preferring this method was that each parser is decoding the best

parse according to some generative or conditional model and parse hybridization could combine to-

gether individual consituents but fail in combining them together to form the best parse. However,
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Reference/System LP LR

Average Individual Parser 87.14 86.91
Best Individual Parser 88.73 88.54
Parser Switching Oracle 93.12 92.84
Maximum Precision Oracle 100.00 95.41
Similarity Switching 89.50 89.88
Constituent Voting 92.09 89.18

Figure 1.17: Performance of various parser combination methods

as shown by the results in Figure 1.2.4 from [Hen98], constituent voting (the simplest method)

outperforms the other methods. This figure also shows (see the oracle precision/recall figures) that

voting methods could be improved further.

Discriminative methods for parse reranking

Experiments in [Rat98] showed that if the parser was allowed upto 20 chances to get the best parse,

accuracy could be as high as 94% avg LP/LR on the standard parsing task on Section 23. For most

statistical parsers, 20 ranked guesses are easy to produce (as Tbest . . .Tbest−19). This leads to the

idea of automatic reranking which can be used to produce a more accurate parser. [Col00] showed

that reranking can improve parsing accuracy.

The approach taken in [Col00] was as follows. Let xi, j be the jth parse of the ith sentence. The

statistical parser produces estimates L(xi, j) = logQ(xi, j) which is the log probability of a parse. The

task of an automatic reranking program is to learn a ranking function F(xi, j). A baseline ranking

is given by just trusting the statistical parser: F(xi, j) = L(xi, j)

Intuitively, a re-ranking program should exploit features that were unavailable to the original

statistical parser either because it would have cause sparse data problems in a generative model or

because decoding (parsing) using the model was done purely bottom-up. Let us provide parameters

which will weight a new set of features used in re-ranking. These parameters are defined as α =

{α0, . . . , αm}. The new re-ranking function is now given as:

F(xi, j, α) = α0L(xi, j) +
m∑

s=1

αshs(xi, j)

where hs are features extracted from the parses produced by the statistical parser. For example,

19



hs(x) =


1 if x contains rule S→ NP VP

0 otherwise

Since we now have the n-best output of the parser on a sentence and we have access to the

correct parse in that set, the objective of learning a re-ranking function can now be stated as the

minimization of the ranking error rate. This error rate is defined as the number of times a lower

scoring parse is ranked above best parse in the baseline ranking of the parser.

[Col00] gives various discriminative methods to minimize the ranking error rate. Various non-

local features can now be used. These features were unavailable within a top-down generative

model. Figure 1.2.4 give the set of features used in the re-ranking experiment described in [Col00].

Using this method, [Col00] showed that parsing performance improved with a 13% decrease in the

labeled constituent error rate: LP 90.4% LR 90.1% (≤ 40 wds) and LP 89.6% LR 89.9% (≤ 100

wds).

Limited amounts of labeled data

In this section we review some methods which attempt to deal with the problem of limited amounts

of labeled data.

The Inside-Outside Algorithm The Inside-Outside Algorithm is a self-organizing method that

finds parameter values for probabilistic CFGs. Expected usage of each production in the CFG is

treated as hidden data and discovered using EM-based re-estimation using the Maximum Like-

lihood principle. The algorithm finds parameter values for PCFGs that reduce the training set

entropy.

It does this by initializing the PCFG rule probabilities to random values. It then computes the

following probabilities α and β , for each non-terminal X based on an input training (unlabeled)

corpus. Then for each rule in which X is the lhs, values of α and β are used to compute new

expected usage of that rule by using the maximum likelihood principle

• inside probability: P(X
∗
⇒ t j . . . tk)

written as β(X, j, k)
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Rules context-free rules, e.g. VP → PP VBD NP NP SBAR

Bigrams Pairs of non-terminals to the left and right of the head, e.g. (Right, VP, NP, NP),
(Right, VP, NP, SBAR), (Right, VP, PP, STOP) and (Left, VP, PP, STOP)

Grandparent Rules Same as Rules including the parent of the LHS

Grandparent Bigrams Same as Bigrams including parent of the LHS

Lexical Bigrams Same as Bigrams but with lexical heads

Two-level Rules Same as Rules but with the LHS expanded to an entire rule

Two-level Bigrams Same as Bigrams but with the LHS expanded to an entire rule

Trigrams All trigrams within a rule, e.g. (VP, STOP, PP, VBD!)

Head-Modifiers All head-modifier pairs with grandparent non-terminals, e.g. (Left, VP,
VBD, PP)

PPs Lexical trigrams for PPs, e.g. (NP (NP the president) (PP of (NP IBM))) produces (NP, NP,
PP, NP, president, of, IBM) as well as (NP, NP, PP, NP, of, IBM)

Distance Head-Modifiers Distance between head words in a CFG attachment rule

Closed-class Lexicalization Add closed-class words to non-lexicalized non-terminals in above
rules (except last 3)

Figure 1.18: Non-local features used in [Col00]
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• outside probability: P(S
∗
⇒ t1 . . . t j−1 X tk+1 . . . tn)

written as α(X, j, k)

This step is then iterated to convergence. The theorem on the EM family of algorithms

by [DLR77] (of which the IO algorithm is a special case) states that likelihood is always non-

decreasing. This technique is theoretically well motivated, but computationally expensive O(n3)

per sentence in each iteration for PCFGs.

Even for small manageable datasets and small grammars, the IO algorithm leads to linguis-

tically uninteresting grammars as discussed in [Mar95]. The main caution in using completely

unsupervised methods such as the IO algorithm is that minimizing corpus likelihood might not

lead to minimization of error rate (which is the real evaluation measure). More discussion of this

is given in Chapter 3.

A more interesting use of outside probabilities is to find the most likely constituents in the

analysis of an input sentence. [Goo96] explores this view and shows that one can do better at

labeled constituent measures if the parser explicity maximizes constituent probabilities (using the

outside probability) instead of finding the best parse tree. On the other hand, the standard method

of finding the best tree does better when that is the measure being evaluated.

Active learning Active learning (and more narrowly the field of sample selection) aims to dis-

cover which data from a pool of unlabeled data when annotated by hand would be most informative

for a machine learning algorithm. This could be restated as the question of selecting a subset from

a large pool of text to be annotated to create a training set. Thus, active learning provides a better

approach than blindly labeling an arbitrary set of data. However, the drawbacks of sample selec-

tion are that it is often biased to a particular learning model. A common answer to this problem is

to use a committee of learners (see [ED96, CAL94])

We will discuss one experiment which used sample selection to select data for a statistical

parser. In [Hwa01, Hwa00] new sentences were selected to be annotated based on their Training

Utility Function which was defined to be some appropriate metric on the usefulness of that sentence

when annotated to the future performance of a statistical parser. Given such an evaluation function

f , Figure 1.2.4 shows an algorithm for sample selection which is an iterative method to improve

parser performance using an expert human to label new data for the parser.
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Algorithm:

U is a set of unlabeled candidates
L is a set of labeled training examples
M is the current model
Select(n, U, M, f ):
returns n candidates picked from U based on an evaluation function f and a model M

Initialize:
M ← Train(L)

Repeat:
N ← Select(n, U, M, f )
U ← U - N
L ← L ∪ Label(N)
M ← Train(L)

Until:
U = ∅ or human stops

Figure 1.19: Algorithm for sample selection [Hwa01]

This evaluation function f should denote the uncertainty of a parser for a particular sentence.

[Hwa01, Hwa00] defines a particular evaluation function called fte. If the tree entropy of a parser

M for sentence u is defined as:

T E(u, M) = −
∑

t∈T

P(t | u, M) · log2P(t | u, M)

Then the evaluation function that is used in Figure 1.2.4 is defined as:

fte(u, M) =
T E(u, M)
log2|T |

In the experiment reported in [Hwa01], Michael Collins’ parser was trained using this active

learning technique by presenting the sentences from the Penn Treebank in the order selected by

the sample selection technique as compared with simply using the entire labeled set without any

selection. This experiment found that the parser could be trained a reduced number of annotated

constituents (a reduction of 23%) for the same accuracy as using the entire labeled set.
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1.2.5 Applications of statistical parsing

In this section we will give a survey of published results on application areas that improve on the

state of the art performance by the use of statistical parsing. Parsing is a basic component of almost

any natural language software application which is sometimes eliminated by the use of approxi-

mations typically using finite-state techniques. Advances in parsing should affect performance of

a variety of natural language applications like named entity recognition, machine translation, in-

formation extraction and language modeling among others. In this section we take two examples:

that of information extraction and language modeling and show how statistical parsing can have

an impact on these applications.

Information extraction

Parsers trained on annotated parse trees that encode semantic values have been used for dialog

projects like ATIS, How May I Help You? and Communicator. MUC-7 tasks like Template Element

(TE) and Template Relations (TR) have been typically performed using shallow parsing methods

using finite-state techniques due to a more expressive domain. Statistical Parsing has applied to

this domain by BBN [MCF+98] in the Template Element (TE) and the Template Relations (TR)

task (see Figure 1.2.5).

The approach taken in [MCF+98] is as follows

• Train a statistical parser on a general domain.

• Annotate a small set L of sentences with the expected output relations using the domain-

specific MUC-7 template values.

• Parse L using the statistical parser to find parses consistent with the template annotation

and combine the syntactic analysis and the semantic annotation based on a crossing bracket.

measure. Figure 1.2.5 shows an example of such a combined parse tree.

• Retrain a new statistical parser that will produce the combined output.

• When the retrained parser is run on unseen text, it produces the desired domain-specific

MUC-7 template values.

The performance of their system is shown in Figure 1.2.5.
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<entity id="5" ent_type="person">

<ent_name value="Nance"/>

<ent_name value="Nancy Collins"/>

<ent_descriptor value="paid consultant to ABC news"/>

</entity>

<entity id="6" ent_type="organization">

<ent_name value="ABC"/>

<ent_name value="ABC news"/>

</entity>

<relation type="employee_of">

<entity arg="0" type="person" value="5"/>

<entity arg="1" type="organization" value="6"/>

</relation>

Figure 1.20: Annotation corresponding to the Template Element (TE) and the Template Relations
(TR) task.

Nance

per

,

,

who

whnp

is

also

advp

a paid

consultant

per−desc

per−desc/np

to
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org

News

org

org−r/np

org−ptr/pp

emp−of/pp−lnk

per−desc−r/np

per−desc−ptr/vp

per−desc−ptr/sbar

per−desc−of/sbar−lnk

per−r/np

,

,

per/np

said ...

vp

s

Figure 1.21: Combination of syntactic analysis and the MUC-7 template annotation

25



Task Recall Precision

Entities (TE) 83.0 84.0
Relations (TR) 64.0 81.0

Figure 1.22: Performance of the BBN MUC-7 system

Language modeling

Speech recognition requires a model for the most likely next token. This is done by building a

language model: P(tk | t1 . . . tk−1). A statistical parser can be used as a language model simply by

treating parsing as a task on a word lattice output of a speech recognizer. In this case spans in a

string for a parser become states in a finite-state automaton.

Typically language models are built using a trigram context: P(tk | tk−3, tk−2, tk−1) which ignore

any previous material that might be contingent on predicting the next token tk. While there are

other techniques such modeling the topic or modeling repetition of words, a useful technique

might be to consider the syntactic context that has occurred in the history before tk was produced.

For example, Figure 1.2.5 shows anecdotal evidence to support the use of head-driven parsing to

create a language model. For an input sentence The contract ended with a loss of 7 cents after . . .,

the bigram ended, after is a better predictor of the word after than the bigram cents, after.

When such a syntactic model was used as a language model using a head-driven parser in [CEJ+97,

CJ98] the test-set perplexity was reduced as compared to a trigam model. Performance was even

better when the syntactic model was interpolated with a trigram model. Figure 1.2.5 show the

perplexity results.

In some cases reduction in perplexity does not always correspond to a reduction in the word-

error rate which measures real improvement in transcription using a speech recognizer. [WK99]

showed that the word-error rate can also be improved with the use of a syntactic language model

(see Figure 1.2.5).
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ended_VP

with_IN

a_DT loss_NN

loss_NP

of_IN

7_CD [[cents_NNP]]

cents_NP

of_PP

loss_NP

with_PP

[[ended_VP]]

Figure 1.23: Utility of syntactic context for language modeling. The next word after is conditioned
on the previous head word ended along with the previous word cents.

Iteration/Baseline Test set Perplexity Interpolation with 3-gram

Baseline Trigram 167.14 167.14
Iteration 0 167.47 152.25
Iteration 3 158.28 148.90

Figure 1.24: Perplexity results when using a syntactic language model

Model Perplexity WER

Baseline Trigram 79.0 38.5
N-gram + Syntactic 73.5 37.7

Figure 1.25: Word Error Rate results when using a syntactic language model
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Chapter 2

Tree Adjoining Grammars and

Statistical Parsing

2.1 Introduction

Tree-Adjoining Grammar (TAG) is a tree ‘manipulating’ system. Viewed generatively, it is is a

tree rewriting system and viewed analytically, it can be viewed as a parser which parses a sentence

into its component elementary trees. The elementary trees are lexically anchored in the case of

a Lexicalized Tree-Adjoining Grammar (LTAG). The history of composition of these trees are a

record of combining elementary trees with the operations of substitution and adjoining.

Large scale lexicalized TAG grammars have been constructed by hand for English at the

University of Pennsylvania [XTA01] and French (at the TALANA group, University of Paris 7,

France) and somewhat smaller ones for German (at DFKI, Saarbrücken, Germany), Korean (at

UPenn), Chinese (at UPenn), and Hindi (at CDAC, Pune, India). The earliest stochastic vari-

ant of TAG was proposed by [Res92, Sch92]. LTAG grammars have been extracted from anno-

tated corpora [XHPJ01, Xia01, Chi00, CVS00], which in turn have been used for statistical pars-

ing [Chi00, Sar01]. The statistical parsing work done in TAGs emphasizes the use of lexicalized

elementary trees and the recovery of the best derivation for a given sentence rather than the best

parse tree.

The plan of this chapter is as follows. In Section 2.2 we will present a short introduction to
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LTAG, pointing out specifically how LTAG arises in the natural process of lexicalization of context-

free grammars (CFG). The resulting system is however, more powerful than CFGs, both in terms

of weak generative capacity (string sets) and strong generative capacity (in terms of structural

descriptions associated with the strings). In Sections 2.3 and 2.4 we will describe the stochastic

models for TAGs and LTAGs and their application to statistical parsing. In Section 2.5 we show

how a well-formed probabilistic generative process can be defined for stochastic TAGs. Finally, in

Section 2.6 we will discuss some recent relevant work.

2.2 Tree-adjoining grammars

Tree-adjoining grammar (TAG) is a formal tree rewriting system. TAG and Lexicalized Tree-

Adjoining Grammar (LTAG) have been extensively studied both with respect to their formal prop-

erties and to their linguistic relevance. TAG and LTAG are formally equivalent, however, from the

linguistic perspective LTAG is the system we will be concerned with in this dissertation. We will

often use these terms TAG and LTAG interchangeably.

The motivations for the study of LTAG are both linguistic and formal. The elementary objects

manipulated by LTAG are structured objects (trees or directed acyclic graphs) and not strings. Us-

ing structured objects as the elementary objects of the formal system, it is possible to construct

formalisms whose properties relate directly to the study of strong generative capacity (i.e., struc-

tural descriptions), which is more relevant to the linguistic descriptions than the weak generative

capacity (sets of strings).

Each grammar formalism specifies a domain of locality, i.e., a domain over which various

dependencies (syntactic and semantic) can be specified. It turns out that the various properties

of a formalism (syntactic, semantic, computational, and even psycholinguistic) follow, to a large

extent, from the initial specification of the domain of locality.

2.2.1 Domain of locality of CFGs

In a context-free grammar (CFG) the domain of locality is the one level tree corresponding to a

rule in a CFG (Figure 2.1). It is easily seen that the arguments of a predicate (for example, the

two arguments of likes) are not in the same local domain. The two arguments are distributed over
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V NP

CFG G

 

S             NP  VP
                        VP           V  NP

                                        NP               Harry
                                        NP               peanuts

                      VP             VP  ADV                              V                  likes                                   
                                                                                       ADV              passionately

S

NP VP

VP

VP ADV

NP NP

V ADV

peanuts Harry

likes passionately

VP

Figure 2.1: Domain of locality of a context-free grammar

the two rules (two domains of locality)– S → NP VP and VP → V NP. They can be brought

together by introducing a rule S → NP V VP. However, then the structure provided by the VP

node is lost1. We should also note here that not every rule (domain) in the CFG in (Figure 2.1) is

lexicalized. The four rules on the right are lexicalized, i.e., they have a lexical anchor. The rules on

the left are not lexicalized. The second and the third rules on the left are almost lexicalized, in the

sense that they each have a preterminal category (V in the second rule and ADV in the third rule),

i.e., by replacing V by likes and ADV by passionately these two rules will become lexicalized.

However, the first rule on the left (S → NP VP) cannot be lexicalized. Can a CFG be lexicalized,

i.e., given a CFG, G, can we construct another CFG, G′, such that every rule in G′ is lexicalized

and T (G), the set of (sentential) trees (i.e., the tree language of G) is the same as the tree language

T (G′) of G′? It can be shown that this is not the case (see [JS97]). Of course, if we require

that only the string languages of G and G′ be the same (i.e., they are weakly equivalent) then

any CFG can be lexicalized. This follows from the fact that any CFG can be put in the Greibach

normal form where each rule is of the form A → w B1 B2 ... Bn where w is a lexical item and

the B′s are nonterminals. The lexicalization we are interested in requires the tree languages (i.e.,

the set of structural descriptions) be the same, i.e., we are interested in ‘strong’ lexicalization. To

summarize, a CFG cannot be strongly lexicalized by a CFG. This follows from the fact that the

domain of locality of CFG is a one level tree corresponding to a rule in the grammar. Note that
1Note that some approaches do not use the constituent domain of the VP. These approaches all have problems dealing

with co-indexing and deletion of VPs as in cases of ellipsis and coordination.
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there are two issues we are concerned with here – lexicalization of each elementary domain and

the encapsulation of the arguments of the lexical anchor in the elementary domain of locality. The

second issue is independent of the first issue. From the mathematical point of view the first issue,

i.e., the lexicalization of the elementary domains of locality is the crucial one. We can obtain strong

lexicalization without satisfying the requirement specified in the second issue (encapsulation of the

arguments of the lexical anchor). Of course, from the linguistic point of view the second issue is

very crucial. What this means is that among all possible strong lexicalizations we should choose

only those that meet the requirements of the second issue. For our discussions in this dissertation

we will assume that we always make such a choice.

γ:

β

Xβ:
X

α:

X

Figure 2.2: Substitution

NP

peanuts

V NP

S

VP

likes

CFG G

 

S             NP  VP
                        VP           V  NP

                                        NP               Harry
                                        NP               peanuts

NP

Harry

                                                                                     V                  likes                                   

NP

α2 α3TSG G’ α1

Figure 2.3: Tree substitution grammar
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2.2.2 Lexicalization of CFGs

Now we can ask the following question. Can we strongly lexicalize a CFG by a grammar with a

larger domain of locality? Figure 2.2 and Figure 2.3 show a tree substitution grammar where the

elementary objects (building blocks) are the three trees in Figure 2.3 and the combining operation

is the tree substitution operation shown in Figure 2.2. Note that each tree in the tree substitution

grammar (TSG), G′ is lexicalized, i.e., it has a lexical anchor. It is easily seen that G′ indeed

strongly lexicalizes G. However, TSG’s fail to strongly lexicalize CFG’s in general. We show this

by an example. Consider the CFG, G, in Figure 2.4 and a proposed TSG, G′. It is easily seen that

although G and G′ are weakly equivalent they are not strongly equivalent. In G′, suppose we start

with the tree α1 then by repeated substitutions of trees in G′ (a node marked with a vertical arrow

denotes a substitution site) we can grow the right side of α1 as much as we want but we cannot

grow the left side. Similarly for α2 we can grow the left side as much as we want but not the right

side. However, trees in G can grow on both sides. Hence, the TSG, G′, cannot strongly lexicalize

the CFG, G [JS97].

• CFG G: (r1) S → S S (r2) S → a

• Tree-substitution Grammar G′:

S

S

a

S↓

S

S↓ S

a

S

a

S

S

S

...

S

...

S

S

...

S

...

α1: α2: α3:

Figure 2.4: A tree substitution grammar for the given context-free grammar

We now introduce a new operation called ‘adjoining’ as shown in Figure 2.5. Adjoining in-

volves splicing (inserting) one tree into another. More specifically, a tree β as shown in Figure 2.5

is inserted (adjoined) into the tree α at the node X resulting in the tree γ. The tree β, called an
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X

X*

X

X

X

α β γ

β

Figure 2.5: Adjoining

• CFG G: (r1) S → S S (r2) S → a

• Tree-adjoining Grammar G′′:

S

S

a

S∗

S

S∗ S

a

S

a

S

S

a

S

S

a

S

a

S

S

S

a

S

a

S

S

a

S

a

α1: α2: α3: γ: γ′:

Figure 2.6: Adjoining arises out of lexicalization
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auxiliary tree, has a special form. The root node is labeled with a nonterminal, say X and on the

frontier there is also a node labeled X called the foot node (marked with *). There could be other

nodes (terminal or nonterminal) nodes on the frontier of β, the nonterminal nodes will be marked

as substitution sites (with a vertical arrow). Thus if there is another occurrence of X (other than

the foot node marked with *) on the frontier of β it will be marked with the vertical arrow and that

will be a substitution site. Given this specification, adjoining β to α at the node X in α is uniquely

defined. Adjoining can also be seen as a pair of substitutions as follows: The subtree at X in α is

detached, β is substituted at X and the detached subtree is then substituted at the foot node of β. A

tree substitution grammar when augmented with the adjoining operation is called a tree-adjoining

grammar (lexicalized tree-adjoining grammar because each elementary tree is lexically anchored).

In short, LTAG consists of a finite set of elementary trees, each lexicalized with at least one lexical

anchor. The elementary trees are either initial or auxiliary trees. Auxiliary trees have been de-

fined already. Initial trees are those for which all nonterminal nodes on the frontier are substitution

nodes. It can be shown that any CFG can be strongly lexicalized by an LTAG [JS97].

In Figure 2.6 we show a TSG, G′, augmented by the operation of adjoining, which strongly

lexicalizes the CFG, G. Note that the LTAG looks the same as the TSG considered in Figure 2.4.

However, now trees α1 and α2 are auxiliary trees (containing a foot node marked with *) that can

participate in adjoining. Since adjoining can insert a tree in the interior of another tree it is possible

to grow both sides of the tree α1 and tree α2, which was not possible earlier with substitution

alone. In summary, we have shown that by increasing the domain of locality we have achieved

the following: (1) lexicalized each elementary domain, (2) introduced an operation of adjoining,

which would not be possible without the increased domain of locality (note that with one level

trees as elementary domains adjoining becomes the same as substitution since there are no interior

nodes to be operated upon), and (3) achieved strong lexicalization of CFGs.

2.2.3 Lexicalized tree-adjoining grammars

Rather than giving formal definitions for LTAG and derivations in LTAG (see [VS87] for a formal

definition of a TAG derivation) we will give a simple example to illustrate some key aspects of

LTAG. We show some elementary trees of a toy LTAG grammar of English. Figure 2.7 shows two

elementary trees for a verb such as likes. The tree α1 is anchored on likes and encapsulates the
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transitive

object extraction

S

NP VP

V NP

likes

S
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Figure 2.7: LTAG: Elementary trees for likes
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Figure 2.8: LTAG: Sample elementary trees
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two arguments of the verb. The tree α2 corresponds to the object extraction construction. Since we

need to encapsulate all the arguments of the verb in each elementary tree for likes, for the object

extraction construction, for example, we need to make the elementary tree associated with likes

large enough so that the extracted argument is in the same elementary domain. Thus, in principle,

for each ‘minimal’ construction in which likes can appear (for example, subject extraction, topical-

ization, subject relative, object relative, passive, etc.) there will be an elementary tree associated

with that construction. By ‘minimal’ we mean when all recursion has been factored away. This

factoring of recursion away from the domain over which the dependencies have to be specified

is a crucial aspect of LTAGs as they are used in linguistic descriptions. This factoring allows all

dependencies to be localized in the elementary domains. In this sense, there will, therefore, be

no long distance dependencies as such. They will all be local and will become long distance on

account of the composition operations, especially adjoining.

NP

NP NPNP

S

VPNP

V

S

V

NP VP

S

likes

V

S

S*

does

think

S*

who BillHarry

substitution

adjoining

α2

NP(wh)

β1

α3 α4 α5

β2

ε

Figure 2.9: LTAG derivation for who does Bill think Harry likes

Figure 2.8 shows some additional trees. Trees α3, α4, and α5 are initial trees and trees β1 and

β2 are auxiliary trees with foot nodes marked with *. A derivation using the trees in Figure 2.7

and Figure 2.8 is shown in Figure 2.9. The trees for who and Harry are substituted in the tree for

likes at the respective NP nodes, the tree for Bill is substituted in the tree for think at the NP node,

the tree for does is adjoined to the root node of the tree for think tree (adjoining at the root node
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is a special case of adjoining), and finally the derived auxiliary tree (after adjoining β2 to β1) is

adjoined to the indicated interior S node of the tree α2. This derivation results in the derived tree

for who does Bill think Harry likes as shown in Figure 2.10. Note that the dependency between

who and the complement NP in α2 (local to that tree) has been stretched in the derived tree in

Figure 2.10. This tree is the conventional tree associated with the sentence.

S

NP

S

VP

S

S

NP VP

NP

V

NP

V

Harry V

ε

Bill

who

does

think

likes

Figure 2.10: LTAG derived tree for who does Bill think Harry likes

However, in LTAG there is also a derivation tree, the tree that records the history of compo-

sition of the elementary trees associated with the lexical items in the sentence. This derivation

tree is shown in Figure 2.11. The nodes of the tree are labeled by the tree labels such as α2 to-

gether with the lexical anchor.2 The derivation tree is the crucial derivation structure for LTAG.

We can obviously build the derived tree from the derivation tree. For semantic computation the

derivation tree (and not the derived tree) is the crucial object. Compositional semantics is defined
2The derivation trees of LTAG have a close relationship to the dependency trees, although there are some crucial

differences; however, the semantic dependencies are the same. See [RJ95] for more details.

37



on the derivation tree. The idea is that for each elementary tree there is a semantic representation

associated with it and these representations are composed using the derivation tree.

α3 α4β1

β2 α5

(likes)

(who) (think) (Harry)

(does) (Bill)

00 010

01

0 00

α2

Figure 2.11: LTAG derivation tree

It is important to note that the node addresses which are part of the definition of a TAG deriva-

tion tree represents important information. In many introductions to TAG, the derivation tree is

equated with a dependency tree implying that a compositional semantics for a TAG grammar is

same as what one would define on a dependency tree. This is not the case. The node addresses

in a derivation tree add crucial information unavailable to dependency trees. Let us take strong

lexicalization where the arguments of the lexical anchor (the predicate) are localized within an

elementary tree. This captures the fact that the predicate-argument structure for the verb likes

in the sentence: John likes soccer is represented in the elementary tree for the verb likes (as in

Figure 2.7). However, the elementary tree for likes does more than that. It also sets up certain

structural relationships, as for example, the relationship of agreement between the subject NP sub-

stitution node and the VP node in the tree it anchors. This agreement relationship is local to the

elementary tree and is used to capture some apparently non-local relationships in the TAG view

of elementary trees. For example, the relationship between the subject NP and the VP node in the

like tree captures the agreement facts between sentences such as He seems to like soccer and They

seem to like soccer. This contrast can be explained only when you consider the contribution of the

node address in the derivation tree.
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Another contribution of the node addresses in the TAG derivation tree is that of scope. In

a sentence like John thinks Mary seems to like soccer, the different location of adjuction of the

thinks tree (at the S node) and the seems tree (at the VP node) provides the semantics as being

the correct one think(john, seem(like(mary, soccer))) rather than the incorrect seem(think(john,

like(mary,soccer))).

2.2.4 Some important properties of LTAG

The two key properties of LTAG are (1) extended domain of locality (EDL) (for example, as com-

pared to CFG), which allows (2) factoring recursion from the domain of dependencies (FRD),

thus making all dependencies local. All other properties of LTAG (mathematical, linguistic, and

even psycholinguistic) follow from EDL and FRD. TAGs (LTAGs) belong to the so-called class

of mildly context-sensitive grammars [Jos85]. Context-free languages (CFL) are properly con-

tained in the class of languages of LTAG, which in turn are properly contained in the class of

context-sensitive languages. There is a machine characterization of TAG (LTAG), called embed-

ded pushdown automaton (EPDA) [VS87], i.e., for every TAG language there is an EPDA which

corresponds to this (and only this) language and the language accepted by any EPDA is a TAG

language. EPDAs have been used to model some psycholinguistic phenomena, for example, pro-

cessing crossed dependencies and nested dependencies have been discussed in [Jos90]. With re-

spect to formal properties, the class of TAG languages enjoys all the important properties of CFLs,

including polynomial parsing (with complexity O(n6)). Under certain restrictions on adjunction

which disallow the creation of wrapping auxiliary trees (called Tree Insertion Grammars), we can

reduce the worst-case parsing complexity to that of CFGs: O(n3).

Large scale wide coverage grammars have been built using LTAG, the XTAG system (LTAG

grammar and lexicon for English and a parser) being the largest so far (for further details see [XTA01].

In the XTAG system, each node in each LTAG tree is decorated with two feature structures (top

and bottom feature structures), in contrast to the CFG based feature structure grammars. This

is necessary because adjoining can augment a tree internally, while in a CFG based grammar or

even in a tree substitution grammar a tree can be augmented only at the frontier. It is possible to

define adjoining and substitution (as it is done in the XTAG system) in terms of appropriate uni-

fications of the top and bottom feature structures. Because of FRD (factoring recursion from the
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Pierre/NNP Vinken/NNP

NP

will/MD

join/VB

the/DT board/NN

NP

as/IN

a/DT non−executive/JJ director/NN

NP

PP

VP

VP

S

Figure 2.12: Parse tree for an example sentence taken from the Penn Treebank

domain of dependencies), there is no recursion in the feature structures. Therefore, in principle,

feature structures can be eliminated. However, they are the conventional vehicle for specifying

linguistic constraints. Such constraints on substitution and adjoining are modeled via these feature

structures [VS87]. This method of manipulating feature structures is a direct consequence of the

extended domain of locality of LTAG.

2.3 Statistical Parsing with Tree Adjoining Grammars

Before we provide a formal definition for stochastic Tree Adjoining Grammars, we provide some

motivation for its use in statistical parsing. In building a statistical parser our task is to find the

sub-parts or constituents for naturally occuring sentences (e.g. see Figure 2.12).

These constituents are recursively embedded within one another and hence we decompose the

entire structure assigned to a sentence into smaller parts. A common theory underlying this de-

composition is that of context-free grammars (CFGs). For example, for the constituency structure

where the non-terminals have been updated with lexicalized information as shown in Figure 2.14,

we extract context-free rules of the kind shown in Figure 2.15. In order for the phrase structure

to be sensitive to the lexical information each constituent has a head word that represents it in the

phrase structure.

However, the right hand side of each context-free rule has multiple constituent elements each

with its own head word. Therefore, rules can be lexicalized with several words at once. Since
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will/MD

join/VB

the/DT board/NN

NPB~board~2~2

as/IN

a/DT nonexecutive/JJ director/NN

NPB~director~3~3

PP~as~2~1

VP−A~join~4~1

VP~will~2~1

Figure 2.13: Typical head-lexicalization by heuristic rules for an example sentence from the Penn
Treebank

S(indicated)

NP(trials)

the company ’s clinical trials . . .

VP(indicated)

V(indicated)

indicated

NP(difference)

no difference

PP(in)

P(in)

in

NP(level)

the level of . . .

Figure 2.14: A parse tree from the Treebank for the sentence: the company ’s clinical trials of both
its animal and human-based insulins indicated no difference in the level of hypoglycemia between
users of either product
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..

indicated

VB{indicated}

difference

NP{difference}

in

P

..

NP

PP{in}

VP{indicated}

S

Figure 2.15: Context-free rule or a tree of depth= 1.

words occur sparsely in any corpus, we are quite unlikely to see three or more words that have

occurred together in the training data again in the test data. For this reason, standard CFG-based

statistical parser impose a further independence assumption that the right hand side of each rule

is produced by a Markov process. The generation of each CFG rule is shown in Figure 2.16.

Each dependent of the head of the VP phrase which in this case is the verb indicated is generated

independently of the other dependents on the head. For example, the NP headed by difference and

the PP headed by in are attached to the verb independently of each other. There is an added symbol

STOP to make well-defined 0-th order Markov process.

However, the independence assumptions underlying the decomposition shown in Figure 2.16

are violated in the corpus. Let us consider subtrees of depth greater than 1 and their empirical

distribution in the Penn Treebank WSJ corpus. In subtrees where a VP node dominates another VP

node as shown in Figure 2.17 we see a marked difference in the expected attachment of a PP to the

various VP positions. The PP is far more likely to attach the the lower VP rather than to the higher

VP. This additional fact about the distribution of subtrees of phrase structure has to be added into

a model which makes the kind of independence assumptions shown in Figure 2.16. Figure 2.17
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• Full context-free rule:
VP(indicated)→ V-hd(indicated) NP(difference) PP(in)

• Each rule is generated in three steps (Collins 1999):

1. Generate head daughter of LHS: VP(indicated)→ V-hd(indicated)

2. Generate non-terminals to left of head daughter:  . . . V-hd(indicated)

3. Generate non-terminals to right of head daughter:

– V-hd(indicated) . . . NP(difference)

– V-hd(indicated) . . . PP(in)

– V-hd(indicated) . . . 

Figure 2.16: Independence assumptions that decompose the right hand side of the CFG rule.

also shows that the independence assumptions discussed earlier can be very beneficial. Ignoring an

optional PP can help us generalize to new cases in the test data even if we have not seen a particular

right hand side of a CFG rule used in the test data.

Other independence assumptions are noted in (Collins 1999) that are violated in the Treebank

are listed below. These were folded into the models given in (Collins 1999) as subsequent modi-

fications of the original model, each change carefully removing the independence assumptions in

particular syntactic contexts.

• Markov grammar assumption violated in cases of coordination.

e.g. NP and NP; VP and VP

• Processing facts like attach low in general.

• Also, English parse trees are generally right branching due to SVO structure.

• Language specific features are used heavily in the statistical model for parsing: cf. (Haruno

et al. 1999)

The question is whether we can retain the advantages of the independence assumptions shown

in Figure 2.16 while at the same time being sensitive to the empirical facts about subtrees shown

in Figure 2.17.
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60.8% 0.7%

VP

VB NP

VP

VB PP NP

2.23% 0.06%

VP

. . . VP

VB NP PP

VP

. . . VP

VB NP

PP

Figure 2.17: Independence assumptions are violated by only considering trees of depth= 1.

CFG rules can be viewed as trees of depth 1. A formalism that uses trees of depth greater than

1 would be able to capture the facts since it will be more sensitive to various possible attachment

points along the spine of the tree. TAG is one such formalism.

Constructing a derivation in LTAG proceeds as follows: each word in a sentence is assigned a

set of trees. Each of these trees assigned to the words in the sentence can combine with each other

to produce a derivation from which an ordinary constituency phrase structure tree is produced. The

yield of this tree is the input sentence.

Hence, TAG is an alternative method to the modeling of bilexical dependencies. For example,

see Figure 2.18.

Each combination of a pair of trees is given a probability. For example, Figure 2.19 shows the

probability model for substituting a tree for a non-terminal at the frontier of another tree.

Non-terminals that occur internal to each tree can also be rewritten by the operation of adjunc-

tion which replaces the non-terminal with a tree. For example, the adjunction of a tree into a node

η is shown in Figure 2.20. The additional term that is missing from the substitution model is the
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NP

the store

WH

which NP

IBM

NP

NP∗ SBAR

WH↓ S

NP↓ VP

bought NP

ε

VP

VP∗ NP

last week

Figure 2.18: Alternative modeling of bilexical dependencies using a stochastic TAG.

NP

IBM

NP

NP∗ SBAR

WH↓ S

NP↓ VP

bought NP

ε

NP

NP∗ SBAR

WH↓ S

NP

IBM

VP

bought NP

ε

α:

t:

η:

∑

t′
P(t, η→ t′) = 1

Figure 2.19: TAG: Substitution
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NP

NP∗ SBAR

WH↓ S

NP↓ VP

bought NP

ε

VP

VP∗ NP

last week

NP

NP∗ SBAR

WH↓ S

NP↓ VP

VP

bought NP

ε

NP

last week

β:

t:

η:

P(t, η→ NA) +
∑

t′
P(t, η→ t′) = 1

Figure 2.20: TAG: Adjunction

probability that the non-terminal is not re-written during the derivation (called the null-adjunction

or NA probability).

TAGs have the following attractive properties as a framework for statistical parsing:

• Locality and independence assumptions are captured elegantly.

• Simple and well-defined probability model.

• Parsing can be treated in two steps:

1. Classification: structured labels (elementary trees) are assigned to each word in the

sentence.

2. Attachment: the elementary trees are connected to each other to form the parse.

In addition, statistical parsers that are serious about interacting with a component that links the

sentence to a meaning have to produce more than the phrase structure of each sentence. A more

embellished parse in which phenomena such as predicate-argument structure, subcategorization

and movement are given a probabilistic treatment is often expected from a parser. A CFG parser

has to deal with such extensions by appealing to some kind of ‘feature’ based account as shown in

Figure 2.21. Note that such additional information already forms part of every lexicalized tree in

the TAG framework as shown in Figure 2.18.
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The store

NP{store}

that

WHNP{that}

IBM

NP{IBM}{+C}

bought TRACE{+C}

last week

NP{week}

VP{bought}{+gap}

S{bought}{+gap}

SBAR{that}{+gap}

NP{store}

NP → ∆stop NP{+H} SBAR{+gap} ∆stop

SBAR{+gap} → ∆stop WHNP S{+H}{+C}{+gap} ∆stop

S{+gap} → ∆stop NP{+C} SBAR{+H}{+gap} ∆stop

VP{+gap} → ∆stop VB{+H} TRACE{+C} NP ∆ stop

Figure 2.21: Features used in Collins’ bi-lexical CFG parser ([Col97])

2.4 Stochastic Tree Adjoining Grammars

[Res92] provided some early motivation for a stochastic version of Tree Adjoining Grammars and

gave a formal definition of stochastic TAG. Simultaneously, [Sch92] also provided an identical

stochastic version of TAG and also extended the Inside-Outside algorithm for CFGs [LY90] to

stochastic TAGs. [Sch92] also performed experiments to show that a stochastic TAG can be learnt

from the ATIS corpus.

A stochastic LTAG derivation proceeds as follows [Sch92, Res92]. An initial tree is selected

with probability Pi and subsequent substitutions are performed with probability Ps and adjunctions

are performed with probability Pa.

For each τ that can be valid start of a derivation:

∑

τ

Pi(τ) = 1

Each subsequent substitution or adjunction occurs independently. For possible substitutions

defined by the grammar:

∑

τ′

Ps(τ, η→ τ′) = 1
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where, τ′ is substituting into node η in tree τ. For possible adjunctions in the grammar there is

an additional factor which is required for the probability to be well-formed:

Pa(τ, η→ ) +
∑

τ′

Pa(τ, η→ τ′) = 1

Pa(τ, η→ ) is the probability that there is no adjunction () at node η in τ.

Each LTAG derivation D is built starting from some initial tree α. Let us consider the prob-

ability of a derivation D which was constructed using p substitutions and q adjunctions and r

internal nodes which had no adjunction. If we assume, for simplicity that each elementary tree is

lexicalized by exactly one word, then the length of the sentence n = p + q + 1.

Pr(D,w0 . . .wn) = (2.1)

Pi(α,wi) ×
∏

p

Ps(τ, η,w→ τ′,w′) ×

∏

q

Pa(τ, η,w→ τ′,w′) ×

∏

r

Pa(τ, η,w→ )

This derivation D can be drawn graphically as a tree where each node in this derivation tree is

an elementary tree in the original LTAG.

Pi and Ps can be written as the following conditional probabilities which can be estimated from

the training data. For further details about decomposing these probabilities further to make parsing

and decoding easier and details about prior probabilities see [Chi01].

Pi(α,w | TOP)

Ps(α,w
′ | τ, η,w)

Pa(β,w′ | τ, η,w)

The probability of a sentence S computed using this model is the sum of all the possible

derivations of the sentence.

P(S ) =
∑

D

Pr(D, S )
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A generative model can be defined instead of a conditional probability to obtain the best deriva-

tion D given a sentence S . The value for (2.2) is computed using the Equation 2.1.

D =
arg max
D

Pr(D | S )

=
arg max
D

Pr(D, S )
Pr(S )

=
arg max
D

Pr(D, S ) (2.2)

The particular definition of a stochastic TAG is by no means the only way of defining a prob-

abilistic grammar formalism with TAG. There have been some variants from the standard model

that have been published since the original stochastic TAG papers.

For example, the restriction of one adjunction per node could be dropped and a new variant

of standard TAG can be defined which permits arbitrary number of modifications per node. This

variant was first introduced by [SS92, SS94]. Tree Insertion Grammar [SW95] is a variant of TAG

where the adjoining operation is restricted in a certain way and this restricted operation is named

insertion. TIGs are weakly equivalent to CFGs but they can produce structural descriptions that

are not obtainable by any CFG.

A stochastic version of insertion [SW96] was defined in the context of Tree Insertion Grammar.

In this model, multiple trees can be adjoined to the left and to the right of each node with the

following probabilities:

Pla(τ, η→ l) +
∑

τ′

Pla(τ, η→ τ′) = 1

Pra(τ, η→ r) +
∑

τ′

Pra(τ, η→ τ′) = 1

There are many other probability measures that can be used with TAG and its variants. One

can easily go beyond the bi-lexical probabilities that have been the main focus in this chapter to

probabilities that invoke greater amounts of structural or lexical context. [CW97], for example,

gives some additional probability models one might consider useful when using TAGs.
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2.5 Applying probability measures to Tree Adjoining Languages

In this section we look at some formal properties of stochastic TAGs. To gain some intuition

about probability assignments to tree adjoining languages, let us take for example, a language well

known to be a tree adjoining language:

L(G) = {anbncndn|n ≥ 1}

It seems that we should be able to use a function ψ to assign any probability distribution to the

strings in L(G) and then expect that we can assign appropriate probabilites to the adjunctions in

G such that the language generated by G has the same distribution as that given by ψ. However a

function ψ that grows smaller by repeated multiplication as the inverse of an exponential function

cannot be matched by any TAG because of the constant growth property of TAGs (see [VS87], p.

104). An example of such a function ψ is a simple Poisson distribution (2.3), which in fact was

also used as the counterexample in [BT73] for CFGs, since CFGs also have the constant growth

property.

ψ(anbncndn) =
1

e · n!
(2.3)

This shows that probabilistic TAGs, like CFGs, are constrained in the probabilistic languages that

they can recognize or learn. As shown above, a probabilistic language can fail to have a generating

probabilistic TAG.

The reverse is also true: some probabilistic TAGs, like some CFGs, fail to have a corresponding

probabilistic language, i.e. they are not consistent. There are two reasons why a probabilistic TAG

could be inconsistent: “dirty” grammars, and destructive or incorrect probability assignments.

“Dirty” grammars. Usually, when applied to language, TAGs are lexicalized and so proba-

bilities assigned to trees are used only when the words anchoring the trees are used in a derivation.

However, if the TAG allows non-lexicalized trees, or more precisely, auxiliary trees with no yield,

then looping adjunctions which never generate a string are possible. However, this can be detected

and corrected by a simple search over the grammar. Even in lexicalized grammars, there could

be some auxiliary trees that are assigned some probability mass but which can never adjoin into

another tree. Such auxiliary trees are termed unreachable and techniques similar to the ones used

in detecting unreachable productions in CFGs can be used here to detect and eliminate such trees.
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Destructive probability assignments. This problem is a more serious one. Consider the

probabilistic TAG shown in (2.4)3.

PSfrag replacements

t1 t2

ε

S 1 S 2

S 3

S ∗φ(S 1 7→ t2) = 1.0
φ(S 2 7→ t2) = 0.99
φ(S 2 7→ nil) = 0.01
φ(S 3 7→ t2) = 0.98
φ(S 3 7→ nil) = 0.02

a

(2.4)

Consider a derivation in this TAG as a generative process. It proceeds as follows: node S1 in t1 is

rewritten as t2 with probability 1.0. Node S2 in t2 is 99 times more likely than not to be rewritten as

t2 itself, and similarly node S3 is 49 times more likely than not to be rewritten as t2. This however,

creates two more instances of S2 and S 3 with same probabilities. This continues, creating multiple

instances of t2 at each level of the derivation process with each instance of t2 creating two more

instances of itself. The grammar itself is not malicious; the probability assignments are to be

blamed. It is important to note that inconsistency is a problem even though for any given string

there are only a finite number of derivations, all halting. Consider the probability mass function

(pmf) over the set of all derivations for this grammar. An inconsistent grammar would have a pmf

which assigns a large portion of probability mass to derivations that are non-terminating. This

means there is a finite probability the generative process can enter a generation sequence which

has a finite probability of non-termination.

2.5.1 Conditions for Consistency

A probabilistic TAG G is consistent if and only if:

∑

v∈L(G)

Pr(v) = 1 (2.5)

where Pr(v) is the probability assigned to a string in the language. If a grammar G does not

satisfy this condition, G is said to be inconsistent. Note that this is a very general definition and

consistency can be defined for all well-defined generative processes [Har63].
3The subscripts are used as a simple notation to uniquely refer to the nodes in each elementary tree. They are not

part of the node label for purposes of adjunction.
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To show that a given probabilistic TAG is consistent we can exploit context-free nature of

TAG derivations and exploit the existing result by [BT73, Wet80] which provides conditions under

which stochastic CFGs can be shown to be consistent4.

We explain the alternative method using an example. Consider a PTAG G = 〈{β, α}, φ〉 with

trees defined in (2.6) and parameter values given in (2.7).

β :

PSfrag replacements

S 1

a S 2

S ∗ α :

PSfrag replacements

S 3

e

(2.6)

φ(S 1 → β) = 0.99 (2.7)

φ(S 1 → ε) = 0.01

φ(S 2 → β) = 0.98

φ(S 2 → ε) = 0.02

φ(S 3 → β) = 1.0

φ(S 3 → ε) = 0.0

G is an inconsistent PTAG (it assigns probability mass to derivations that do not terminate).

Can we detect this inconsistency by using the Booth and Thompson result on some PCFG G′

constructed by examining the PTAG G ?

The Booth and Thompson result can be stated as follows:

Theorem 2.5.1 A probabilistic grammar is consistent if the spectral radius ρ(M) < 1, whereM is

the stochastic expectation matrix computed from the context-free grammar. [BT73, Sou74]

This theorem provides a way to determine whether a grammar is consistent. All we need to do

is compute the spectral radius of the expectation matrixM, which defines the expected number of

times each CFG rule will be seen in a corpus of parse trees generated by the stochastic CFG. The

spectral radius is equal to the modulus of the largest eigenvalue ofM. If this value is less than one

then the grammar is consistent.
4Thanks to Steve Abney for discussions on this topic.
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In (2.8) we show a set of productions (rules) P constructed from the PTAG G designed to show

the derivations possible in G.

α → S 3 (2.8)

S 3 → β | ε

β → S 1 S 2

S 1 → β | ε

S 2 → β | ε

To use the Booth and Thompson result we need to satisfy two conditions. The first condition

is that the PCFG is proper. That is the parameters of the PCFG satisfy Eqn. 2.9.

∑

(X→Y)∈P

P(X → Y | X) = 1 (2.9)

The rule probabilities for the CFG in (2.8) derived from the PTAG parameters in (2.7) are

shown in (2.10).

(2.10)

P(α→ S 3 | α) =
∑

X

P(S 3 → X | S 3) = 1.0

P(S 3 → β | S 3) = 1.0

P(S 3 → ε | S 3) = 0.0

P(β→ S 1 S 2 | β) =
∑

X

P(S 1 → X | S 1) ×
∑

Y

P(S 2 → Y | S 2) = 1.0

P(S 1 → β | S 1) = 0.99

P(S 1 → ε | S 1) = 0.01

P(S 2 → β | S 2) = 0.98

P(S 2 → ε | S 2) = 0.02

Based on these probabilities we can compute the expectation matrix M using the method

defined in [BT73].
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M =



0 0 0 0 0.9900

0 0 0 0 0.9800

0 0 0 0 1.0000

0 0 1.0000 0 0

1.0000 1.0000 0 0 0



The eigenvalues of the expectation matrix come out to be 0, 1.4036,−1.4036. Since the largest

eigenvalue is greater than 1, we correctly predict that the original PTAG G is inconsistent.

A formal justification for this method of showing whether a given stochastic TAG is consistent

is given in Appendix A (also see [Sar98]) by showing a reduction of the TAG derivation process to

a multitype Galton-Watson branching process [Har63].

2.5.2 Inside-Outside Probabilities and Prefix Probabilities

Embedding Stochastic TAGs into LIGs

For any stochastic TAG we typically represent the moves of any algorithm that computes spans over

the input string by using dotted rules. We can equivalently (and with considerable simplification in

notation) denote the moves of such an algorithm in terms of a strongly equivalent LIG constructed

from the given TAG.

The LIG is constructed as follows: the set of non-terminals are two symbols top t and bottom

b; the set of terminals is the same as the TAG; the set of indices (stack symbols) is the set of nodes

of the elementary trees. Finally, the set of rules (productions) are defined as follows, where we

assume all elementary trees are binary branching and spine is defined as path from root to foot,

and where p is the probability P(rhs | lhs), $ is the bottom of stack and [..] common between the

lhs and a unique rhs nonterminal indicates that the stack is being passed between them:

1. η0 is root of an initial tree α:

t[$]
p
−→ t[$η0]

where, p is the probability that α is the root of the derivation tree.
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2. η is parent of η1, η2 and η2 is on the spine:

b[..η]
p=1
−→ t[$η1]t[..η2]

3. η is parent of η1, η2 and η1 is on the spine:

b[..η]
p=1
−→ t[..η1]t[$η2]

4. η is parent of η1, η2 and neither is on the spine:

b[..η]
p=1
−→ t[$η1]t[$η2]

5. η is a node where adjunction of a tree β with root ηr can occur:

t[..η]
p
−→ b[..η]

t[..η]
p′
−→ t[..ηηr]

where, p = φ(η 7→ nil), and p′ = φ(η 7→ β).

6. η f is a footnode:5

b[..η f ]
p=1
−→ b[..]

Let input string w = a1 . . . an. Compute inside probabilities Iw bottom-up using the following

equations. The equations can be easily converted into a dynamic programming algorithm using a

CKY-style parsing algorithm.6

Init cases:

1. b[$η] → ai+1, for i = 0 . . . n,

I(b, η, i, , , i + 1) =


1 if b[$η] → ai+1

0 otherwise

5Or perhaps

b[..ηη f ]
p=1
−→ b[..η]

6There is an exact correspondence between the LIG rules and the cases considered in the TAG CKY-style parser (see
Vijay-Shanker’s thesis).
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2. b[..η f ]→ b[..], for all footnodes ηf with 0 ≤ i, j ≤ n, 7

I(b, η f , i, i, j, j) = 1

Inside Pr cases (with l ≤ n):

1. b[..η]→ t[..η1]t[$η2],

I(b, η, i, j, k, l) =
l−1∑

m=k

I(t, η1, i, j, k,m) × I(t, η2,m, , , l)

2. b[..η]→ t[$η1]t[..η2],

I(b, η, i, j, k, l) =
j∑

m=i+1

I(t, η1, i, , ,m) × I(t, η2,m, j, k, l)

3. b[$η] → t[$η1]t[$η2],

I(b, η, i, , , l) =
l−1∑

m=i+1

I(t, η1, i, , ,m) × I(t, η2,m, , , l)

4. t[..η]→ b[..η] and t[..η]→ t[..ηηr], i.e. η is a node where adjunction of tree with root ηr can

occur.

I(t, η, i, j, k, l) =

I(b, η, i, j, k, l) × P(t[..η]→ b[..η])

+

j∑

r=i

l∑

s=k

∑

ηr

I(t, ηr, i, r, s, l) × I(b, η, r, j, k, s) × P(t[..η]→ t[..ηηr])

In a similar fashion, one can derive the equations for the outside probability computation. Since

the outside probabilities are considerably more complex than the inside probabilities, the reader is

referred to the paper [Sch92] where the full set of equations is presented in the appendix.

Computing Prefix Probabilities

The problem of computing prefix probabilities for stochastic context-free languages has been dis-

cussed in [JL91, Sto95]. The main idea leading to the solution of this problem is that all parts of
7We can change this step from init to a predict step later. It might be simpler to just keep it as an init step, but point

out that an implementation could change it to a predict step.
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context-free derivations that are potentially of unbounded size are captured into a set of equations

that is solved “off-line”, i.e. before a specific prefix is considered. These equations are then solved

and the results are stored.

For computing the prefix probability for an actual input string, all possible derivations are

considered and a probability is computed, but for certain parts of these derivations the results that

were computed off-line are used, in such a way that the computation is guaranteed to terminate.

A case in point are the unit rules, i.e. rules of the form A → B. Such rules potentially cause

the grammar to be cyclic, which means that A→∗ A for some nonterminal A, which allows certain

strings to have derivations of unbounded size. However, also a rule of e.g. the form A → Ba may

effectively behave like a unit rule if a contributes to the unknown suffix following the actual input

that is considered as prefix.

For stochastic tree-adjoining grammars (STAGs) similar problems arise. STAGs that are well-

behaved and allow a bounded number of derivations for each complete sentence may require an

unbounded number of derivations to be considered once the input is regarded as prefix, followed

by a suffix of unbounded length.

The key idea to solving this problem is again to break up derivations into parts that are of

potentially unbounded size, and that are independent on actual input, and those that are always of

bounded length, and that do depend on input symbols. The probabilities of the former subderiva-

tions can be computed off-line, and the results are combined with subderivations of the latter kind

during computation of the prefix probability for a given string.

The distinction between the two kinds of subderivations requires a certain notational system

that is difficult to define for tree-adjoining grammars. We will therefore concentrate on stochas-

tic linear indexed grammars instead, relying on their strong equivalence to STAGs [Sch92] (see

Section 2.5.2).

Without loss of generality we require that rules are of the form A[η ◦◦ ]→ α B[η′ ◦◦ ] β, where

|ηη′| = 1 and α and β each consist of a string of nonterminals associated with empty stacks of

indices, or of the form A[ ]→ z, where |z| ≤ 1.

As usual, the arrow → is extended to be a binary relation between sentential forms, and its

transitive and reflexive closure is denoted by→∗. When we write A[σ] →∗ α B[τ] β (or A[σ] →∗

α a β) we mean that B[τ] (or a, respectively) is the distinguished descendent of A[σ].
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We first introduce a subrelation of →∗ which is defined by A[σ] ⇒∗ ε if A[σ] →∗ ε, and

A[σ] ⇒∗ B[τ] if A[σ] →∗ B[τ], and this derivation does not end on a subderivation of the form

C[ ]→+ B[ ] (or more precisely C[τ]→+ B[τ], where no elements that belong to τ are popped and

pushed again), for any C. When we write A[σ]⇒∗ X, then X is of the form B[τ] or ε.

Based on this, two further subrelations→∗ver and→∗hor, are defined by means of deduction steps.

The distinction between →∗ver and →∗hor is made in order to record how derivations were built up

from subderivations. In the case of→∗hor, the derivation was constructed from two subderivations

A[ ]→∗ v B[ ] w and B[ ]→∗ x C[ ] y. In all other cases, we use→∗ver.

This distinction is needed to avoid spurious ambiguity in applications of the deduction steps:

the result from combining A[ ] →∗ v B[ ] w and B[ ] →∗ x C[ ] y, viz. A[ ] →∗hor v x C[ ] y w is not

allowed to combine with a third subderivation C[ ] →∗ z D[ ] q. Note that the desired derivation

A[ ] →∗hor v x z D[ ] q y w can be derived by combining B[ ] →∗ x C[ ] y and C[ ] →∗ z D[ ] q. and

then A[ ]→∗ v B[ ] w with the result of this.

ε →∗ver ε

(2.11)

A[ ]→∗ver v α→∗ver w α , ε

A[ ] α→∗ver v w
(2.12)

A[ ]→∗ a

A[ ]→∗ver a
(2.13)

A[ ]→∗ B[σ]

B[ ◦◦ ]→ α C[p ◦◦ ] β

C[ ]→∗ D[ ]

D[p ◦◦ ]→ γ E[ ◦◦ ] δ

E[σ]⇒∗ X

α→∗ver vα

β→∗ver vβ

γ→∗ver vγ

δ→∗ver vδ

vαvβvγvδ , ε

A[ ]→∗ver vα vγ X vδ vβ
(2.14)
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A[ ]→∗ B[σ]

B[ ◦◦ ]→ α C[p ◦◦ ] β

C[ ]→∗lab v D[σ] w

D[ ]→∗ E[ ]

E[p ◦◦ ]→ γ F[ ◦◦ ] δ

F[σ]⇒∗ X

lab ∈ {ver, hor}

α→∗ver vα

β→∗ver vβ

γ →∗ver vγ

δ→∗ver vδ

vαvβvγvδ , ε

A[ ]→∗ver vα v vγ X vδ w vβ
(2.15)

A[ ]→∗ver v B[ ] w

B[ ]→∗lab x C[ ] y lab ∈ {ver, hor}

A[ ]→∗hor v x C[ ] y w
(2.16)

A[ ]→∗ver v B[ ] w

B[ ]→∗ver x

A[ ]→∗ver v x w
(2.17)

A[ ]⇒∗ B[σ]

B[ ]→∗hor v C[ ] w

C[σ] ⇒∗ X σ , ε

A[ ]→∗ver v X w
(2.18)

For computing the inside probability of a given string w we apply the deduction steps in reverse

for the derivation S [ ] →∗ver w, which gives rise to one or more partitionings into subderivations.

We multiply the probabilities attached to the rules that are used in the derivations, and we add

probabilities where more than one partitioning exists due to ambiguity.

We see that statements of the form C[ ]→∗ D[ ] in e.g. step 2.14 and A[ ]→∗ a in step 2.13 can

themselves not be derived by the deduction steps. It is assumed the probabilities of such derivations

are computed off-line, which is possible since they do not depend on actual input. Also the joint

probability of the pair of derivations A[ ]→∗ B[σ] and E[σ]⇒∗ X in step 2.14 can be precomputed

for a given combination of A, B, E, and X, even though there may be an infinite number of stacks

σ.

It is easy to see that the backward application of the deduction steps must necessarily terminate.
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This is independent of whether a LIG allows infinite ambiguity.

If prefix probabilities are to be computed instead of inside probabilities, the deduction steps

need to be slightly altered. For example, the condition vαvβvγvδ , ε in step 2.14 needs to be

reformulated to the effect that at least one symbol from vαvβvγvδ should belong to the input, i.e.

the prefix. Further, probabilities of derivations of the form A[ ] →∗ B[ ] w should be computed

off-line, where w belongs to the unknown suffix. (Cf. unit rules and rules of the form A → Ba in

the case of context-free grammars.)

It is very easy to see that the deduction steps are consistent, in the sense that α →∗ver β or

α →∗hor β implies α →∗ β. That the deduction steps are also complete, i.e. that A[ ] →∗ver w can

be derived if A[ ] →∗ w, is more difficult to show and cannot be explained here due to length

restrictions. The proof relies on a systematic way of partitioning a parse tree into smaller trees.

A full treatment of computation of prefix probabilities for any input stochastic TAG is given in

Appendix B (also see [NSS98]).

Partioning derivations

In this optional appendix we explain how derivations are partitioned into subderivations. An impor-

tant concept is that of spines. A spine is a path in the parse tree that leads from a node that is not a

distinguished child of its father (or that does not have a father, in the case of the root), down to a leaf

following distinguished children. This means that for an instance of a rule A[η ◦◦ ]→ α B[η′ ◦◦ ] β

in the parse tree the nodes corresponding to symbols in α and β are each the first node of a distinct

spine, and the spine to which the node corresponding to A[η ◦◦ ] belongs leads down along the node

corresponding to B[η′ ◦◦ ].

At both ends of a spine, the stack of indices associated with the nonterminals is empty. In

between, the height of the stack may alternately grow and shrink. This is shown in Figure 2.22.

The horizontal axis represents nodes along the spine, and the vertical axis represents the height of

the stack.

At some instances of rules, non-empty input is found at some child of a node on the spine that

does itself not belong to the spine. We always investigate such rules in pairs: if one rule pushes

p on the stack, we locate the unique rule that pops that p; only one of the two rules needs to be

associated with non-empty input. Three instances of such pairs of rules are indicated in the figure.
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The part of the spine labelled by a and b are computed by applications of step 2.14. From

these two parts, the part labelled c is computed applying step 2.16. This step combines paths in a

“horizontal” way, hence the label hor in the consequent.

The path is extended to the path d in a vertical way by applying step 2.18. Again vertically,

step 2.15 extends the path to path e by identifying one more pair of rules where non-empty input

is found.

Each stack development along a spine, exemplified by Figure 2.22, can be partitioned in exactly

one way according to the deduction steps.

σd

pp pp
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σσσσ

σ

a a

b

b b

b
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e

e

a

e

a b

e

c
d
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Figure 2.22: Development of the stack along a spine, and partitioning according to deduction steps.

2.6 Related Work

In this section we give an overview of some additional work done within the area of stochastic

Tree Adjoining Grammars. We also compare the work in stochastic TAGs with work done in

neighbouring areas like Data Oriented Parsing.

2.6.1 Work in Stochastic TAG and Related Areas

[Hwa98] uses the inside-outside algorithm for TAGs given in [Sch92] and applies it to stochas-

tic Tree Insertion Grammars. The algorithm is combined with the use of bracketed Treebank

data [PS92] as a source of a partial bracketing of the training sentences. The experiments reported

were conducted on the WSJ Penn Treebank with the input to the learning algorithm being part-of-

speech tags (rather than the words themselves). [Hwa99] extends the partial bracketing approach
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by suppressing various kinds of labeled brackets as a possible way of minimizing annotation cost

by recovering some labeled brackets automatically.

[Chi01, Chi00] gives a statistical parser based on stochastic Tree Insertion Grammars. The

experiments were based on fully lexicalized elementary trees and achieves 87.6% labeled precision

and 87.4% labeled recall. These results show that one does not have to sacrifice performance over

lexicalized PCFGs while maintaining a more elaborate model using TAGs. [Chi01] also reports

results on the Chinese Treebank. This involved only minor changes to the English parser.

[XHPJ01, Xia01] reports on algorithms that permit the extraction of TAG derivation trees from

Treebanks in various languages. The algorithms use only minimal edits to tables of data that are

localized to each new Treebank.

[NSS98] shows that it is possible to extend the notion of assigning a probability to an entire

sentence (defined in Section 2.4) to an arbitrary prefix of an input sentence. This extends a result

shown for stochastic CFGs by [JL91, Sto95].

[SJ99, Sri97c, Sri97b] describes a method of partial parsing that uses local attachment heuris-

tics after a probabilistic method that picks the best elementary tree for each word in a sentence: a

technique termed as SuperTagging indicating the affinity between the problems of assigning com-

plex structures such as trees to each word in a sentence as compared to the assignment of part of

speech tags.

More distantly related use of elementary trees (of depth greater than 1) for statistical parsing

occur in the works of [Sim00] and [SB98]. The work reported in [SB98] is related to the use of

SuperTagging for partial parsing in the work of [Sri97b].

2.6.2 Comparison with Other Work

[Chi01] points out several similarities and differences between statistical parsing using TAGs and

other tree-based statistical parsers like DOP [Bod01]. We briefly summarize some of these points

here. The DOP1 model is related to stochastic TAGs since they both use probability measures

over tree grammars. However, a stochastic TAG parser computes the best derivation tree for the

input sentence, while DOP1 computes the best derived tree (or parse tree) by summing over all

possible derivations that yield that tree. Here we have argued for the primacy of the derivation tree

over the parse tree. Computing the best derivation provides an interface to future processing, for
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example, to compute a semantics for the input sentence while according to the TAG viewpoint,

the derived tree provides no such benefit. Other benefits of using the DOP approach are the use

of non-lexicalized trees and the use of trees with multiple lexical items at its leaf nodes. The use

of both of these kinds of trees are already possible in the non-statistical uses of TAG (such as the

parser used to parse the XTAG English Grammar [XTA01]). Extensions to stochastic TAGs and

their use in statistical parsing have not yet shown improvements over the simpler form of stochastic

TAG which is purely lexicalized and has only one lexical item per elementary tree.

[Hoo01] considers an extension of DOP with the operation of insertion taken from Tree In-

sertion Grammar. Hoogweg gives a compartive analysis of his experiments with DOP with and

without the use of insertion. Hoogweg maintains the primacy of the parse tree where all possible

derivations of a parse tree are computed, while in stochastic TAG and related work only the best

derivation tree is ever computed based on a generative probability model. In linguistic terms, in an

LTAG the elementary trees are semantically encapsulated objects and the derivation tree in LTAG

leads to a compositional semantics. This is not a necessary requirement for DOP.

2.7 Conclusion

We have given an introduction to a formalism called Tree Adjoining Grammars (TAGs) that is

useful in defining linguistic descriptions that are structurally complex. TAGs accomplish this by

using trees, or even directed acyclic graphs, as elementary objects. Also in this chapter we have

shown how these descriptions are useful in the context of statistical parsing. We provide a review of

the definitions and results in the field of stochastic TAGs and show how the definition of stochastic

TAG is well-defined. Finally, we have provided a brief comparison of stochastic TAGs and related

work as well other tree based work in parsing such as DOP.
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Chapter 3

Co-Training Methods for Statistical

Parsing

In this chapter, we describe a novel Co-Training method for statistical parsing. The algorithm

takes as input a small corpus (9695 sentences) annotated with parse trees, a dictionary of possible

lexicalized structures for each word in the training set and a large pool of unlabeled text. The algo-

rithm iteratively labels the entire data set with parse trees. Using empirical results based on parsing

the Wall Street Journal corpus we show that training a statistical parser on the combined labeled

and unlabeled data strongly outperforms training only on the labeled data. We also report on an

experiment which performed Co-training on two statistical parsers which had different probability

models. This experiment used the entire 1M word Penn Treebank as the labeled data and a 23M

word WSJ corpus as the unlabeled set. The results were not as compelling as the first experiment

and the chapter discusses the various reasons for this.

3.1 Introduction

The current crop of statistical parsers share a similar training methodology. They train from the

Penn Treebank [MSM93]; a collection of 40,000 sentences that are labeled with corrected parse

trees (approximately a million word tokens). In this chapter, we explore methods for statistical

parsing that can be used to combine small amounts of labeled data with unlimited amounts of

unlabeled data. In the experiment reported here, we use 9695 sentences of bracketed data (234467
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S

NP

Pierre Vinken

VP

will VP

VP

join NP

the board

PP

as NP

a non-executive director

Figure 3.1: An example of the kind of output expected from a statistical parser. Find the best tree
for a given sentence (using a generative model): arg max

T P(T, S )

word tokens). Such methods are attractive for the following reasons:

• Bracketing sentences is an expensive process. A parser that can be trained on a small amount

of labeled data will reduce this annotation cost.

• Creating statistical parsers for novel domains and new languages will become easier.

• Combining labeled data with unlabeled data allows exploration of unsupervised methods

which can now be tested using evaluations compatible with supervised statistical parsing.

In this chapter we introduce a new approach that combines unlabeled data with a small amount

of labeled (bracketed) data to train a statistical parser. We use a Co-Training method [Yar95,

BM98, GZ00] that has been used previously to train classifiers in applications like word-sense

disambiguation [Yar95], document classification [BM98] and named-entity recognition [CS99]

and apply this method to the more complex domain of statistical parsing.

3.2 Unsupervised techniques in language processing

While machine learning techniques that exploit annotated data have been very successful in attack-

ing problems in NLP, there are still some aspects which are considered to be open issues:

65



• Adapting to new domains: training on one domain, testing (using) on another.

• Higher performance when using limited amounts of annotated data.

• Separating structural (robust) aspects of the problem from lexical (sparse) ones to improve

performance on unseen data.

In the particular domain of statistical parsing there has been limited success in moving towards

unsupervised machine learning techniques (see Section 3.8 for more discussion). A more promis-

ing approach is that of combining small amounts of seed labeled data with unlimited amounts of

unlabeled data to bootstrap statistical parsers. In this chapter, we use one such machine learning

technique: Co-Training, which has been used successfully in several classification tasks like web

page classification, word sense disambiguation and named-entity recognition.

Early work in combining labeled and unlabeled data for NLP tasks was done in the area of

unsupervised part of speech (POS) tagging. [CKPS92] reported very high results (96% on the

Brown corpus) for unsupervised POS tagging using Hidden Markov Models (HMMs) by exploiting

hand-built tag dictionaries and equivalence classes. Tag dictionaries are predefined assignments of

all possible POS tags to words in the test data. This impressive result triggered several follow-up

studies in which the effect of hand tuning the tag dictionary was quantified as a combination of

labeled and unlabeled data. The experiments in [Mer94, Elw94] showed that only in very specific

cases HMMs were effective in combining labeled and unlabeled data.

However, [Bri97] showed that aggressively using tag dictionaries extracted from labeled data

could be used to bootstrap an unsupervised POS tagger with high accuracy (approx 95% on WSJ

data). We exploit this approach of using tag dictionaries in our method as well (see Section 3.4.2

for more details). It is important to point out that, before attacking the problem of parsing using

similar machine learning techniques, we face a representational problem which makes it difficult

to define the notion of tag dictionary for a statistical parser.

The problem we face in parsing is more complex than assigning a small fixed set of labels to

examples. If the parser is to be generally applicable, it has to produce a fairly complex “label”

given an input sentence. For example, given the sentence Pierre Vinken will join the board as a

non-executive director, the parser is expected to produce an output as shown in Figure 3.1.
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Since the entire parse cannot be reasonably considered as a monolithic label, the usual method

in parsing is to decompose the structure assigned in the following way:

S(join)→ NP(Vinken) VP(join)

NP(Vinken)→ Pierre Vinken

VP(join)→ will VP(join)

VP(join)→ join NP(board) PP(as)

. . .

However, such a recursive decomposition of structure does not allow a simple notion of a tag

dictionary. We solve this problem by decomposing the structure in an approach that is different

from that shown above which uses context-free rules.

The approach uses the notion of tree rewriting as defined in the Lexicalized Tree Adjoining

Grammar (LTAG) formalism [JS92]1 which retains the notion of lexicalization that is crucial in the

success of a statistical parser while permitting a simple definition of tag dictionary. For example,

the parse in Figure 3.1 can be generated by assigning the structured labels shown in Figure 3.2

to each word in the sentence (for simplicity, we assume that the noun phrases are generated here

as a single word). We use a tool described in [XPJ00] to convert the Penn Treebank into this

representation.

Combining the trees together by rewriting nodes as trees (explained in Section 3.3) gives us the

parse tree in Figure 3.1. A history of the bi-lexical dependencies that define the probability model

used to construct the parse is shown in Figure 3.3. This history is called the derivation tree.

In addition, as a byproduct of this kind of representation we obtain more than the phrase struc-

ture of each sentence. We also produce a more embellished parse in which phenomena such as

predicate-argument structure, subcategorization and movement are given a probabilistic treatment.

3.3 The Generative Model of the Statistical Parser

A stochastic LTAG derivation proceeds as follows [Sch92, Res92]. An initial tree is selected

with probability Pi and other trees selected by words in the sentence are combined using the
1This is a lexicalized version of Tree Adjoining Grammar [JLT75, Jos85].
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Pierre

NP
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VP

will VP∗

S

NP↓ VP

join NP↓

NP

the

NP

board

VP

VP∗ PP

as NP↓

NP

a

NP

non-executive

NP

director

Figure 3.2: Parsing as tree classification and attachment.

operations of substitution and adjoining. These operations are explained below with examples.

Each substutition is performed with probability Ps and each adjunction with probability Pa.

For each τ that can be valid start of a derivation:

∑

τ

Pi(τ) = 1

Substitution is defined as rewriting a node η in the frontier of a tree t with probability Ps which

is said to be proper if:

∑

α

Ps(t, η→ α) = 1

where t, η → τ′ indicates that tree α is substituting into node η in tree t. An example of the

operation of substitution is shown in Figure 3.4.

Adjoining is defined as rewriting any internal node η of a tree t by another tree β. This is a

recursive rule and each adjoining operation is performed with probability Pa which is proper if:

Pa(t, η→ ) +
∑

β

Pa(t, η→ β) = 1
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α1(join)

α2(Vinken)

β1(Pierre)

β2(will) α3(board)

β3(the)

β4(as)

α4(director)

β5(non-executive)

β6(a)

Figure 3.3: A derivation tree indicating all the attachments between trees based on the most likely
bi-lexical dependencies that have occurred during the parse of the sentence.

Pa here is the probability that β rewrites an internal node η in tree t or that no adjoining ()

occurs at node η in t. The additional factor that accounts for no adjoining at a node is required for

the probability to be well-formed. An example of the operation of adjoining is shown in Figure 3.5.

Each LTAG derivation D which was built starting from tree α with n subsequent attachments

has the probability:

Pr(D,w0 . . .wn) =

Pi(α,wi) ×
∏

p

Ps(τ, η,w→ α,w′) ×

∏

q

Pa(τ, η,w→ β,w′) ×
∏

r

Pa(τ, η,w→ )

In the next section we show how to exploit this notion of tag dictionary to the problem of

statistical parsing.

69



NP

IBM

NP

NP∗ SBAR

WH↓ S

NP↓ VP

bought NP

ε

NP

NP∗ SBAR

WH↓ S

NP

IBM

VP

bought NP

ε

α:

t:

η:

Figure 3.4: Example substitution:
∑
α Ps(t, η→ α) = 1

3.4 Co-Training methods for parsing

Many supervised methods of learning from a Treebank have been studied. The question we want

to pursue in this chapter is whether unlabeled data can be used to improve the performance of a

statistical parser and at the same time reduce the amount of labeled training data necessary for

good performance. We will assume the data that is input to our method will have the following

characteristics:

1. A small set of sentences labeled with corrected parse trees and large set of unlabeled data.

2. A pair of probabilistic models that form parts of a statistical parser. This pair of models must

be able to mutually constrain each other.

3. A tag dictionary (used within a backoff smoothing strategy) for labels are not covered in the

labeled set.

The pair of probabilistic models can be exploited to bootstrap new information from unlabeled

data. Since both of these steps ultimately have to agree with each other, we can utilize an iterative

method called Co-Training that attempts to increase agreement between a pair of statistical models

by exploiting mutual constraints between their output.
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ε

VP

VP∗ NP
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NP

NP∗ SBAR

WH↓ S

NP↓ VP

VP

bought NP

ε

NP

last week

β:

t:

η:

Figure 3.5: Example adjunction: Pa(t, η→ ) +
∑
β Pa(t, η→ β) = 1

Co-Training has been used before in applications like word-sense disambiguation [Yar95],

web-page classification [BM98] and named-entity identification [CS99]. In all of these cases, using

unlabeled data has resulted in performance that rivals training solely from labeled data. However,

these previous approaches were on tasks that involved identifying the right label from a small set of

labels (typically 2–3), and in a relatively small parameter space. Compared to these earlier models,

a statistical parser has a very large parameter space and the labels that are expected as output are

parse trees which have to be built up recursively. We discuss previous work in combining labeled

and unlabeled data in more detail in Section 3.8.

Co-training [BM98, Yar95] can be informally described in the following manner:

• Pick two (or more) “views” of a classification problem.

• Build separate models for each of these “views” and train each model on a small set of

labeled data.

• Sample an unlabeled data set and to find examples that each model independently labels

with high confidence. [NG00]

• Confidently labeled examples can be picked in various ways. [CS99, GZ00]

• Take these examples as being valuable as training examples and iterate this procedure until

the unlabeled data is exhausted.
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Effectively, by picking confidently labeled data from each model to add to the training data,

one model is labeling data for the other model.

3.4.1 Lexicalized Grammars and Mutual Constraints

In the representation we use, parsing using a lexicalized grammar is done in two steps:

1. Assigning a set of lexicalized structures to each word in the input sentence (as shown in

Figure 3.2).

2. Finding the correct attachments between these structures to get the best parse (as shown in

Figure 3.1).

Each of these two steps involves ambiguity which can be resolved using a statistical model.

By explicitly representing these two steps independently, we can pursue independent statistical

models for each step:

1. Each word in the sentence can take many different lexicalized structures. We can introduce

a statistical model that disambiguates the lexicalized structure assigned to a word depending

on the local context.

2. After each word is assigned a certain set of lexicalized structures, finding the right parse tree

involves computing the correct attachments between these lexicalized structures. Disam-

biguating attachments correctly using an appropriate statistical model is essential to finding

the right parse tree.

These two models have to agree with each other on the trees assigned to each word in the

sentence. Not only do the right trees have to be assigned as predicted by the first model, but they

also have to fit together to cover the entire sentence as predicted by the second model2. This

represents the mutual constraint that each model places on the other.

3.4.2 Tag Dictionaries

For the words that appear in the (unlabeled) training data, we collect a list of part-of-speech labels

and trees that each word is known to select in the training data. This information is stored in a
2See §3.8 for a discussion of the relation of this approach to that of SuperTagging [Sri97a]

72



POS tag dictionary and a tree dictionary. It is important to note that no frequency or any other

distributional information is stored. The only information stored in the dictionary is which tags or

trees can be selected by each word in the training data.

We use a count cutoff for trees in the labeled data and combine observed counts into an un-

observed tree count. This is similar to the usual technique of assigning the token unknown to

infrequent word tokens. In this way, trees unseen in the labeled data but in the tag dictionary are

assigned a probability in the parser.

The problem of lexical coverage is a severe one for unsupervised approaches. The use of tag

dictionaries is a way around this problem. Such an approach has already been used for unsuper-

vised part-of-speech tagging in [Bri97] where seed data of which POS tags can be selected by each

word is given as input to the unsupervised tagger.

After initial experiments reported later in this chapter, We went back and re-evaluated the

importance of the tag dictionaries to the performance of the method. We added tag dictionaries

with previously unseen trees smoothed with a small held-over probability that was obtained by

omitting those trees that occurred only once in the small labeled set. While the error rate decreased

by 10%, this improvement was much lower than the performance increase obtained by applying

the co-training approach described in this chapter.

3.5 Models

As described before, we treat parsing as a two-step process. The two models that we use are:

1. H1: selects trees based on previous context (tagging probability model)

2. H2: computes attachments between trees and returns best parse (parsing probability model)

3.5.1 H1: Tagging probability model

We select the most likely trees for each word by examining the local context. The statistical

model we use to decide this is the trigram model that was used by B. Srinivas in his SuperTagging

model [Sri97a]. The model assigns an n-best lattice of tree assignments associated with the input

sentence with each path corresponding to an assignment of an elementary tree for each word in the

sentence. (for further details, see [Sri97a]).
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We conducted several experiments in using n-best SuperTagging and combining the subsequent

set of trees to form a parse. Detailed descriptions of these experiments are given in Chapter 6 in

Section 6.2.2. Careful consideration was given to the problem that SuperTagging does not always

provide a set of trees that can be stapled together to form a parse. In particular, the value of n was

set high enough and the set of elementary trees were carefully chosen (by setting the appropriate

parameters in the grammar extraction module which gives elementary trees from the Treebank) to

make a full parse always possible.

P(T|W)

= P(T0 . . .Tn|W0 . . .Wn) (3.1)

=
P(T0 . . .Tn) × P(W0 . . .Wn|T0 . . .Tn)

P(W0 . . .Wn)
(3.2)

≈ P(Ti|Ti−2Ti−1) × P(Wi|Ti) (3.3)

where T0 . . .Tn is a sequence of elementary trees assigned to the sentence W0 . . .Wn.

We get (3.2) by using Bayes theorem and we obtain (3.3) from (3.2) by ignore the denominator

and by applying the usual Markov assumptions.

The output of this model is a probabilistic ranking of trees for the input sentence which is

sensitive to a small local context window.

3.5.2 H2: Parsing probability model

Once the words in a sentence have selected a set of elementary trees, parsing is the process of

attaching these trees together to give us a consistent bracketing of the sentences. Notation: Let τ

stand for an elementary tree which is lexicalized by a word: w and a part of speech tag: p.

Let Pi (introduced earlier in 3.3) stand for the probability of being root of a derivation tree

defined as follows:

∑

τ

Pi(τ) = 1

including lexical information, this is written as:

Pr(τ,w, p|top = 1) =
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Pr(τ|top = 1) × (3.4)

Pr(p|τ, top = 1) × (3.5)

Pr(w|τ, p, top = 1); (3.6)

where the variable top indicates that τ is the tree that begins the current derivation. There is a

useful approximation for Pi:

Pr(τ,w, p|top = 1) ≈ Pr(label|top = 1)

where label is the label of the root node of τ.

P̂r(label|top = 1) =

Count(top = 1, label) + α
Count(top = 1) + Nα

(3.7)

where N is the number of bracketing labels and α is a constant used to smooth zero counts.

Let P stand for either Ps or Pa (introduced earlier in 3.3). Thus, P stands for the

probability of either substituting or adjoining τ′ into another τ:

P(τ, η→ ) +
∑

τ′

P(τ, η→ τ′) = 1

including lexical information, this is written as:

Pr(τ′, p′,w′|Node, τ,w, p) (3.8)

Pr(|Node, τ,w, p) (3.9)

We decompose (3.8) into the following components:

Pr(τ′, p′,w′|Node, τ,w, p) =

Pr(τ′|Node, τ,w, p) × (3.10)

Pr(p′|τ′,Node, τ,w, p) × (3.11)

Pr(w′|p′, τ′,Node, τ,w, p); (3.12)
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We do a similar decomposition for (3.9).

For each of the equations above, we use a backoff model which is used to handle sparse data

problems. We compute a backoff model as follows:

Let e1 stand for the original lexicalized model and e2 be the backoff level which only uses part

of speech information:

e1: Node, τ,w, p

e2: Node, τ, p

For both Pi and P, let c = Count(e1). Then the backoff model is computed as follows:

λ(c)e1 + (1 − λ(c))e2

where λ(c) = c
(c+D) and D is the diversity of e1 (i.e. the number of distinct counts for e1).

For P we further smooth probabilities (3.10), (3.11) and (3.12). We use (3.10) as an

example, the other two are handled in the same way.

P̂r(τ′|Node, τ,w, p) =

(Count(Node, τ,w, p, τ′) + α)
(Count(Node, τ,w, p) + kα)

(3.13)

Count(Node, τ,w, p) =
∑

y∈T ′
Count(Node, τ,w, p, y) (3.14)

where k is the diversity of adjunction, that is: the number of different trees that can attach at

that node. T ′ is the set of all trees τ′ that can possibly attach at Node in tree τ.

For our experiments, the value of α is set to 1
100,000 .

The parsing algorithm that is used to decode a parse for an input sentence is given in Chapter 6.
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3.6 Co-Training algorithm

We are now in the position to describe the Co-Training algorithm, which combines the models

described in Section 3.5.1 and in Section 3.5.2 in order to iteratively label a large pool of unlabeled

data.

We use the following datasets in the algorithm:

labeled a set of sentences bracketed with the correct parse trees.

cache a small pool of sentences which is the focus of each iteration of the Co-Training algorithm.

unlabeled a large set of unlabeled sentences. The only information we collect from this set of sen-

tences is a tree-dictionary: tree-dict and part-of-speech dictionary: pos-dict. Construction of

these dictionaries is covered in Section 3.4.2.

In addition to the above datasets, we also use the usual development test set (termed dev in this

chapter), and a test set (called test) which is used to evaluate the bracketing accuracy of the parser.

The Co-Training algorithm consists of the following steps which are repeated iteratively until

all the sentences in the set unlabeled are exhausted.

1. Input: labeled and unlabeled

2. Update cache

• Randomly select sentences from unlabeled and refill cache

• If cache is empty; exit

3. Train models H1 and H2 using labeled

4. Apply H1 and H2 to cache.

5. Pick most probable n from H1 (stapled together) and add to labeled.

6. Pick most probable n from H2 and add to labeled

7. n = n + k; Go to Step 2
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For the experiment reported here, n = 10, and k was set to be n in each iteration. We ran the

algorithm for 12 iterations (covering 20480 of the sentences in unlabeled) and then added the best

parses for all the remaining sentences.

3.7 Experiment

3.7.1 Setup

The experiments we report were done on the Penn Treebank WSJ Corpus [MSM93]. The various

settings for the Co-Training algorithm (from Section 3.6) are as follows:

• labeled was set to Sections 02-06 of the Penn Treebank WSJ (9625 sentences)

• unlabeled was 30137 sentences (Section 07-21 of the Treebank stripped of all annotations).

• A tag dictionary of all lexicalized trees from labeled and unlabeled.

• Novel trees were treated as unknown tree tokens.

• The cache size was 3000 sentences.

While it might seem expensive to run the parser over the cache multiple times, we use the

pruning capabilities of the parser to good use here. During the iterations we set the beam size to

a value which is likely to prune out all derivations for a large portion of the cache except the most

likely ones. This allows the parser to run faster, hence avoiding the usual problem with running an

iterative algorithm over thousands of sentences. In the initial runs we also limit the length of the

sentences entered into the cache because shorter sentences are more likely to beat out the longer

sentences in any case. The beam size is reset when running the parser on the test data to allow the

parser a better chance at finding the most likely parse.

3.7.2 Results

We scored the output of the parser on Section 23 of the Wall Street Journal Penn Treebank. The

following are some aspects of the scoring that might be useful for comparision with other results:

No punctuations are scored, including sentence final punctuation. Empty elements are not scored.
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We used  (written by Satoshi Sekine and Michael Collins) which scores based on 

[BAF+91]; with the standard parameter file (as per standard practice, part of speech brackets were

not part of the evaluation). Also, we used Adwait Ratnaparkhi’s part-of-speech tagger [Rat96] to

tag unknown words in the test data.

We obtained 80.02% and 79.64% labeled bracketing precision and recall respectively (as de-

fined in [BAF+91]). The baseline model which was only trained on the 9695 sentences of labeled

data performed at 72.23% and 69.12% precision and recall. These results show that training a

statistical parser using our Co-training method to combine labeled and unlabeled data strongly

outperforms training only on the labeled data.

It is important to note that unlike previous studies, our method of moving towards unsupervised

parsing are directly compared to the output of supervised parsers.

Certain differences in the applicability of the usual methods of smoothing to our parser cause

the lower accuracy as compared to other state of the art statistical parsers. However, we have

consistently seen increase in performance when using the Co-Training method over the baseline

across several trials. It should be emphasised that this is a result based on less than 20% of data

that is usually used by other parsers.

3.8 Previous Work: Combining Labeled and Unlabeled Data

The two-step procedure used in our Co-Training method for statistical parsing was incipient in the

SuperTagger [Sri97a] which is a statistical model for tagging sentences with elementary lexicalized

structures. This was particularly so in the Lightweight Dependency Analyzer (LDA), which used

shortest attachment heuristics after an initial SuperTagging stage to find syntactic dependencies

between words in a sentence. However, there was no statistical model for attachments and the

notion of mutual constraints between these two steps was not exploited in this work.

Previous studies in unsupervised methods for parsing have concentrated on the use of inside-

outside algorithm [LY90, CR98a]. However, there are several limitations of the inside-outside

algorithm for unsupervised parsing, see [Mar95] for some experiments that draw out the mismatch

between minimizing error rate and iteratively increasing the likelihood of the corpus. Other ap-

proaches have tried to move away from phrase structural representations into dependency style
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parsing [LST92, FW96]. However, there are still inherent computational limitations due to the

vast search space (see [PPG+94] for discussion). None of these approaches can even be realisti-

cally compared to supervised parsers that are trained and tested on the kind of representations and

the complexity of sentences that are found in the Penn Treebank.

[CJ98] combine unlabeled and labeled data for parsing with a view towards language modeling

applications. The goal in their work is not to get the right bracketing or dependencies but to reduce

the word error rate in a speech recognizer.

Our approach is closely related to previous Co-Training methods [Yar95, BM98, GZ00, CS99].

[Yar95] first introduced an iterative method for increasing a small set of seed data used to disam-

biguate dual word senses by exploiting the constraint that in a segment of discourse only one sense

of a word is used. This use of unlabeled data improved performance of the disambiguator above

that of purely supervised methods. [BM98] further embellish this approach and gave it the name

of Co-Training. Their definition of Co-Training includes the notion (exploited in this chapter) that

different models can constrain each other by exploiting different ‘views’ of the data. They also

prove some PAC results on learnability. They also discuss an application of classifying web pages

by using their method of mutually constrained models. [CS99] further extend the use of classi-

fiers that have mutual constraints by adding terms to AdaBoost which force the classifiers to agree

(called Co-Boosting). [GZ00] provide a variant of Co-Training which is suited to the learning of

decision trees where the data is split up into different equivalence classes for each of the models

and they use hypothesis testing to determine the agreement between the models.

3.9 Further Experiments with Larger Sets of Labeled Data

We conducted some further experiments in which the role of the tag dictionary was de-emphasized

by training on the entire Treebank but using a separate set of 23M words of WSJ data as the

unlabeled set.

In addition, we also explored the attractive notion of performing co-training between two sta-

tistical parsers, each parser having conditionally independent lexicalized models thus learning dif-

ferent features from the labeled set.

The two parsing models we used were both TAG-based but had strikingly different lexicalized
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probability models. One was based on the traditional notion of adjuction in TAG: only one adjunc-

tion per node was permitted in this model. This caused the stacking of modifiers one on another in

the lexicalized probability model. For example, in the phrase saw a man with a telescope using a

tripod, the PP headed by using adjoins onto the root node of the PP headed by with since only one

adjunction is possible at the VP node of the tree headed by saw giving us the lexical dependencies

of with, saw and using, with.

The second model was based on the Tree Insertion Grammar model (see introduction in Chap-

ter 2. In this model, multiple adjunction is permitted at each node and wrapping trees produced

by one left auxiliary tree adjoining onto the root node of a right auxiliary tree (or vice versa) is

disallowed. As a result, modifiers all modify the head together thus changing the lexicalized prob-

ability model. For example, in the phrase saw with a telescope using a tripod, the PP headed by

using and the PP headed by with both adjoin onto the VP node of the tree headed by saw giving us

the lexical dependencies of with, saw and using, saw.

We trained parsers using each of these models on the standard training set of sections 02-21 of

the Penn Treebank. We then performed co-training using a larger set of WSJ unlabeled text (23M

words). Even after 12 iterations of co-training, performance did not improve significantly over the

baseline of LR 85.2% and LP 86%.

There are three possible reasons why this experiment did not succeed. We discuss them below

and give reasons why one of these reasons looks the most likely.

• There was no substantial overlap between the features used in each of the probability models.

This reason is surprising because we explicitly picked the two models to be as different as

possible from each other. However, after training the two models we compared the distinctly

different lexicalized features between them. We found that only 22% of the features were

different. Most of the lexicalized features were found in either model but with different

probabilities. Due to this we believe that this is the most likely reason why the experiment

did not go as planned.

• There was enough labeled data and further addition of unlabeled data will not improve per-

formance. There is evidence from the study in [Gil01] that the lexicalized features (those

that involve bigrams of lexical items) are under-utilized when parsing the test data. For
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this reason, we think that unlabeled data if correctly used can improve performance in a

co-training setting.

• The tag dictionary that was used in the first experiment was crucial in the success there.

Since we used unlabeled data for which no such dictionary existed, the lack of such a tag

dictionary was the reason why this experiment using a larger labeled and unlabeled set did

not succeed. While the improvement in the first experiment was more substantial due to

the additional information in the tag dictionary, in this second experiment the lack of tag

dictionary does not seem to be the critical factor. The reason for this is that the lack of an

appropriate tag dictionary causes parsing failure because a crucial tree was missing. In this

second experiment, the elementary trees were considered to be a closed set and unknown

words were assigned trees based on their part-of-speech tags (we tagged the unlabeled set

using Adwait’s tagger). We did not find an unusually high number of failures which might

suggest a problem with the tag dictionary.

We expect to continue with experiments involving Co-training based on larger labeled and

unlabeled sets. The two avenues we wish to pursue are (1) to use a partial parser like we did in our

first experiment, and (2) to use two parsers but use bagging to introduce variation in the lexicalized

features used by the parser. In addition, we plan to pursue the co-training of multiple parsers at the

constituent level during the Johns Hopkins summer workshop in 2002.

3.10 Co-training and the EM algorithm

In this section we explore the relationship between the Co-training algorithm and the EM algo-

rithm. The EM algorithm is a theoretically well-justified method for the recovery of parameter

values in a generative model under maximum likelihood assumptions for hidden data. A com-

mon instantiation of the EM algorithm for parameter estimation in context-free and TAG is the

inside-outside algorithm (see Chapter 2 for a definition of the IO algorithm for TAGs).

[NG00] is a study which tries to separate two factors in the family of Co-training algorithms

versus EM-based algorithms:

1. The gradient descent aspect of EM vs. the iterative nature of co-training, and

82



2. The generative model used in EM vs. the conditional independence between the features

used by the two models that is exploited in co-training.

Figure 3.10 is graphical depiction of this dichotomy between Co-training and EM and shows

both the similarity and differences between the two approaches to the use of unlabeled data. In the

figure, ∗ refers to the work in [NG00] and † refers to work in discriminative objective functions

f ; Q0 || Qdis by Tom Mitchell (personal communication). In this comparision, Q0 || Q∞ is the

Kullback-Liebler distance between the data distribution Q0 and the distribution of the data given

by the convergent setting of the parameter values in the model given by Q∞. See [Hin00] for a

different approach to the use of ensemble learning and its relation to EM.

In Figure 3.10, we point out that one could construct a discriminative objective function Qdis

over which iterative EM-based re-estimation or gradient descent can be done to take advantage

of the conditional independence of features used in two (or more) models trained on the labeled

data. Here is one way to define such an objective function. Let the labeled data consist of pairs

x, y where x is labeled as y and the learner has to learn to map unseen x items to labels y. Let us

take each x to be the combination of two features 〈x1, x2〉. We use two classifiers g1 and g2 where

g1 learns the mapping x1, y while g2 learns the mapping x2, y. Let g1(xi) = g2(xi) = yi for i in the

labeled data. Then the objective function can be defined as:

∑

i

(ĝ1(xi) − yi)
2 + (ĝ2(xi) + yi)

2 + (P(yi) |lab= P(yi) |unlab)

The last term in the equation keeps the marginal distribution of the labels stable even with

the addition of new data taken from the unlabeled set. This function can provide the basis for re-

estimation over the labeled and unlabeled set. The nature of this re-estimation has to be carefully

controlled. For example, EM has been used successfully in text classification in combination of

labeled and unlabeled data (see [NMTM99]). However, the use of EM in this case required some

central assumptions about the use of unlabeled data (see [Nig01] for further details).

The most important distinction between Co-training and EM is the greedy nature of Co-training

and the use of sampling to avoid the exhaustive search of the joint distribution that is done in EM-

based algorithms like Inside-Outside. The time taken by Co-training in learning from unlabeled

data is thus not as exhorbitant as the IO algorithm.
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max likelihood iterative selection
over full unlabeled set from unlabeled set

Q0 || Q∞ EM† self-training

conditionally co-EM∗ Co-Training
independent features

Figure 3.6: Comparison of Co-training with the EM algorithm.

3.11 Conclusion

In this chapter, we proposed a new approach for training a statistical parser that combines labeled

with unlabeled data. It uses a Co-Training method where a pair of models attempt to increase their

agreement on labeling the data. The algorithm takes as input a small corpus of 9695 sentences

(234467 word tokens) of bracketed data, a large pool of unlabeled text and a tag dictionary of

lexicalized structures for each word in this training set (based on the LTAG formalism). The

algorithm presented iteratively labels the unlabeled data set with parse trees. We then train a

statistical parser on the combined set of labeled and unlabeled data.

We obtained 80.02% and 79.64% labeled bracketing precision and recall respectively. The

baseline model which was only trained on the 9695 sentences of labeled data performed at 72.23%

and 69.12% precision and recall. These results show that training a statistical parser using our

Co-training method to combine labeled and unlabeled data strongly outperforms training only on

the labeled data.

It is important to note that unlike previous studies, our method of moving towards unsupervised

parsing can be directly compared to the output of supervised parsers. Unlike previous approaches

to unsupervised parsing our method can be trained and tested on the kind of representations and

the complexity of sentences that are found in the Penn Treebank.

In addition, as a byproduct of our representation we obtain more than the phrase structure of

each sentence. We also produce a more embellished parse in which phenomena such as predicate-

argument structure, subcategorization and movement are given a probabilistic treatment.
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Chapter 4

Learning Unknown Subcategorization

Frames

In this chapter, we present some novel machine learning techniques for the identification of sub-

categorization information for verbs in Czech. We compare three different statistical techniques

applied to this problem. We show how the learning algorithm can be used to discover previously

unknown subcategorization frames from the Czech Prague Dependency Treebank. The algorithm

can then be used to label dependents of a verb in the Czech treebank as either arguments or ad-

juncts. Using our techniques, we are able to achieve 88% precision on unseen parsed text.

4.1 Introduction

The subcategorization of verbs is an essential issue in parsing, because it helps disambiguate

the attachment of arguments and recover the correct predicate-argument relations by a parser.

[CM98, CR98b] give several reasons why subcategorization information is important for a nat-

ural language parser. Machine-readable dictionaries are not comprehensive enough to provide this

lexical information [Man93, BC97]. Furthermore, such dictionaries are available only for very

few languages. We need some general method for the automatic extraction of subcategorization

information from text corpora.

Several techniques and results have been reported on learning subcategorization frames (SFs)

from text corpora [WM89, Bre91, Bre93, Bre94, UEGW93, Man93, EC96, BC97, CM98, CR98b].
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All of this work deals with English. In this chapter we report on techniques that automatically

extract SFs for Czech, which is a free word-order language, where verb complements have visible

case marking.

Apart from the choice of target language, this work also differs from previous work in other

ways. Unlike all other previous work in this area, we do not assume that the set of SFs is known to

us in advance. Also in contrast, we work with syntactically annotated data (the Prague Dependency

Treebank, PDT [Haj98]) where the subcategorization information is not given; although this might

be considered a simpler problem as compared to using raw text, we have discovered interesting

problems that a user of a raw or tagged corpus is unlikely to face.

We first give a detailed description of the task of uncovering SFs and also point out those

properties of Czech that have to be taken into account when searching for SFs. Then we discuss

some differences from the other research efforts. We then present the three techniques that we use

to learn SFs from the input data.

In the input data, many observed dependents of the verb are adjuncts. To treat this problem

effectively, we describe a novel addition to the hypothesis testing technique that uses subset of

observed frames to permit the learning algorithm to better distinguish arguments from adjuncts.

Using our techniques, we are able to achieve 88% precision in distinguishing arguments from

adjuncts on unseen parsed text.

4.2 Task Description

In this section we describe precisely the proposed task. We also describe the input training material

and the output produced by our algorithms.

4.2.1 Identifying subcategorization frames

In general, the problem of identifying subcategorization frames is to distinguish between argu-

ments and adjuncts among the constituents modifying a verb. e.g., in “John saw Mary yesterday

at the station”, only “John” and “Mary” are required arguments while the other constituents are

optional (adjuncts). There is some controversy as to the correct subcategorization of a given verb

and linguists often disagree as to what is the right set of SFs for a given verb. A machine learning
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approach such as the one followed in this chapter sidesteps this issue altogether, since it is left to

the algorithm to learn what is an appropriate SF for a verb.

Figure 4.1 shows a sample input sentence from the PDT annotated with dependencies which is

used as training material for the techniques described in this chapter. Each node in the tree contains

a word, its part-of-speech tag (which includes morphological information) and its location in the

sentence. We also use the functional tags which are part of the PDT annotation1. To make future

discussion easier we define some terms here. Each daughter of a verb in the tree shown is called a

dependent and the set of all dependents for that verb in that tree is called an observed frame (OF).

A subcategorization frame (SF) is a subset of the OF. For example the OF for the verb majı́ (have)

in Figure 4.1 is { N1, N4 } and its SF is the same as its OF. Note that which OF (or which part of it)

is a true SF is not marked in the training data. After training on such examples, the algorithm takes

as input parsed text and labels each daughter of each verb as either an argument or an adjunct. It

does this by selecting the most likely SF for that verb given its OF.

The students are interested in languages but the faculty is missing teachers of English.

PSfrag replacements

[# ZSB 0]

[majı́ VPP3A 2]

[zájem N4 5]

[o R4 3]

[jazyky N4 4]

[fakultě N3 7]

[však JE 8]

[chybı́ VPP3A 9]

[angličtináři N1 10][studenti N1 1]

[, ZIP 6]

[. ZIP 11]

have

but

students faculty(dative) teachers of English

miss

interest

in

languages

Figure 4.1: Example input to the algorithm from the Prague Dependency Treebank

1For those readers familiar with the PDT functional tags, it is important to note that the functional tag Obj does
not always correspond to an argument. Similarly, the functional tag Adv does not always correspond to an adjunct.
Approximately 50 verbs out of the total 2993 verbs require an adverbial argument.
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4.2.2 Relevant properties of the Czech Data

Czech is a “free word-order” language. This means that the arguments of a verb do not have fixed

positions and are not guaranteed to be in a particular configuration with respect to the verb.

The examples in (1) show that while Czech has a relatively free word-order some orders are

still marked. The SVO, OVS, and SOV orders in (1)a, (1)b, (1)c respectively, differ in emphasis

but have the same predicate-argument structure. The examples (1)d, (1)e can only be interpreted

as a question. Such word orders require proper intonation in speech, or a question mark in text.

The example (1)f demonstrates how morphology is important in identifying the arguments of

the verb. cf. (1)f with (1)b. The ending -a of Martin is the only difference between the two

sentences. It however changes the morphological case of Martin and turns it from subject into

object. Czech has 7 cases that can be distinguished morphologically.

(1) a. Martin otv ı́r á soubor. (SVO: Martin opens the file)

b. Soubor otv ı́r á Martin. (OVS: , the file opens Martin)

c. Martin soubor otv ı́r á.

d. #Otv ı́r á Martin soubor.

e. #Otv ı́r á soubor Martin.

f. Soubor otv ı́r á Martina. (= the file opens Martin)

Almost all the existing techniques for extracting SFs exploit the relatively fixed word-order of

English to collect features for their learning algorithms using fixed patterns or rules (see Table 4.2

for more details). Such a technique is not easily transported into a new language like Czech. Fully

parsed training data can help here by supplying all dependents of a verb. The observed frames

obtained this way have to be normalized with respect to the word order, e.g. by using an alphabetic

ordering.

For extracting SFs, prepositions in Czech have to be handled carefully. In some SFs, a partic-

ular preposition is required by the verb, while in other cases it is a class of prepositions such as

locative prepositions (e.g. in, on, behind, . . .) that are required by the verb. In contrast, adjuncts

can use a wider variety of prepositions. Prepositions specify the case of their noun phrase comple-

ments but a preposition can take complements with more than one case marking with a different

meaning for each case. (e.g. na mostě = on the bridge; na most = onto the bridge). In general,
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verbs select not only for particular prepositions but also indicate the case marking for their noun

phrase complements.

4.2.3 Argument types

We use the following set of labels as possible arguments for a verb in our corpus. They are derived

from morphological tags and simplified from the original PDT definition [HH98, Haj98]; the nu-

meric attributes are the case marking identifiers. For prepositions and clause complementizers, we

also save the lemma in parentheses.

• Noun phrases: N4, N3, N2, N7, N1

• Prepositional phrases: R2(bez), R3(k), R4(na), R6(na), R7(s), . . .

• Reflexive pronouns se, si: PR4, PR3

• Clauses: S, JS(že), JS(zda)

• Infinitives (VINF)

• passive participles (VPAS)

• adverbs (DB)

We do not specify which SFs are possible since we aim to discover these (see Section 4.2.1).

4.3 Three methods for identifying subcategorization frames

We describe three methods that take as input a list of verbs and associated observed frames from

the training data (see Section 4.2.1), and learn an association between verbs and possible SFs. We

describe three methods that arrive at a numerical score for this association.

However, before we can apply any statistical methods to the training data, there is one aspect

of using a treebank as input that has to be dealt with. A correct frame (verb + its arguments) is

almost always accompanied by one or more adjuncts in a real sentence. Thus the observed frame

will almost always contain noise. The approach offered by Brent and others counts all observed

frames and then decides which of them do not associate strongly with a given verb. In our situation
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this approach will fail for most of the observed frames because we rarely see the correct frames

isolated in the training data. For example, from the occurrences of the transitive verb absolvovat

(“go through something”) that occurred ten times in the corpus, no occurrence consisted of the

verb-object pair alone. In other words, the correct SF constituted 0% of the observed situations.

Nevertheless, for each observed frame, one of its subsets was the correct frame we sought for.

Therefore, we considered all possible subsets of all observed frames. We used a technique which

steps through the subsets of each observed frame from larger to smaller ones and records their

frequency in data. Large infrequent subsets are suspected to contain adjuncts, so we replace them

by more frequent smaller subsets. Small infrequent subsets may have elided some arguments and

are rejected. Further details of this process are discussed in Section 4.3.3.

N4 R2(od) {2}

N4 R2(do) {0}

R2(od) R2(do) {0}

N4 R6(v) {1}

N4 R6(na) {0}

R6(v) R6(na) {0}

N4 R6(po) {1}

R2(od) {0}

R2(do) {0}

R6(v) {0}

R6(na) {0}

R6(po) {0}

N4 {2+1+1}

N4 R2(od) R2(do) {2}

N4 R6(v) R6(na) {1} empty {0}

Figure 4.2: Computing the subsets of observed frames for the verb absolvovat. The counts for
each frame are given within braces {}. In this example, the frames N4 R2(od), N4 R6(v) and N4
R6(po) have been observed with other verbs in the corpus. Note that the counts in this figure do
not correspond to the real counts for the verb absolvovat in the training corpus.

The methods we present here have a common structure. For each verb, we need to associate

a score to the hypothesis that a particular set of dependents of the verb are arguments of that

verb. In other words, we need to assign a value to the hypothesis that the observed frame under

consideration is the verb’s SF. Intuitively, we either want to test for independence of the observed

frame and verb distributions in the data, or we want to test how likely is a frame to be observed

with a particular verb without being a valid SF. We develop these intuitions with the following

well-known statistical methods. For further background on these methods the reader is referred to

[BD77, Dun93].
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4.3.1 Likelihood ratio test

Let us take the hypothesis that the distribution of an observed frame f in the training data is

independent of the distribution of a verb v. We can phrase this hypothesis as p( f | v) = p( f | !v) =

p( f ), that is distribution of a frame f given that a verb v is present is the same as the distribution of

f given that v is not present (written as !v). We use the log likelihood test statistic [BD77](p.209)

as a measure to discover particular frames and verbs that are highly associated in the training data.

k1 = c( f , v)

n1 = c(v) = c( f , v) + c(! f , v)

k2 = c( f , !v)

n2 = c(!v) = c( f , !v) + c(! f , !v)

where c(·) are counts in the training data. Using the values computed above:

p1 =
k1

n1

p2 =
k2

n2

p =
k1 + k2

n1 + n2

Taking these probabilities to be binomially distributed, the log likelihood statistic [Dun93] is

given by:

−2 log λ =

2[log L(p1, k1, n1) + log L(p2, k2, n2) −

log L(p, k1, n2) − log L(p, k2, n2)]

where,

log L(p, n, k) = k log p + (n − k) log(1 − p)

According to this statistic, the greater the value of −2 log λ for a particular pair of observed

frame and verb, the more likely that frame is to be valid SF of the verb.
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4.3.2 T-scores

Another statistic that has been used for hypothesis testing is the t-score. Using the definitions from

Section 4.3.1 we can compute t-scores using the equation below and use its value to measure the

association between a verb and a frame observed with it.

T =
p1 − p2√

p1(1−p1)
n1 +

p2(1−p2)
n2

In particular, the hypothesis being tested using the t-score is whether the distributions p1 and

p2 are not independent. If the value of T is greater than some threshold then the verb v should take

the frame f as a SF.

4.3.3 Binomial Models of Miscue Probabilities

Once again assuming that the data is binomially distributed, we can look for frames that co-occur

with a verb by exploiting the miscue probability: the probability of a frame co-occuring with a

verb when it is not a valid SF. This is the method used by several earlier papers on SF extraction

starting with [Bre91, Bre93, Bre94].

Let us consider probability p! f which is the probability that a given verb is observed with a

frame but this frame is not a valid SF for this verb. p! f is the error probability on identifying a SF

for a verb. Let us consider a verb v which does not have as one of its valid SFs the frame f . How

likely is it that v will be seen m or more times in the training data with frame f ? If v has been seen

a total of n times in the data, then H∗(p! f ; m, n) gives us this likelihood.

H∗(p! f ; m, n) =
n∑

i=m

pi
! f (1 − p! f )

n−i


n

i



If H∗(p; m, n) is less than or equal to some small threshold value then it is extremely unlikely

that the hypothesis is true, and hence the frame f must be a SF of the verb v. Setting the threshold

value to 0.05 gives us a 95% or better confidence value that the verb v has been observed often

enough with a frame f for it to be a valid SF.

Initially, we consider only the observed frames (OFs) from the treebank. There is a chance

that some are subsets of some others but now we count only the cases when the OFs were seen

themselves. Let’s assume the test statistic rejected the frame. Then it is not a real SF but there
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probably is a subset of it that is a real SF. So we select exactly one of the subsets whose length is

one member less: this is the successor of the rejected frame and inherits its frequency. Of course

one frame may be successor of several longer frames and it can have its own count as OF. This

is how frequencies accumulate and frames become more likely to survive. The example shown in

Figure 4.2 illustrates how the subsets and successors are selected.

An important point is the selection of the successor. We have to select only one of the n

possible successors of a frame of length n, otherwise we would break the total frequency of the

verb. Suppose there is m rejected frames of length n. This yields m ∗ n possible modifications to

consider before selection of the successor. We implemented two methods for choosing a single

successor frame:

1. Choose the one that results in the strongest preference for some frame (that is, the successor

frame results in the lowest entropy across the corpus). This measure is sensitive to the

frequency of this frame in the rest of corpus.

2. Random selection of the successor frame from the alternatives.

Random selection resulted in better precision (88% instead of 86%). It is not clear why a

method that is sensitive to the frequency of each proposed successor frame does not perform better

than random selection.

The technique described here may sometimes result in subset of a correct SF, discarding one

or more of its members. Such frame can still help parsers because they can at least look for the

dependents that have survived.

4.4 Evaluation

For the evaluation of the methods described above we used the Prague Dependency Treebank

(PDT). We used 19,126 sentences of training data from the PDT (about 300K words). In this

training set, there were 33,641 verb tokens with 2,993 verb types. There were a total of 28,765

observed frames (see Section 4.2.1 for explanation of these terms). There were 914 verb types seen

5 or more times.

93



Since there is no electronic valence dictionary for Czech, we evaluated our filtering technique

on a set of 500 test sentences which were unseen and separate from the training data. These test

sentences were used as a gold standard by distinguishing the arguments and adjuncts manually.

We then compared the accuracy of our output set of items marked as either arguments or adjuncts

against this gold standard.

First we describe the baseline methods. Baseline method 1: consider each dependent of a

verb an adjunct. Baseline method 2: use just the longest known observed frame matching the test

pattern. If no matching OF is known, find the longest partial match in the OFs seen in the training

data. We exploit the functional and morphological tags while matching. No statistical filtering is

applied in either baseline method.

A comparison between all three methods that were proposed in this chapter is shown in Ta-

ble 4.1. Some of the values are not integers since for some difficult cases in the test data, the

value for each argument/adjunct decision was set to a value between [0, 1]. Recall is computed as

the number of known verb complements divided by the total number of complements. Precision

is computed as the number of correct suggestions divided by the number of known verb comple-

ments. Fβ=1 = (2 × p × r)/(p + r). % unknown represents the percent of test data not considered

by a particular method.

The experiments showed that the method improved precision of this distinction from 57% to

88%. We were able to classify as many as 914 verbs which is a number outperformed only by

Manning, with 10x more data (note that our results are for a different language).

Also, our method discovered 137 subcategorization frames from the data. The known upper

bound of frames that the algorithm could have found (the total number of the observed frame types)

was 450.

We have also tried our methods on data which was automatically morphologically tagged

which allowed us to use more data (82K sentences instead of 19K). The performance went up

to 89% (a 1% improvement).
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Baseline Baseline Likelihood T-scores Hypothesis
1 2 Ratio Testing

Precision 55% 78% 82% 82% 88%
Recall: 55% 73% 77% 77% 74%
Fβ=1 55% 75% 79% 79% 80%
% unknown 0% 6% 6% 6% 16%
Total verb nodes 1027 1027 1027 1027 1027
Total complements 2144 2144 2144 2144 2144
Known verb nodes 1027 981 981 981 907
Known verb complements 2144 2010 2010 2010 1812
Correct Suggestions 1187.5 1573.5 1642.5 1652.9 1596.5
True Args 956.5 910.5 910.5 910.5 834.5
Suggested Args 0 1122 974 1026 674
Incorrect arg 0 324 215.5 236.3 27.5
suggestions
Incorrect adj 956.5 112.5 152 120.8 188
suggestions

Table 4.1: Comparison between the baseline methods and the proposed methods.

4.5 Comparison with related work

Preliminary work on SF extraction from corpora was done by [Bre91, Bre93, Bre94] and [WM89,

UEGW93]. Brent [Bre93, Bre94] uses the standard method of testing miscue probabilities for

filtering frames observed with a verb. [Bre94] presents a method for estimating p! f . Brent applied

his method to a small number of verbs and associated SF types. [Man93] applies Brent’s method

to parsed data and obtains a subcategorization dictionary for a larger set of verbs. [BC97, CM98]

differs from earlier work in that a substantially larger set of SF types are considered; [CR98b]

use an EM algorithm to learn subcategorization as a result of learning rule probabilities, and, in

turn, to improve parsing accuracy by applying the verb SFs obtained. [BV98] use a conceptual

clustering algorithm for acquiring subcategorization frames for Italian. They establish a partial

order on partially overlapping OFs (similar to our OF subsets) which is then used to suggest a

potential SF. A complete comparison of all the previous approaches with the current work is given

in Table 4.2.

While these approaches differ in size and quality of training data, number of SF types (e.g.

intransitive verbs, transitive verbs) and number of verbs processed, there are properties that all
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have in common. They all assume that they know the set of possible SF types in advance. Their

task can be viewed as assigning one or more of the (known) SF types to a given verb. In addition,

except for [BC97, CM98], only a small number of SF types is considered.

Using a dependency treebank as input to our learning algorithm has both advantages and draw-

backs. There are two main advantages of using a treebank:

• Access to more accurate data. Data is less noisy when compared with tagged or parsed input

data. We can expect correct identification of verbs and their dependents.

• We can explore techniques (as we have done in this chapter) that try and learn the set of SFs

from the data itself, unlike other approaches where the set of SFs have to be set in advance.

Also, by using a treebank we can use verbs in different contexts which are problematic for

previous approaches, e.g. we can use verbs that appear in relative clauses. However, there are two

main drawbacks:

• Treebanks are expensive to build and so the techniques presented here have to work with

less data.

• All the dependents of each verb are visible to the learning algorithm. This is contrasted with

previous techniques that rely on finite-state extraction rules which ignore many dependents

of the verb. Thus our technique has to deal with a different kind of data as compared to

previous approaches.

We tackle the second problem by using the method of observed frame subsets described in

Section 4.3.3.

4.6 Conclusion

We are currently incorporating the SF information produced by the methods described in this chap-

ter into a parser for Czech. We hope to duplicate the increase in performance shown by treebank-

based parsers for English when they use SF information. Our methods can also be applied to
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Previous Data #SFs #verbs Method Miscue Corpus
work tested rate
[UEGW93] POS + 6 33 heuristics NA WSJ

FS rules (300K)
[Bre93] raw + 6 193 Hypothesis iterative Brown

FS rules testing estimation (1.1M)
[Man93] POS + 19 3104 Hypothesis hand NYT

FS rules testing (4.1M)
[Bre94] raw + 12 126 Hypothesis non-iter CHILDES

heuristics testing estimation (32K)
[EC96] Full 16 30 Hypothesis hand WSJ

parsing testing (36M)
[BC97] Full 160 14 Hypothesis Dictionary various

parsing testing estimation (70K)
[CR98b] Unlabeled 9+ 3 Inside- NA BNC

outside (5-30M)
Current Fully Learned 914 Subsets+ Estimate PDT

Parsed 137 Hyp. testing (300K)

Table 4.2: Comparison with previous work on automatic SF extraction from corpora

improve the annotations in the original treebank that we use as training data. The automatic addi-

tion of subcategorization to the treebank can be exploited to add predicate-argument information

to the treebank.

Also, techniques for extracting SF information from data can be used along with other re-

search which aims to discover relationships between different SFs of a verb [SM99, LB99, Lap99,

SMKW99a].

The statistical models in this chapter were based on the assumption that given a verb, differ-

ent SFs occur independently. This assumption is used to justify the use of the binomial. Future

work perhaps should look towards removing this assumption by modeling the dependence between

different SFs for the same verb using a multinomial distribution.

To summarize: we have presented techniques that can be used to learn subcategorization in-

formation for verbs. We exploit a dependency treebank to learn this information, and moreover

we discover the final set of valid subcategorization frames from the training data. We achieve upto

88% precision on unseen data.

We have also tried our methods on data which was automatically morphologically tagged
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which allowed us to use more data (82K sentences instead of 19K). The performance went up

to 89% (a 1% improvement).
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Chapter 5

Learning Verb Alternations from

Corpora

In this chapter we investigate the task of automatically identifying the correct argument structure

for a set of verbs. The argument structure of a verb allows us to predict the relationship between

the syntactic arguments of a verb and their role in the underlying lexical semantics of the verb.

Following the method described in [MS01], we exploit the distributions of some selected features

from the local context of a verb. These features were extracted from a 23M word WSJ corpus based

on part-of-speech tags and phrasal chunks alone. This annotation was minimal as compared to

previous work on this task which used automatically parsed data. We constructed several decision

tree classifiers trained on this data. The best performing classifier achieved an error rate of 33.4%.

Our result compares very favorably with previous work despite using considerably less data and

requiring only minimal annotation of the data.

5.1 Introduction

In this chapter we report on some experiments in the classification of verbs based on their under-

lying thematic structure. The objective of the classification is to correctly identify verbs that take

the same number and category of arguments but assign different thematic roles to these arguments.

This is often termed as the classification of verb diathesis roles or the lexical semantics of predi-

cates in natural language (see [Lev93, WM89, MK98, SM99, SMKW99b, Lap99, LB99, Sch00]).
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Following the method described in [MS01, SM99, SMKW99b], we exploit the distributions of

some selected features from the local context of a verb but we differ from these previous studies

in the use of minimally annotated data to construct our classifier. The data we use is only passed

through a part-of-speech tagger and a chunker which is used to identify base phrasal categories

such as noun-phrase and verb-phrase chunks to identify potential arguments of each verb.

Lexical knowledge acquisition plays an important role in corpus-based NLP. Knowledge of

verb selectional preferences and verb subcategorization frames (SFs) can be extracted from corpora

for use in various NLP tasks. However, knowledge of SFs is often not fine-grained enough to

distinguish various verbs and the kinds of arguments that they can select. We consider a difficult

task in lexical knowledge acquisition: that of finding the underlying argument structure which can

be used to relate the observed list of SFs of a particular verb. The task involves identifying the

roles assigned by the verb to its arguments. Consider the following verbs (the examples are taken

from [MS01], each occuring with intransitive and transitive SFs1.

Unergative

(2) a. The horse raced past the barn.

b. The jockey raced the horse past the barn.

Unaccusative

(3) a. The butter melted in the pan.

b. The cook melted the butter in the pan.

Object-Drop

(4) a. The boy washed.

b. The boy washed the hall.

Each of the verbs above occurs with both the intransitive and transitive SFs. However, the verbs
1See [Lev93] for more information. The particular categorization that we use here is motivated in [SM97]
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differ in their underlying argument structure. Each verb assigns a different role to their arguments in

the two subcategorization possibilities. For each verb above, the following lists the roles assigned

to each of the noun phrase arguments in the SFs permitted for the verb. This information can

be used for extracting appropriate information about the relationships between the verb and its

arguments.

Unergative

INTRAN: NPagent raced

TRAN: NPcauser raced NPagent

Unaccusative

INTRAN: NPtheme melted

TRAN: NPcauser melted NPtheme

Object-Drop

INTRAN: NPagent washed

TRAN: NPagent washed NPtheme

Our task is to identify the transitive and intransitive usage of a particular verb as being related

via this notion of argument structure. This is called the argument structure classification of the

verb. In the remainder of this chapter we will look at the problem of placing verbs into such

classes automatically.

Our results in this chapter serve as a replication and extension of the results in [MS01]. Our

main contribution in this chapter is to show that with reasonable accuracy, this task can be accom-

plished using only tagged and chunked data. In addition, we incorporate some additional features

such as part-of-speech tags and the use of subcategorization frame learning as part of our classifica-

tion algorithm. Our result compares very favorably with previous work despite using considerably
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less data and requiring only minimal annotation of the data ([MS01] use a 65M word fully parsed

WSJ corpus).

5.2 The Hypothesis

We create a probabilistic classifier that can automatically classify a set of verbs into argument

structure classes with a reasonable error rate. We use the hypothesis introduced by [SM99] that

although a verb in a particular class can occur in all of the syntactic contexts as verbs from other

classes the statistical distributions can be distinguished. In other words, verbs from certain classes

will be more likely to occur in some syntactic contexts than others. We identify features that pick

out the verb occurences in these contexts. By using these features, we will attempt to determine

the classification of those verbs.

In this work the additional hypothesis we wish to test is whether the application of subcate-

gorization frame (SF) learning to this kind of learning technique will permit the use of noisy data

with less annotation (chunked data without explicit SF information vs. automatically parsed text

where SF information is known).

In the previous section we saw that we sometimes have noun-phrase arguments (NPcauser) as

being a causer of the action denoted by the verb. For example, [SM99] show that a classifier can

exploit these causativity facts to improve classifiction.

We use some new features in addition to the ones proposed and used in [MS01] for this task.

In addition, we include as a feature the probabilistic classification of the verb as a transitive or

intransitive verb. Thus the classifier is simulaneously placing each verb into the appropriate sub-

categorization frame as well as identifying the underlying thematic roles of the verb arguments.

In our experiment, we will consider the following set of classes (each of these were explained

in the previous section): unergative, unaccusative, and object-drop. We test 76 verbs taken from

[Lev93] that are in one of these three classes. The particular verbs were chosen to include high

frequency as well as low frequency verb tokens in our particular corpus of 23M words of WSJ

text.2 We used all instances of these verbs from the WSJ corpus. The data was annotated with the

right classification for each verb and the classifier was run on 10% of the data using 10-fold cross
2The particular verbs selected were looked up in [Lev93] and the class for each verb in the classification system

defined in [SM97] was selected with some discussion with linguists.
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validation. We describe the experiment in greater detail in Section 5.4.

5.3 Identifying subcategorization frames

An important part of identifying the argument structure of the verb is to find the verb’s subcatego-

rization frame (SF). For this chapter, we are interested in whether the verb takes an intransitive SF

or a transitive SF.

In general, the problem of identifying subcategorization frames is to distinguish between argu-

ments and adjuncts among the constituents modifying a verb. e.g., in “John saw Mary yesterday

at the station”, only “John” and “Mary” are required arguments while the other constituents are

optional (adjuncts). There is some controversy as to the correct subcategorization of a given verb

and linguists often disagree as to what is the right set of SFs for a given verb. A machine learning

approach such as the one followed in this chapter sidesteps this issue altogether, since it is left to

the algorithm to learn what is an appropriate SF for a verb.

The problem of SF identification using statistical methods has had a rich discussion in the

literature [UEGW93, CR98b, EC96, BV98, Man93, BC97, Bre93, Bre94]. In this chapter, we

use the method of hypothesis testing to discover the SF for a given verb [Bre94]. Along with

the techniques given in these papers, [SZ00, KGM00] also discuss other methods for hypothesis

testing such the use of the t-score statistic and the likelihood ratio test. After experimenting with

all three of these methods we selected the likelihood ratio test because it performed with higher

accuracy on a small set of hand-annotated instances. We use the determination of the verb’s SF as

an input to our argument structure classifier (see Section 5.4).

The method works as follows: for each verb, we need to associate a score to the hypothesis

that a particular set of dependents of the verb are arguments of that verb. In other words, we need

to assign a value to the hypothesis that the observed frame under consideration is the verb’s SF.

Intuitively, we either want to test for independence of the observed frame and verb distributions

in the data, or we want to test how likely is a frame to be observed with a particular verb without

being a valid SF. We develop these intuitions by using the method of hypothesis testing using the

likelihood ratio test. For further background on this method of hypothesis testing the reader is

referred to [BD77, Dun93].
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5.3.1 Likelihood ratio test

Let us take the hypothesis that the distribution of an observed frame f in the training data is

independent of the distribution of a verb v. We can phrase this hypothesis as p( f | v) = p( f | !v) =

p( f ), that is distribution of a frame f given that a verb v is present is the same as the distribution of

f given that v is not present (written as !v). We use the log likelihood test statistic [BD77](p.209)

as a measure to discover particular frames and verbs that are highly associated in the training data.

k1 = c( f , v)

n1 = c(v) = c( f , v) + c(! f , v)

k2 = c( f , !v)

n2 = c(!v) = c( f , !v) + c(! f , !v)

where c(·) are counts in the training data. Using the values computed above:

p1 =
k1

n1

p2 =
k2

n2

p =
k1 + k2

n1 + n2

Taking these probabilities to be binomially distributed, the log likelihood statistic [Dun93] is

given by:

−2 log λ =

2[log L(p1, k1, n1) + log L(p2, k2, n2) −

log L(p, k1, n2) − log L(p, k2, n2)]

where,

log L(p, n, k) = k log p + (n − k) log(1 − p)
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According to this statistic, the greater the value of −2 log λ for a particular pair of observed

frame and verb, the more likely that frame is to be valid SF of the verb. If this value is above a

certain threshold it is taken to be a positive value for the binary feature TRAN, else it is a positive

feature for the binary feature INTRAN in the construction of the classifier.

5.4 Steps in Constructing the Classifier

To construct the classifier, we will identify features that can be used to accurately distinguish verbs

into different classes. The features are computed to be the probability of observing a particular

feature with each verb to be classified. We use C5.0 [Qui92] to generate the decision tree classifier.

The features are extracted from a 23M word corpus of WSJ text (LDC WSJ 1988 collection).

We prepare the corpus by passing it through Adwait Ratnaparkhi’s part-of-speech tagger [Rat96]

and then running Steve Abney’s chunker [Abn97] over the entire text. The output of this stage and

the input to our feature extractor is shown below.
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Pierre NNP nx 2

Vinken NNP

, ,

61 CD ax 3

years NNS

old JJ

, ,

will MD vx 2

join VB

the DT nx 2

board NN

as IN

a DT nx 3

nonexecutive JJ

director NN

Nov. NNP

29 CD

. .

We use the following features to construct the classifier. The first four features were discussed

and motivated in [SM99, MS01]. In some cases, we have modified the features to include infor-

mation about part-of-speech tags. The discussion below clarifies the similarities and changes. The

features we used in addition are the last two in the following list, the part-of-speech features and

the subcategorization frame features. 3

1. simple past (VBD), and past participle(VBN)

2. active (ACT) and passive (PASS)

3. causative (CAUS)
3Note that while [SM99, MS01] used a TRAN/INTRAN feature, in their case it was estimated in a completely

different way using tagged data. Hence, while we use the same name for the feature here, it is not the same kind of
feature as the one used in the cited work.
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4. animacy (ANIM)

5. Part of Speech of the subject noun-phrase and object noun-phrase

6. transitive (TRAN) and intransitive (INTRAN)

To calculate all the probability values of each features, we perform the following steps.

5.4.1 Finding the main verb of the sentences

To find the main verb, we constructed a deterministic finite-state automaton that finds the main

verb within the verb phrase chunks. This DFA is used in two steps. First, to select a set of main

verbs from which we select the final set of 76 verbs used in our experiment. Secondly, the actual

set of verbs is incorporated into the DFA in the feature selection step.

5.4.2 Obtaining the frequency distribution of the features

The general form of the equation we use to find the frequency distribution of each feature of the

verb is the following:

P(V j) =
C(V j)∑

1≤x≤N C(Vx)

where P(V j) is the distribution of feature j of the verb, N is the total number of features of

the particular type (e.g., the total number of CAUS features or ANIM features as described below)

and C(V j) is the number of times this feature of the verb was observed in the corpus. The features

computed using this formula are: ACT, PASS, TRAN, INTRAN, VBD, and VBN.

5.4.3 The causative feature: CAUS

To correctly obtain the causative values of the testing verbs, we needed to know the meaning of

the sentences. In this chapter, we approximate the value by using the following approach. Also,

the causative value is not a probability but a weight which is subsequently normalized.

We extract the subjects and objects of verbs and put them into two sets. We use the last noun

of the subject noun phrase and object noun phrase (tagged by NN, NNS, NNP, or NNPS), as the

subject and object of the sentences. Then the causative value is
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CAUS =
overlap

sum of all subject and objects in multiset

where the overlap is defined as the largest multiset of elements belonging to both subjects and

objects multisets.

If subject is in the set {a, a, b, c} and object is in set {a, d}, the intersection between both set will

be {a, a}, and the causative value will be 2
(4+2) =

1
3 .

If subject is in the set {a, a, b, c} and object is in the set {a, b, d}, the intersection between both

set will be {a, a, b}, and the causative value will be (2+1)
(4+3) =

3
7 .

Note that using this measure, we expect to get higher weights for tokens that occur frequently

in the object position and sometimes in the subject position. For example, CAUS({a, b}, {a, b}) = 2
4

while CAUS({a, b}, {a, a, a}) = 3
5 . This difference in the weight given by the CAUS feature is

exploited in the classifier.

5.4.4 The animate feature: ANIM

Similar to CAUS, we can only approximate the value of animacy. We use the following formula to

find the value:

ANIM = number of occurrence of pronoun in subject/number of occurrence of verbs

The set of pronouns used are I, we, you, she, he, and they. In addition we use the set of part-of-

speech tags which are associated with animacy in Penn Treebank tagset as part of set of features

described in the next section.

5.4.5 Part of Speech of object and subject

The part-of-speech feature picks up several subtle cues about the differences in the types of argu-

ments selected by the verb in its subject or object position.

We count the occurrence of the head nouns of the subject noun phrase and the object noun

phrase. Then, we find the frequency distribution by using the same formula as before:

P(V j) =
C(V j)∑

1≤x≤N C(Vx)
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Where P(V j) is the distribution of part of speech j, N is the total number of relevant POS

features and C(V j) is the number of occurrences of part of speech j. Also, we limit the part of

speech to only the following tags of speech: NNP, NNPS, EX, PRP, and SUCH, where NNP is

singular noun phrase, NNPS is plural noun phrase, EX is there, PRP is personal pronoun, and

SUCH is such.

5.4.6 Transitive and intransitive SF of the verb

To find values for this feature we use the technique described in Section 5.3. For each verb in

our list we extract all the subsequent NP and PP chunks and their heads from the chunker output.

We then perform subcategorization frame learning with all subsets of these extracted potential

arguments. The counts are appropriately assigned to these subsets to provide a well-defined model.

Using these counts and the methods in Section 5.3 we categorize a verb as either transitive or

intransitive. For simplicity, any number of arguments above zero is considered to be a candidate

for transitivity.

5.4.7 Constructing the Classifier

After we obtain all the probabilistic distributions of the features of our testing verbs, we then use

C5.0 [Qui92] to construct the classifier. The data was annotated with the right classification for

each verb and the classifier was run on 10% of the data using 10-fold cross validation.

5.5 Results

We tried all possible feature combinations (individual features and all possible conjunctions of

those features) to explore the contributions of each feature to the reduction of the error rate. The

following are the results of the best performing feature combinations.

With our base features, ACT, PASS, VBD, VBN, TRAN, and INTRAN we get the average error

rate of 49.4% for 10 fold cross validation. We can see that when we add the CAUS feature, the

average error decreases to 41.1%. The CAUS feature helps in decreasing the error rate. Also, when

we add the ANIM feature, we get a much better performance. Our average error rate decreases to

37.5%. This is the lowest error rate we can achieve by adding one extra feature in addition to the
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Features Average error rate SE Average error rate SE
from Decision Tree from Rule Set

TRAN, INTRAN, VBD, 49.4% 1.1% 67.7% 0.9%
VBN, PASS, ACT

TRAN, INTRAN, VBD, 41.1% 0.8% 40.8% 0.6%
VBN, PASS, ACT, CAUS
TRAN, INTRAN, VBD, 37.5% 0.8% 36.9% 1.0%

VBN, PASS, ACT, ANIM
TRAN, INTRAN, VBD, 39.2% 0.8% 38.1% 1.1%
VBN, PASS, ACT, PART

OF SPEECH
TRAN, INTRAN, VBD, 33.4% 0.7% 33.9% 0.8%

VBN, PASS, ACT, CAUS,
ANIM

TRAN, INTRAN, VBD, 39.0% 0.7% 37.1% 0.9%
VBN, PASS, ACT, CAUS,

PART OF SPEECH
TRAN, INTRAN, VBD, 35.8% 1.3% 35.9% 1.7%

VBN, PASS, ACT, ANIM,
PART OF SPEECH

TRAN, INTRAN, VBD, 39.5% 1.0% 38.3% 1.0%
VBN, PASS, ACT, CAUS,
ANIM, PART OF SPEECH

Figure 5.1: Results of the verb classification. Bold face results are for the best performing set of
features in the classifier.

110



base features. The ANIM feature is an important feature that we can use to construct the classifier.

When we add the PART OF SPEECH feature, the error rate also decreases to 39.2%. Therefore,

the PART OF SPEECH also helps reduce the error rate as well. When we put together the CAUS

feature and ANIM feature, we achieve the lowest error rate, which is 33.4%. When we put the

PART OF SPEECH and CAUS features together, the error rate does not really decrease (39.0%),

comparing to the result with only PART OF SPEECH feature. The reason of this result should

be that there are some parts of PART OF SPEECH feature and CAUS feature that overlap. When

we add ANIM and PART OF SPEECH features together, the error rate does decrease to 35.8%.

Although the result is not as good as result of using ANIM and CAUS features, the combination

of ANIM and PART OF SPEECH features could be considered effective features that we can use

to construct the classifier. We then combine all the features together. The result as expected is not

very good. The error rate is 39.5%. The reason should be the same reason as the lower performance

when combining the CAUS and PART OF SPEECH features.

These experiments show that the two features proposed in this chapter: TRAN/INTRAN dis-

covered using the likelihood ratio test for finding SF frames and the PART OF SPEECH feature

provided a significant boost to the performance of the classifier.

The accuracy of the baseline classifier (picking the right argument structure at chance) was

34.5%. [MS01] calculate the expert-based upper bound at this task to be an accuracy of 86.5%.

Our best performing classifier achieves a 33.4% error rate. In comparison, [MS01] obtain an

error rate of 30.2% using a much larger data set of 65M words of WSJ text. They also had less

noisy data as compared to our use of noun and verb-phrase chunks (their data was parsed). We are

often mislead by the putative SF of the verb and the head noun of the complement.

5.6 Conclusion

In this chapter, we discussed a technique which automatically identified the correct argument struc-

ture of a set of verbs. Our results in this paper serve as a replication and extension of the results

in [MS01]. Our main contribution in this paper is to show that with reasonable accuracy, this task

can be accomplished using only tagged and chunked data. In addition, we incorporate some addi-

tional features such as part-of-speech tags and the use of subcategorization frame learning as part
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of our classification algorithm. We exploited the distributions of selected features from the local

context of the verb which was extracted from a 23M word WSJ corpus. We used C5.0 to construct

a decision tree classifier using the values of those features. We were able to construct a classifier

that has an error rate of 33.4%.
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Chapter 6

Parsing Algorithms for Tree Adjoining

Grammars

6.1 A Head-Corner Parsing Algorithm for Probabilistic TAGs

In this chapter we define a parsing algorithm for probabilistic TAGs that we use within the statisti-

cal parser that was used in this disseration (particularly in Chapter 3). The parser is a chart-based

head-corner parser for general TAGs.

6.1.1 History of Head-Corner Parsing

The parser introduced in this chapter implements a chart-based head-corner algorithm. The use

of head-driven prediction to enchance efficiency was first suggested by [Kay89] for CF parsing

(see [Sik97] for a more detailed survey). [LS91] provided the first head-driven algorithm for

LTAGs which was a chart-based algorithm but it lacked any top-down prediction. [vN94] describes

a Prolog implementation of a head-corner parser for LTAGs which includes top-down prediction.

Significantly, [vN94] uses a different closure relation from [LS91]. The head-corner traversal for

auxiliary trees starts from the footnode rather than from the anchor.

The parsing algorithm we use is a chart-based variant of the [vN94] algorithm. We use the

same head-corner closure relation as proposed there. Our parser differs from the algorithm in

[vN94] in some important respects: our implementation is chart-based and explicitly tracks goal
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and item states and does not perform any implicit backtracking or selective memoization, we do not

need any additional variables to keep track of which words are already ‘reserved’ by an auxiliary

tree (which [vN94] needs to guarantee termination), and we have an explicit completion step. In

addition, we introduce some optimizations as part of the parser definition. In this chapter we have

chosen to present the algorithm in pseudo-code that is close to the actual implementation. The

reason for this is that although a more compact mathematical description could be given, such a

description does not emphasize several aspects of dynamic programming that are crucially needed

to make parsing using this algorithm feasible, even if you ignore issues of efficient implementation.

6.1.2 Head-Corner Traversal

We take the concept of head-corner traversal for TAGs as defined in [vN94]. We illustrate the

head-corner closure relation using an example in this section and define it more formally later in

this chapter.

Each node in an elementary tree in a TAG is associated with a distinguished node in the same

tree called the headcorner. Parsing is initiated by making top-down predictions on certain nodes

and proceeds by moving bottom-up from the headcorner associated with the goal node. This is

done recursively producing new goal nodes for siblings and for adjunction prediction. For example,

in Figure 6.1, parsing begins with the prediction that node S/na of tree T1 will span the entire input

sentence. The headcorner for node S/na is the terminal symbol took. The parser then proceeds from

that node in the elementary tree T1 moving up the tree to reach the goal node which is the root node

of that tree. Each sibling node is generated as a new goal node before proceeding upwards with

the parent of the node. In the figure, the dotted lines are traversed first, before traversing up to the

parent node. In the example figure, after visiting the node V/na the node N/top is introduced as a

new goal node which leads to the headcorner node walk. Any node where adjunction can occur is

represented as two nodes for the parser: Node/top and Node/bottom. The adjunction is recognized

between the bottom and top portions of the node. In cases where adjunction is prohibited the node

is written as Node/na. In the example figure, reaching node N/bot after moving up from walk causes

a new goal node, the root node of tree T2 N/na to be instantiated. The headcorner of an auxiliary

tree is always the foot node. The auxiliary tree is then recursively ascended using the head-corner

traversal until the root node N/na is reached. The root node of tree T2 now spans the input string
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NP/bot

S/na

V/na N/top

N/na

N*Det/na

Ella

NP/top

VP/top

VP/bot

took N/bot

walk

a

NP

T0 T1 T2

Figure 6.1: An example of head-corner traversal for parsing the sentence Ella took a walk.

from 2, 4, 3, 4 where the foot node spans 3, 4. The goal is now completed and hence the parser

executes a completion step and continues traversal in tree T1 at node N/top. Once siblings have

been recognized the traversal moves up to the parent of the headcorner node. The other kind of

prediction is when a substitution node is reached during the traversal up to the root node. For

example, the node NP in tree T1 is a substitution node which introduces a goal node which is the

root node NP/top of tree T0. Traversal of tree T0 occurs as usual. A completion step matches the

root node of T0 with the substitution node NP and the parser subsequently reaches the first goal

node that was predicted: the root node S/na of tree T1. The parser has then successfully parsed the

input string Ella took a walk.

6.1.3 Data Structures

The parsing algorithm uses the following data structures. In the most general case, while parsing

TAGs, the parser has to compute spans over the input string of the form i, j, f l, f r, where i, j is

the span of the edge being processed and f l, f r are the spans of the foot node dominated by that

edge. Each span of i, j over the input string of length len is stored in a two-dimensional array of

size len× len called the Chart. Each entry in this array is a heap of states which sorts each subtree

115



span according to its probability. Each state is a 9-tuple defined as follows:

State = <n, goal, pos, fl, fr, type, hw, postag, {b, c, Pr}>

n: node

goal: goal node

pos: {top, bot}

fl, fr: foot span

type: {init, goal, item}

hw: head word of node n’s elementary tree

postag: part of speech tag of headword

b: backpointer to State

c: backpointer to State

Pr: probability of State when backpointers are b,c

{b,c,Pr}: backpointer list (blist); corresponds to the n-best State list

As new edges are added, they are stored in an agenda list called Agenda a list of items termed

Procwhich records which states were added to and the Chart entry where they were entered. Each

entry in the chart is a heap of states. The formal definitions are as follows:

Proc = <i, j, State>

Heap = { s | s is State }

Agenda = { p | p is Proc }

Chart = A{len, len} with a_{i,j} = Heap

6.1.4 Tree Traversal and Chart Maintenance Functions

The following description assumes that all the elementary trees in the grammar are binary branch-

ing. While explicit conversion to binary branching structures is usually avoided in CF parsing, in

TAG parsing due to the use of adjunction there are far fewer cases of ternary or greater branching

(we confirmed this on the XTAG English grammar and a Treebank grammar extracted from the

Penn Treebank).

add ({i, j}, State) adds State to {i, j} only if it does not exist. Also State.type = init is taken to

be equal to goal for the equality test. If the State exists but the backpointers are not in the

blist append the new backpointers to the blist. Use cmbprob(State,Pr) to update the state
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probability and sort blist to keep the most probable backpointers at head of list. Previous

prob values can be stored with the blist to compute n-best values.

(State) exists in ({i, j}) operator that takes a State and checks chart at {i, j} and returns Heap or

State of matches

anchors for tree(tree, index) takes a tree and an word index and returns anchor nodes of the tree

if tree is lexicalized by word at index

init rootnodes(label) takes a label and returns all initial trees rooted by nodes with that label

aux rootnodes(label) takes a label and returns all auxiliary trees rooted by nodes with that label

is adjoinable(node) returns true if an adjunction is possible at this node: rules out nodes like

subst nodes, terminal nodes, footnodes, depending on the defn of adjunction used

is subst(node) returns true if node is a subst node

headtype(State) if State.pos eq bot return ADJOIN else return context around node possible con-

texts = { UNARY HEAD, LEFT HEAD, RIGHT HEAD }

nodetype(node) returns type of node. possible types = { ANCHOR, TERMINAL, SUBST, EPS,

FOOT }

headcorner(node) returns distinguished node called headcorner. The headcorner for the rootnode

of auxiliary trees is always the footnode; for initial trees it is the (leftmost) anchor. For nodes

other than the rootnode the headcorner is picked recursively from the ranked list in the defn

of nodetype(node).

comptype(node) completer type, one of the following:

COMPL INIT : root of initial tree

COMPL AUX : root of auxiliary tree

COMPL INTERNAL : otherwise; goal was internal to a tree

prob(node, tree, node.lex, tree.lex) returns probability of adj/subst used for beam search

cmbprob(State, pr) if (Pr > State→ Pr) then State→ Pr = Pr
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Algorithm HParse:

__BEGIN__

N <- init_rootnodes(TOP)

start <- 0

len <- length(sent)+1

foreach n in N

Agenda <- add({start,len}, <n, n, top, _, _, init, _, _>)

foreach p in Agenda

{

N1list <- init_head(p)

N2list <- move_up(p)

N3list <- completer(p)

Agenda <- { N1list , N2list , N3list }

}

get_derivations(TOP)

__END__

Figure 6.2: Pseudo-code for the parsing algorithm

6.1.5 The Parsing Algorithm

The pseudo-code for the parsing algorithm is given in Figure 6.1.5. Parsing begins by predicting

the root nodes which have the distinguished TOP label. The parser uses the type init to initialize the

top-down prediction of the headcorner. The init edge after being added to the agenda is converted

to a goal edge. Edges that are of the type item are edges that span some portion of the input string.

The closure functions init head, move up and completer which recursively enter new edges

into the Agenda. Parsing continues until there are no further edges to be processed in the Agenda.

The closure function are detailed in subsequent sections.

Initialize Headcorner

This function initializes the headcorner of each init edge that was inserted into the chart due to

some top-down prediction by the parser. When the headcorner is an anchor or terminal symbol

(ANCHOR/TERMINAL) or an empty element (denoted EPS), the relevant portion of the input string
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is scanned and a new edge which spans that portion is inserted into the Agenda. In the case

of a substitution node (SUBST) each root node that could be substituted in that position with the

appropriate span of the input is predicted as a new goal edge. Note that while we going bottom-up

we can rule out any tree which cannot span the string to the left/right of the headcorner node. In the

case of a foot node (FOOT) nothing special needs to be done apart from recording the span of the

foot node since the function move up will ensure the traversal to the root node of the auxiliary tree.

The pseudo-code for the function corresponding to initialize headcorner is given in Figure 6.1.5.

Move Up

The function move up proceeds upwards from each item edge towards the goal edges. In this

traversal, new goal edges can be proposed. If the edge is at the bottom of a node Node/bot, then

adjunction is predicted at that node. The adjunction might not be successful and so the top of the

node Node/top is also predicted (corresponding to a null adjunction).

The other cases cover the traversal of sibling nodes where new goal edges are inserted into the

Agenda and the case of unary nodes where the parent is introduced as a new item edge.

The pseudo-code for the function corresponding to move up is given in Figure 6.1.5.

Completer

This is the most complex function because it is responsible for finally recognizing that an adjunc-

tion or substitution has occurred. The root node of an initial tree (COMPL INIT) or an auxiliary tree

(COMPL AUX) is matched up with the predicted goal edge and in the case of adjunction whether the

span of the foot node matches the span of the node where adjunction was predicted. It is this step

that is responsible for the worst case complexity of n6 for TAG parsing as six independent indices

into the input string have to be checked.

The completer also takes successfully recognized sibling nodes of headcorner nodes and then

inserts new item edges for the parent of the headcorner.

The pseudo-code for the function corresponding to completer is given in Figure 6.1.5.
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init_head (p)

{

s <- p.State

if (type(s.n) neq init) { return }

switch(nodetype(hc <- headcorner(s.n))) {

case ANCHOR/TERMINAL:

for (k = p.i; k < p.j; k++)

N <- anchors_for_tree(tree(hc), k)

foreach n in N

Agenda <- add({k,k+1}, <n, s.goal, bot, _, _, item, _, _>)

case EPS:

if (p.i eq p.j)

Agenda <- add({p.i,p.j}, <s.n, s.goal, top, _, _, item, _, _>)

case SUBST:

N <- init_rootnodes(label(hc))

foreach n in N

if (b <- <n, n, top, _, _, item, _, _> exists in {p.i, p.j})

Pr <- prob(hc, tree(b.n), s.lex, b.lex)

Agenda <- add({p.i, p.j}, <hc, s.goal, top, _, _, item, b, 0>)

else

Agenda <- add({p.i, p.j}, <hc, s.goal, top, _, _, goal, _, _>)

Agenda <- add({p.i, p.j}, <n, n, top, _, _, init, _, _>)

case FOOT:

Agenda <- add({s.fl, s.fr}, <hc, s.goal, bot, s.fl, s.fr, item, _, _>)

}

s.type <- goal

return(Agenda)

}

Figure 6.3: Pseudo-code for the init head function
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move_up (p)

{

s <- p.State

g <- s.goal

if (s.type neq item) OR ((s.pos eq top) AND (s.n eq g)) { return }

pt <- parent(s.n)

switch(headtype(s)) {

case ADJOIN:

Agenda <- add({p.i,p.j}, <s.n, g, top, s.fl, s.fr, item, s, _>)

if is_adjoinable(s.n)

N <- aux_rootnodes(label(s.n))

for (i = start; i <= p.i; i++)

for (j = p.j; j < len; j++)

if (i eq p.i) AND (j eq p.j) { continue }

foreach n in N

if (b <- <n, n, top, p.i, p.j, item, _, _> exists in {i,j})

Pr <- prob(s.n, tree(b.n), s.lex, b.lex)

Agenda <- add({i,j}, <s.n, g, top, p.i, p.j, item, b, s>)

else

Agenda <- add({i,j}, <n, n, top, p.i, p.j, init, _, _>)

case UNARY_HEAD:

Agenda <- add({p.i, p.j}, <pt, g, bot, s.fl, s.fr, item, s, _>)

case LEFT_HEAD:

r <- rightnode(s.n)

for (k = p.j; k < len; k++)

if (b <- <r, r, top, _, _, item, _> exists in {p.j, k})

Agenda <- add({p.i, k}, <pt, g, bot, s.fl, s.fr, item, s, b>)

else

Agenda <- add({p.j, k}, <r, r, top, _, _, init, _, _>)

case RIGHT_HEAD:

l <- leftnode(s.n)

for (k = start; k <= p.i; k++)

if (b <- <l, l, top, _, _, item, _> exists in {k, p.i})

Agenda <- add({k, p.j}, <pt, g, bot, s.fl, s.fr, item, s, b>)

else

Agenda <- add({k, p.i}, <l, l, top, _, _, init, _, _>)

}

return(Agenda)

}

Figure 6.4: Pseudo-code for the move up function
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completer (p)

{

s <- p.State

if (s.type neq item) OR (s.pos neq top) OR (s.n neq s.goal) { return }

switch(comptype(s.n)) {

case COMPL_INIT:

Slist <- { <n, ?goal, top, _, _, goal, _> |

label(s.n) eq label(n),

is_subst(n) } exists in {p.i, p.j}

for b in Slist

Pr <- prob(s.n, tree(b.n), s.lex, b.lex)

Agenda <- add({p.i, p.j}, <n, b.goal, top, _, _, item, s, 0>)

case COMPL_AUX:

Slist <- { <n, ?n.goal, bot, ?fl, ?fr, item, _> |

<footnode(tree(s.n)), _, bot, fl, fr, item, _> in {fl,fr},

label(s.n) eq label(n),

is_adjoinable(n) } exists in {s.fl, s.fr}

for b in Slist

Pr <- prob(s.n, tree(b.n), s.lex, b.lex)

Agenda <- add({p.i, p.j}, <n, b.goal, top, b.fl, b.fr, item, b, s>)

case COMPL_INTERNAL:

pt <- parent(s.n)

switch(headtype(s.n)) {

case LEFT_HEAD:

r <- rightnode(s.n)

for (k = p.j; k < len; k++)

Slist <- { <r, ?goal, top, ?fl, ?fr, item, _> } exists in {p.j, k}

for b in Slist

Agenda <- add({p.i, k}, <pt, b.goal, bot, b.fl, b.fr, item, b, s>)

case RIGHT_HEAD:

l <- leftnode(s.n)

for (k = start; k <= p.i; k++)

Slist <- { <l, ?goal, top, ?fl, ?fr, item, _> } exists in {k, p.i}

for b in Slist

Agenda <- add({k, p.j}, <pt, b.goal, bot, b.fl, b.fr, item, b, s>)

}

}

return(Agenda)

}

Figure 6.5: Pseudo-code for the completer function
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6.2 Factors Affecting Parsing Efficiency in TAG Parsing

In this section we report on some practical experiments where we parse 2250 sentences from the

Wall Street Journal using this parser. In these experiments the parser is run without any statistical

pruning; it produces all valid parses for each sentence in the form of a shared derivation forest. The

parser uses a large Treebank Grammar with 6789 tree templates with about 120, 000 lexicalized

trees. The results suggest that the observed complexity of parsing for LTAG is dominated by factors

other than sentence length.

The particular experiments that we report on in this chapter were chosen to discover certain

facts about LTAG parsing in a practical setting. Specifically, we wanted to discover the importance

of the worst-case results for LTAG parsing in practice. Let us take the parsing algorithm introduced

in this chapter: the parsing time complexity of this algorithm for various types of grammars are as

follows (for input of length n):

O(n6) - TAGs for inherently ambiguous languages

O(n4) - unambiguous TAGs

O(n) - bounded state TAGs e.g. the usual grammar G where L(G) = {an bn e cn dn | n ≥ 0}

(see [JLT75])

The grammar factors are as follows: the parser takes O(|A||I ∪ A|Nn6) worst case time and O(|A ∪

I|Nn4) worst case space, where n is the length of the input, A is the set of auxiliary trees, I is the

set of initial trees and N is maximum number of nodes in an elementary tree.

Given these worst case estimates we wish to explore what the observed times might be for a

TAG parser. It is not our goal here to compare different TAG parsing algorithms, rather it is to

discover what kinds of factors can contribute to parsing time complexity. Of course, a natural-

language grammar that is large and complex enough to be used for parsing real-world text is

typically neither unambiguous nor bounded in state size. It is important to note that in this chapter

we are not concerned with parsing accuracy, rather we want to explore parsing efficiency. This is

why we do not pursue any pruning while parsing using statistical methods. Instead we produce a

shared derivation forest for each sentence which stores, in compact form, all derivations for each

sentence. This helps us evaluate our TAG parser for time and space efficiency. The experiments
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reported here are also useful for statistical parsing using TAG since discovering the source of

grammar complexity in parsing can help in finding the right figures-of-merit for effective pruning

in a statistical parser.

6.2.1 LTAG Treebank Grammar

The grammar we used for our experiments was a LTAG Treebank Grammar which was automati-

cally extracted from Sections 02–21 of the Wall Street Journal Penn Treebank II corpus [MSM93].

The extraction tool [Xia99] converted the derived trees of the Treebank into derivation trees in

LTAG which represent the attachments of lexicalized elementary trees. There are 6789 tree tem-

plates in the grammar with 47, 752 tree nodes. Each word in the corpus selects some set of tree

templates. The total number of lexicalized trees is 123, 039. The total number of word types in the

lexicon is 44, 215. The average number of trees per word type is 2.78. However, this average is

misleading since it does not consider the frequency with which words that select a large number of

trees occur in the corpus. In Figure 6.6 we see that many frequently seen words can select a large

number of trees. Finally, some lexicalized trees from the grammar are shown in Figure 6.7.
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Figure 6.6: Number of trees selected plotted against words with a particular frequency. (x-axis:
words of frequency x; y-axis: number of trees selected, error bars indicate least and most ambigu-
ous word of a particular frequency x)
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NNPn

NPu

NNPm NPn

NPu

sNP NNP@=4 1[Haag] m NNP@ NP*=2 1[Ms.]

NNPn

NPu NParg

VBZn NParg

VPn

Su

sNP NNP@=4 1[Elianti] sS NPs VBZ@ NPs=20 1[plays]

Figure 6.7: Example lexicalized elementary trees from the Treebank Grammar. They are
shown in the usual notation: � = anchor, ↓= substitution node, ∗ = footnode,na =

null-adjunction constraint. These trees can be combined using substitution and adjunction to parse
the sentence Ms. Haag plays Elianti.

6.2.2 Syntactic Lexical Ambiguity

In a fully lexicalized grammar such as LTAG the combinations of trees (by substitution and adjunc-

tion) can be thought of as attachments. It is this perspective that allows us to define the parsing

problem in two steps [JS91]:

1. Assigning a set of lexicalized structures to each word in the input sentence.

2. Finding the correct attachments between these structures to get all parses for the sentence.

In this section we will try to find which of these factors determines parsing complexity when

finding all parses in an LTAG parser.

To test the performance of LTAG parsing on a realistic corpus using a large grammar (described

above) we parsed 2250 sentences from the Wall Street Journal using the lexicalized grammar de-

scribed in Section 6.2.1. All of these sentences were of length 21 words or less. These sentences

were taken from the same sections (02-21) of the Treebank from which the original grammar was

extracted. This was done to avoid the complication of using default rules for unknown words.
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In all of the experiments reported here, the parser produces all parses for each sentence. It

produces a shared derivation forest for each sentence which stores, in compact form, all derivations

for each sentence.

We found that the observed complexity of parsing for LTAG is dominated by factors other than

sentence length.1 Figure 6.8 shows the time taken in seconds by the parser plotted against sentence

length. We see a great deal of variation in timing for the same sentence length, especially for longer

sentences.

We wanted to find the relevant variable other than sentence length which would be the right

predictor of parsing time complexity. There can be a large variation in syntactic lexical ambiguity

which might be a relevant factor in parsing time complexity. To draw this out, in Figure 6.9 we

plotted the number of trees selected by a sentence against the time taken to parse that sentence. By

examining this graph we can visually infer that the number of trees selected is a better predictor

of increase in parsing complexity than sentence length. We can also compare numerically the

two hypotheses by computing the coefficient of determination (R2) for the two graphs. We get a

R2 value of 0.65 for Figure 6.8 and a value of 0.82 for Figure 6.9. Thus, we infer that it is the

syntactic lexical ambiguity of the words in the sentence which is the major contributor to parsing

time complexity.
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Figure 6.8: Parse times plotted against sentence length. Coefficient of determination: R2 = 0.65.
(x-axis: Sentence length; y-axis: log(time in seconds))

1Note that the precise number of edges proposed by the parser and other common indicators of complexity can be
obtained only while or after parsing. We are interested in predicting parsing complexity.
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Figure 6.9: The impact of syntactic lexical ambiguity on parsing times. Log of the time taken to
parse a sentence plotted against the total number of trees selected by the sentence. Coefficient of
determination: R2 = 0.82. (x-axis: Total number of trees selected by a sentence; y-axis: log(time)
in seconds).

Since we can easily determine the number of trees selected by a sentence before we start

parsing, we can use this number to predict the number of edges that will be proposed by a parser

when parsing this sentence, allowing us to better handle difficult cases before parsing.

We test the above hypothesis further by parsing the same set of sentences as above but this

time using an oracle which tells us the correct elementary lexicalized structure for each word in the

sentence. This eliminates lexical syntactic ambiguity but does not eliminate attachment ambiguity

for the parser. The graph comparing the parsing times is shown in Figure 6.10. As the comparison

shows, the elimination of lexical ambiguity leads to a drastic increase in parsing efficiency. The

total time taken to parse all 2250 sentences went from 548K seconds to 31.2 seconds. This result

might be surprising, in that a simple elimination of trees should not have any effect on the amount

of attachment ambiguity. However, by eliminating certain elementary trees from participating in

a parse, attachment ambiguities are also sometimes eliminated. Take for example the tree for

a preposition like of. This preposition usually takes two different elementary trees: one which

modifies (adjoins into) an NP and another that modifies a VP. An oracle which picks a unique tree

for the preposition, in effect, eliminates one of these trees from consideration, thereby limiting the

attachment ambiguity in the parser.
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Figure 6.10 shows us that a model which disambiguates syntactic lexical ambiguity can poten-

tially be extremely useful in terms of parsing efficiency. Thus disambiguation of tree assignment

or SuperTagging [Sri97d] of a sentence before parsing it might be a way of improving parsing effi-

ciency. This gives us a way to reduce the parsing complexity for precisely the sentences which were

problematic: the ones which selected too many trees. To test whether parsing times are reduced

after SuperTagging we conducted an experiment in which the output of an n-best SuperTagger

was taken as input to the parser. In our experiment we set n to be 60.2 The time taken to parse

the same set of sentences was again dramatically reduced (the total time taken was 21K seconds).

However, the disadvantage of this method was that the coverage of the parser was reduced: 926

sentences (out of the 2250) did not get any parse. This was because some crucial tree was missing

in the n-best output. The results are graphed in Figure 6.11. The total number of derivations for all

sentences went down to 1.01e+10 (the original total number was 1.4e+18) indicating (not surpris-

ingly) that some attachment ambiguities persist although the number of trees are reduced. We are

experimenting with techniques where the output of the n-best SuperTagger is combined with other

pieces of evidence to improve the coverage of the parser while retaining the speedup.
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Figure 6.10: Parse times when the parser gets the correct tree for each word in the sentence (elimi-
nating any syntactic lexical ambiguity). The parsing times for all the 2250 sentences for all lengths
never goes above 1 second. (x-axis: Sentence length; y-axis: log(time) in seconds)

2[CBVS99] shows that to get greater than 97% accuracy using SuperTagging the value of n must be quite high
(n > 40). They use a different set of SuperTags and so we used their result simply to get an approximate estimate of the
value of n.
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Figure 6.11: Time taken by the parser after n-best SuperTagging (n = 60). (x-axis: Sentence
length; y-axis: log(time) in seconds)

6.3 Statistical Parsing of Korean

In this section we describe our experience of taking our English statistical parser and training it to

work on the Korean language. We built an LTAG-based parsing system for Korean which combines

corpus-based morphological analysis and tagging with a statistical parser.

The LTAG grammar we use in the parser is extracted using Lextract from the Penn Korean

Treebank. The Treebank has 54,366 words, 5078 sentences. The annotation consists of a phrase

structure analysis for each sentence, with head/phrase level tags as well as function tags. Each

word is morphologically analyzed, where the lemma and the inflections are identified. The lemma

is tagged with a part-of-speech tag (e.g., NNC, VV), and the inflections are tagged with inflectional

tags (e.g., PCA, EPF, EFN).

Treebank-trained Morphological Tagger The use of lexical information plays a prominent role

in statistical parsing models for English. In this paper, we extend a statistical parser that relies

on bigrams of lexical dependencies to a morphologically complex language like Korean. While

these types of parsers have to deal with sparse data problems, this problem is exacerbated in the

case of Korean due to the fact that several base-forms of words can appear with a wide array of

morphological affixes.

This problem is addressed by incorporating a statistical morphological analyzer and tagger
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written by Chung-hye Han, which significantly improves performance. The trigram-based mor-

phological analyzer was trained on 91% of the treebank and tested on 9% of the treebank. This

approach yielded 95.39% recall and 95.78% precision on the test data. The input to the tagger

and the final output are shown below. For readability, the example has been romanized. The mor-

phological tagger assigns part-of-speech tags but also splits the inflected form of the word into its

constituent stem and affixes.

Input:

{Ce-Ka} {Kwan-Cheuk} {Sa-Hang-eul} {Po-Ko-Ha-yeoss-Seup-Ni-Ta} .

Output:

{Ce}/NPN+{Ka}/PCA {Kwan-Cheuk}/NNC {Sa-Hang}/NNC+{eul}/PCA

{Po-Ko-Ha}/VV+{eoss}/EPF+{Seup-Ni-Ta}/EFN ./SFN

Apart from the use of a specialized morphological analyzer for Korean, our methods are lan-

guage independent and have been tested in previous work on the WSJ Penn English Treebank.

We use Lextract to convert the Treebank (the same method is used for both the English and the

Korean treebanks) into a parser derivation tree for each sentence. The statistical parsing model is

then trained on these derivation trees which provide a natural domain to describe the dependencies

between pairs of words in a sentence.

The performance achieved is quite comparable to state-of-the-art English statistical parsers

trained on similar amounts of data. Our parser is trained on 91% of the TreeBank and tested on

9%. An off-the-shelf parser was tested on the same test set. For the sake of fair comparison, the

off-the-shelf parser was converted to look as close as possible to our output. Even so, the number

of node labels did not match, due to the difference in tokenization schemes for certain lexical

elements such as copulas and auxiliary verbs. We thus report precision/recall for the off-the-shelf

parser; we report word-to-word dependency accuracy compared with the gold standard for our

parser.
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On training data On test data
Penn 97.58 75.7
Off-the-Shelf 27.15/26.96 P/R 52.29/51.95 P/R

Table 6.1: Korean parser evaluation results

6.4 Conclusion

In this chapter, we described an implementation of a chart-based head-corner parser for LTAGs.

We ran some empirical tests by running the parser on 2250 sentences from the Wall Street Journal.

We used a large Treebank Grammar to parse these sentences. We showed that the observed time

complexity of the parser on these sentences does not increase predictably with longer sentence

lengths. We presented evidence that indicates that the number of trees selected by the words

in the sentence (a measure of the syntactic lexical ambiguity of a sentence) is a better predictor

of complexity in LTAG parsing. We also showed how parsing time is dramatically affected by

controlling the ambiguity of tree assignment to the words in the sentence. We also showed that the

statistical parser we wrote for English can be re-trained to parse Korean. The main difference was

the inclusion of a statistical morphological analyzer and tagger. The Korean parser obtained an

accuracy of 75.7% when tested on the test set (of 457 sentences). This performance is better than

an existing off-the-shelf Korean parser run on the same data.
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Chapter 7

Conclusion

In this dissertation we described methods that use some existing linguistic resource that has been

annotated by humans and add some further significant linguistic annotation by applying statistical

machine learning algorithms. This chapter summarizes the results obtained in this dissertation and

indicates future directions of research in the combination of labeled and unlabeled data in statistical

parsing.

7.1 Summary of the Results

In Chapter 3 we proposed a new approach for training a statistical parser that combines labeled

with unlabeled data. It uses a Co-Training method where a pair of models attempt to increase their

agreement on labeling the data. The algorithm takes as input a small corpus of 9695 sentences

(234467 word tokens) of bracketed data, a large pool of unlabeled text and a tag dictionary of lexi-

calized structures for each word in this training set (based on the LTAG formalism). The algorithm

presented iteratively labels the unlabeled data set with parse trees. We then trained a statistical

parser on the combined set of labeled and unlabeled data. We obtained 80.02% and 79.64% la-

beled bracketing precision and recall respectively. The baseline model which was only trained on

the 9695 sentences of labeled data performed at 72.23% and 69.12% precision and recall. These

results show that training a statistical parser using our Co-training method to combine labeled and

unlabeled data strongly outperforms training only on the labeled data. We also reported on an

experiment which performed Co-training on two statistical parsers which had different probability
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models. This experiment used the entire 1M word Penn Treebank as the labeled data and a 23M

word WSJ corpus as the unlabeled set. The results were not as compelling as the first experiment

and the chapter discusses the various reasons for this.

In Chapter 4 we presented techniques that can be used to learn subcategorization informa-

tion for verbs. We exploit a dependency treebank to learn this information, and moreover we

discover the final set of valid subcategorization frames from the training data. We achieve upto

88% precision on unseen data. We have also tried our methods on data which was automatically

morphologically tagged which allowed us to use more data (82K sentences instead of 19K). The

performance went up to 89%.

In Chapter 5, we automatically identified the correct argument structure of a set of verbs. We

exploited the distributions of some selected features from the local context of the verb which was

extracted from a 23M word WSJ corpus based on part-of-speech tags and phrasal chunks alone.

This annotation was minimal as compared to previous work on this task which used full parse trees.

We used C5.0 to construct a decision tree classifier using the values of those features. We were

able to construct a classifier that has an error rate of 33.4%. Our result compares very favorably

with previous work despite using considerably less data and requiring only minimal annotation of

the data.

7.2 Future Directions

In the application of co-training to parsing and further development of similar algorithms which

exploit unlabeled data to improve performance in future work it would be useful to look at the

following points.

• The relationship between co-training and EM bears further investigation. Tying the param-

eters of EM-based algorithms to reflect the available labeled data even in the face of future

iterations of the EM algorithm might be one way to combine the insights of more discrim-

inative methods such as co-training. Other methods include using discriminative objective

functions as discussed in Chapter 3.

• In our experiments, unlike [BM98] we do not balance the label priors when picking new

labeled examples for addition to the training data. One way to incorporate this into our
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algorithm would be to incorporate some form of sample selection (or active learning) into

the selection of examples that are considered as labeled with high confidence [Hwa00].

• In the context of the Johns Hopkins Summer Workshop in 2002, we plan to explore the

co-training of statistical parsers each of which are trained on the full Penn Treebank with

the co-training algorithm exploiting a large (23M-60M word) WSJ corpus. We plan to use

this combination of labeled and unlabeled data along with ideas from parser combination to

produce an automatically parsed but high quality Treebank (similar in spirit to BLLIP).

There are various parts of contemporary statistical parsers that are heuristically determined

without much justification other than some linguistic intuition (for picking head rules, for ex-

ample) and considerations of computational limitations (pruning tricks such as those sensitive to

punctuations, for example). Incorporating the learning of head-rules in a parser along with the

learning of argument-adjunct decisions (using techniques given in Chapter 4) and discovering un-

derlying argument-structure of predicates (as described in Chapter 5 based on improvements in the

accuracy of the statistical parser is promising direction to move in.
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Appendix A

Conditions on Consistency of

Probabilistic TAGs

Much of the power of probabilistic methods in modelling language comes from their ability to

compare several derivations for the same string in the language. This cross-derivational power

arises naturally from comparison of various derivational paths, each of which is a product of the

probabilities associated with each step in each derivation. A common approach used to assign

structure to language is to use a probabilistic grammar where each elementary rule or production is

associated with a probability. Using such a grammar, a probability for each string in the language

is computed. Assuming that the probability of each derivation of a sentence is well-defined, the

probability of each string in the language is simply the sum of the probabilities of all derivations of

the string. In general, for a probabilistic grammar G the language of G is denoted by L(G). Then if

a string v is in the language L(G) the probabilistic grammar assigns v some non-zero probability.

There are several cross-derivational properties that can be studied for a given probabilistic

grammar formalism. An important starting point for such studies is the notion of consistency. The

probability model defined by a probabilistic grammar is said to be consistent if the probabilities

assigned to all the strings in the language sum to 1. That is, if Pr defined by a probabilistic grammar,

assigns a probability to each string v ∈ Σ∗, where Pr(v) = 0 if v < L(G), then

∑

v∈L(G)

Pr(v) = 1 (A.1)
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From the literature on probabilistic context-free grammars (CFGs) we know precisely the con-

ditions which ensure that (A.1) is true for a given CFG. This chapter derives the conditions under

which a given probabilistic TAG can be shown to be consistent.

TAGs are important in the modelling of natural language since they can be easily lexicalized;

moreover the trees associated with words can be used to encode argument and adjunct relations in

various syntactic environments. [Jos88] and [JS92] are good introductions to the formalism and its

linguistic relevance. TAGs have been shown to have relations with both phrase-structure grammars

and dependency grammars [RJ95] and can handle (non-projective) long distance dependencies.

Consistency of probabilistic TAGs has practical significance for the following reasons:

• The conditions derived here can be used to ensure that probability models that use TAGs can

be checked for deficiency.

• Existing EM based estimation algorithms for probabilistic TAGs assume that the property

of consistency holds [Sch92]. EM based algorithms begin with an initial (usually random)

value for each parameter. If the initial assignment causes the grammar to be inconsistent,

then iterative re-estimation might converge to an inconsistent grammar1.

• Techniques used in this chapter can be used to determine consistency for other probability

models based on TAGs [CW97].

A.1 Notation

In this section we establish some notational conventions and definitions that we use in this chapter.

Those familiar with the TAG formalism only need to give a cursory glance through this section.

A probabilistic TAG is represented by (N,Σ,I,A, S , φ) where N,Σ are, respectively, non-

terminal and terminal symbols. I ∪ A is a set of trees termed as elementary trees. We take V

to be the set of all nodes in all the elementary trees. For each leaf A ∈ V , label(A) is an element

from Σ ∪ {ε}, and for each other node A, label(A) is an element from N. S is an element from

N which is a distinguished start symbol. The root node A of every initial tree which can start a

derivation must have label(A) = S .
1Note that for CFGs it has been shown in [CPG83, SB97] that inside-outside reestimation can be used to avoid

inconsistency. We will show later in the chapter that the method used to show consistency in this chapter precludes a
straightforward extension of that result for TAGs.
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I are termed initial trees and A are auxiliary trees which can rewrite a tree node A ∈ V . This

rewrite step is called adjunction. φ is a function which assigns each adjunction with a probability

and denotes the set of parameters in the model. In practice, TAGs also allow a leaf nodes A such

that label(A) is an element from N. Such nodes A are rewritten with initial trees from I using the

rewrite step called substitution. Except in one special case, we will not need to treat substitution

as being distinct from adjunction.

For t ∈ I∪A,A(t) are the nodes in tree t that can be modified by adjunction. For label(A) ∈ N

we denote Adj(label(A)) as the set of trees that can adjoin at node A ∈ V . The adjunction of t into

N ∈ V is denoted by N 7→ t. No adjunction at N ∈ V is denoted by N 7→ nil. We assume the

following properties hold for every probabilistic TAG G that we consider:

1. G is lexicalized. There is at least one leaf node a that lexicalizes each elementary tree, i.e.

a ∈ Σ.

2. G is proper. For each N ∈ V ,

φ(N 7→ nil) +
∑

t

φ(N 7→ t) = 1

3. Adjunction is prohibited on the foot node of every auxiliary tree. This condition is imposed

to avoid unnecessary ambiguity and can be easily relaxed.

4. There is a distinguished non-lexicalized initial tree τ such that each initial tree rooted by a

node A with label(A) = S substitutes into τ to complete the derivation. This ensures that

probabilities assigned to the input string at the start of the derivation are well-formed.

We use symbols S , A, B, . . . to range over V , symbols a, b, c, . . . to range over Σ. We use

t1, t2, . . . to range over I ∪ A and ε to denote the empty string. We use Xi to range over all i nodes

in the grammar.

A.2 Applying probability measures to Tree Adjoining Languages

To gain some intuition about probability assignments to languages, let us take for example, a

language well known to be a tree adjoining language:

L(G) = {anbncndn|n ≥ 1}
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It seems that we should be able to use a function ψ to assign any probability distribution to the

strings in L(G) and then expect that we can assign appropriate probabilites to the adjunctions in

G such that the language generated by G has the same distribution as that given by ψ. However a

function ψ that grows smaller by repeated multiplication as the inverse of an exponential function

cannot be matched by any TAG because of the constant growth property of TAGs (see [VS87], p.

104). An example of such a function ψ is a simple Poisson distribution (A.2), which in fact was

also used as the counterexample in [BT73] for CFGs, since CFGs also have the constant growth

property.

ψ(anbncndn) =
1

e · n!
(A.2)

This shows that probabilistic TAGs, like CFGs, are constrained in the probabilistic languages that

they can recognize or learn. As shown above, a probabilistic language can fail to have a generating

probabilistic TAG.

The reverse is also true: some probabilistic TAGs, like some CFGs, fail to have a corresponding

probabilistic language, i.e. they are not consistent. There are two reasons why a probabilistic TAG

could be inconsistent: “dirty” grammars, and destructive or incorrect probability assignments.

“Dirty” grammars. Usually, when applied to language, TAGs are lexicalized and so proba-

bilities assigned to trees are used only when the words anchoring the trees are used in a derivation.

However, if the TAG allows non-lexicalized trees, or more precisely, auxiliary trees with no yield,

then looping adjunctions which never generate a string are possible. However, this can be detected

and corrected by a simple search over the grammar. Even in lexicalized grammars, there could

be some auxiliary trees that are assigned some probability mass but which can never adjoin into

another tree. Such auxiliary trees are termed unreachable and techniques similar to the ones used

in detecting unreachable productions in CFGs can be used here to detect and eliminate such trees.

Destructive probability assignments. This problem is a more serious one, and is the main
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subject of this chapter. Consider the probabilistic TAG shown in (A.3)2.

PSfrag replacements

t1 t2

ε

S 1 S 2

S 3

S ∗φ(S 1 7→ t2) = 1.0
φ(S 2 7→ t2) = 0.99
φ(S 2 7→ nil) = 0.01
φ(S 3 7→ t2) = 0.98
φ(S 3 7→ nil) = 0.02

a

(A.3)

Consider a derivation in this TAG as a generative process. It proceeds as follows: node S1 in t1 is

rewritten as t2 with probability 1.0. Node S2 in t2 is 99 times more likely than not to be rewritten as

t2 itself, and similarly node S3 is 49 times more likely than not to be rewritten as t2. This however,

creates two more instances of S2 and S 3 with same probabilities. This continues, creating multiple

instances of t2 at each level of the derivation process with each instance of t2 creating two more

instances of itself. The grammar itself is not malicious; the probability assignments are to blame.

It is important to note that inconsistency is a problem even though for any given string there are

only a finite number of derivations, all halting. Consider the probability mass function (pmf) over

the set of all derivations for this grammar. An inconsistent grammar would have a pmf which

assigns a large portion of probability mass to derivations that are non-terminating. This means

there is a finite probability the generative process can enter a generation sequence which has a

finite probability of non-termination.

A.3 Conditions for Consistency

A probabilistic TAG G is consistent if and only if:

∑

v∈L(G)

Pr(v) = 1 (A.4)

where Pr(v) is the probability assigned to a string in the language. If a grammar G does not satisfy

this condition, G is said to be inconsistent.
2The subscripts are used as a simple notation to uniquely refer to the nodes in each elementary tree. They are not

part of the node label for purposes of adjunction.
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To explain the conditions under which a probabilistic TAG is consistent we will use the TAG

in (A.5) as an example. Tree:   t1

A1

a1

Tree:   t3

B2

B* a3

Tree:   t2

A2

B1

A3

a2

A*

PSfrag replacements

t1 t2 t3

φ(A1 7→ t2) = 0.8
φ(A1 7→ nil) = 0.2

φ(A2 7→ t2) = 0.2
φ(A2 7→ nil) = 0.8
φ(B1 7→ t3) = 0.2
φ(B1 7→ nil) = 0.8
φ(A3 7→ t2) = 0.4
φ(A3 7→ nil) = 0.6

φ(B2 7→ t3) = 0.1
φ(B2 7→ nil) = 0.9

(A.5)

From this grammar, we compute a square matrixM which of size |V |, where V is the set of nodes

in the grammar that can be rewritten by adjunction. Each Mi j contains the expected value of

obtaining node Xj when node Xi is rewritten by adjunction at each level of a TAG derivation. We

callM the stochastic expectation matrix associated with a probabilistic TAG.

To getM for a grammar we first write a matrix P which has |V | rows and |I ∪ A| columns. An

element Pi j corresponds to the probability of adjoining tree tj at node Xi, i.e. φ(Xi 7→ t j)3.

P =

A1

A2

B1

A3

B2

t1 t2 t3


0 0.8 0

0 0.2 0

0 0 0.2

0 0.4 0

0 0 0.1



We then write a matrix N which has |I∪A| rows and |V | columns. An element Ni j is 1.0 if node

X j is a node in tree ti.
3Note that P is not a row stochastic matrix. This is an important difference in the construction ofM for TAGs when

compared to CFGs. We will return to this point in §A.4.
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N =

t1

t2

t3

A1 A2 B1 A3 B2

1.0 0 0 0 0

0 1.0 1.0 1.0 0

0 0 0 0 1.0



Then the stochastic expectation matrixM is simply the product of these two matrices.

M = P · N =

A1

A2

B1

A3

B2

A1 A2 B1 A3 B2


0 0.8 0.8 0.8 0

0 0.2 0.2 0.2 0

0 0 0 0 0.2

0 0.4 0.4 0.4 0

0 0 0 0 0.1



By inspecting the values ofM in terms of the grammar probabilities indicates thatMi j contains

the values we wanted, i.e. expectation of obtaining node Aj when node Ai is rewritten by adjunction

at each level of the TAG derivation process.

By construction we have ensured that the following theorem from [BT73] applies to probabilis-

tic TAGs. A formal justification for this claim is given in the next section by showing a reduction

of the TAG derivation process to a multitype Galton-Watson branching process [Har63].

Theorem A.3.1 A probabilistic grammar is consistent if the spectral radius ρ(M) < 1, whereM

is the stochastic expectation matrix computed from the grammar. [BT73, Sou74]

This theorem provides a way to determine whether a grammar is consistent. All we need to

do is compute the spectral radius of the square matrix M which is equal to the modulus of the

largest eigenvalue ofM. If this value is less than one then the grammar is consistent4. Computing

consistency can bypass the computation of the eigenvalues forM by using the following theorem

by Geršgorin (see [HJ85, Wet80]).
4The grammar may be consistent when the spectral radius is exactly one, but this case involves many special con-

siderations and is not considered in this chapter. In practice, these complicated tests are probably not worth the effort.
See [Har63] for details on how this special case can be solved.
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Theorem A.3.2 For any square matrix M, ρ(M) < 1 if and only if there is an n ≥ 1 such that

the sum of the absolute values of the elements of each row ofMn is less than one. Moreover, any

n′ > n also has this property. (Geršgorin, see [HJ85, Wet80])

This makes for a very simple algorithm to check consistency of a grammar. We sum the values

of the elements of each row of the stochastic expectation matrixM computed from the grammar.

If any of the row sums are greater than one then we computeM2, repeat the test and computeM22

if the test fails, and so on until the test succeeds5. The algorithm does not halt if ρ(M) ≥ 1. In

practice, such an algorithm works better in the average case since computation of eigenvalues is

more expensive for very large matrices. An upper bound can be set on the number of iterations in

this algorithm. Once the bound is passed, the exact eigenvalues can be computed.

For the grammar in (A.5) we computed the following stochastic expectation matrix:

M =



0 0.8 0.8 0.8 0

0 0.2 0.2 0.2 0

0 0 0 0 0.2

0 0.4 0.4 0.4 0

0 0 0 0 0.1



The first row sum is 2.4. Since the sum of each row must be less than one, we compute the

power matrix M2. However, the sum of one of the rows is still greater than 1. Continuing we

computeM22
.

M22
=



0 0.1728 0.1728 0.1728 0.0688

0 0.0432 0.0432 0.0432 0.0172

0 0 0 0 0.0002

0 0.0864 0.0864 0.0864 0.0344

0 0 0 0 0.0001



This time all the row sums are less than one, hence ρ(M) < 1. So we can say that the grammar

defined in (A.5) is consistent. We can confirm this by computing the eigenvalues forM which are

0, 0, 0.6, 0 and 0.1, all less than 1.

5We computeM22
and subsequently only successive powers of 2 because Theorem A.3.2 holds for any n′ > n. This

permits us to use a single matrix at each step in the algorithm.
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Now consider the grammar (A.3) we had considered in Section A.2. The value ofM for that

grammar is computed to be:

M(A.3) =

S 1

S 2

S 3

S 1 S 2 S 3

0 1.0 1.0

0 0.99 0.99

0 0.98 0.98



The eigenvalues for the expectation matrixM computed for the grammar (A.3) are 0, 1.97 and

0. The largest eigenvalue is greater than 1 and this confirms (A.3) to be an inconsistent grammar.

A.4 TAG Derivations and Branching Processes

To show that Theorem A.3.1 in Section A.3 holds for any probabilistic TAG, it is sufficient to show

that the derivation process in TAGs is a Galton-Watson branching process.

A Galton-Watson branching process [Har63] is simply a model of processes that have objects

that can produce additional objects of the same kind, i.e. recursive processes, with certain proper-

ties. There is an initial set of objects in the 0-th generation which produces with some probability a

first generation which in turn with some probability generates a second, and so on. We will denote

by vectors Z0,Z1,Z2, . . . the 0-th, first, second, . . . generations. There are two assumptions made

about Z0,Z1,Z2, . . .:

1. The size of the n-th generation does not influence the probability with which any of the

objects in the (n+1)-th generation is produced. In other words, Z0,Z1,Z2, . . . form a Markov

chain.

2. The number of objects born to a parent object does not depend on how many other objects

are present at the same level.

We can associate a generating function for each level Zi. The value for the vector Zn is the

value assigned by the n-th iterate of this generating function. The expectation matrixM is defined

using this generating function.

The theorem attributed to Galton and Watson specifies the conditions for the probability of

extinction of a family starting from its 0-th generation, assuming the branching process represents
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a family tree (i.e, respecting the conditions outlined above). The theorem states that ρ(M) ≤ 1

when the probability of extinction is 1.0.
Tree:   derivation-adjunction-G129448

t1

t2 (0)

t2 (0)

t2 (1.1)

t3 (1)

t3 (0)

t2 (1.1)

PSfrag replacements
level 0

level 1

level 2

level 3

level 4 (A.6)
Tree:   adjunction-G129448

A2

B1

A2

B1

A3

a2

A

a2

A

B2

B

B

A2

B1

A3

a2

A

a2

a3

a3

A

a1

(A.7)

The assumptions made about the generating process intuitively holds for probabilistic TAGs. (A.6),

for example, depicts a derivation of the string a2a2a2a2a3a3a1 by a sequence of adjunctions in the

grammar given in (A.5)6. The parse tree derived from such a sequence is shown in Fig. A.7. In

the derivation tree (A.6), nodes in the trees at each level i are rewritten by adjunction to produce a

level i + 1. There is a final level 4 in (A.6) since we also consider the probability that a node is not

rewritten further, i.e. Pr(A 7→ nil) for each node A.

We give a precise statement of a TAG derivation process by defining a generating function for

the levels in a derivation tree. Each level i in the TAG derivation tree then corresponds to Zi in

the Markov chain of branching processes. This is sufficient to justify the use of Theorem A.3.1 in
6The numbers in parentheses next to the tree names are node addresses where each tree has adjoined into its parent.

Recall the definition of node addresses in Section A.1.
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Section A.3. The conditions on the probability of extinction then relates to the probability that TAG

derivations for a probabilistic TAG will not recurse infinitely. Hence the probability of extinction

is the same as the probability that a probabilistic TAG is consistent.

For each X j ∈ V , where V is the set of nodes in the grammar where adjunction can occur, we

define the k-argument adjunction generating function over variables s1, . . . , sk corresponding to

the k nodes in V .

g j(s1, . . . , sk) =
∑

t∈Adj(X j)∪{nil}

φ(X j 7→ t) · sr1(t)
1 · · · srk(t)

k

where, r j(t) = 1 iff node X j is in tree t, r j(t) = 0 otherwise.

For example, for the grammar in (A.5) we get the following adjunction generating functions

taking the variable s1, s2, s3, s4, s5 to represent the nodes A1, A2, B1, A3, B2 respectively.

g1(s1, . . . , s5) =

φ(A1 7→ t2) · s2 · s3 · s4 + φ(A1 7→ nil)

g2(s1, . . . , s5) =

φ(A2 7→ t2) · s2 · s3 · s4 + φ(A2 7→ nil)

g3(s1, . . . , s5) =

φ(B1 7→ t3) · s5 + φ(B1 7→ nil)

g4(s1, . . . , s5) =

φ(A3 7→ t2) · s2 · s3 · s4 + φ(A3 7→ nil)

g5(s1, . . . , s5) =

φ(B2 7→ t3) · s5 + φ(B2 7→ nil)

The n-th level generating function Gn(s1, . . . , sk) is defined recursively as follows.

G0(s1, . . . , sk) = s1

G1(s1, . . . , sk) = g1(s1, . . . , sk)

Gn(s1, . . . , sk) = Gn−1[g1(s1, . . . , sk), . . . ,

gk(s1, . . . , sk)]
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For the grammar in (A.5) we get the following level generating functions.

G0(s1, . . . , s5) = s1

G1(s1, . . . , s5) = g1(s1, . . . , s5)

= φ(A1 7→ t2) · s2 · s3 · s4 + φ(A1 7→ nil)

= 0.8 · s2 · s3 · s4 + 0.2

G2(s1, . . . , s5) =

φ(A2 7→ t2)[g2(s1, . . . , s5)][g3(s1, . . . , s5)]

[g4(s1, . . . , s5)] + φ(A2 7→ nil)

= 0.08s2
2s2

3s2
4s5 + 0.03s2

2 s2
3s2

4 + 0.04s2s3s4s5 +

0.18s2 s3s4 + 0.04s5 + 0.196

. . .

Examining this example, we can express Gi(s1, . . . , sk) as a sum Di(s1, . . . , sk) + Ci, where Ci is a

constant and Di(·) is a polynomial with no constant terms. A probabilistic TAG will be consistent

if these recursive equations terminate, i.e. iff

limi→∞Di(s1, . . . , sk)→ 0

We can rewrite the level generation functions in terms of the stochastic expectation matrix M,

where each element mi, j ofM is computed as follows (cf. [BT73]).

mi, j =
∂gi(s1, . . . , sk)

∂s j

∣∣∣∣∣∣
s1,...,sk=1

(A.8)

The limit condition above translates to the condition that the spectral radius ofMmust be less than

1 for the grammar to be consistent.

This shows that Theorem A.3.1 used in Section A.3 to give an algorithm to detect inconsistency

in a probabilistic holds for any given TAG, hence demonstrating the correctness of the algorithm.

Note that the formulation of the adjunction generating function means that the values for

φ(X 7→ nil) for all X ∈ V do not appear in the expectation matrix. This is a crucial difference

between the test for consistency in TAGs as compared to CFGs. For CFGs, the expectation matrix

for a grammar G can be interpreted as the contribution of each non-terminal to the derivations for
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a sample set of strings drawn from L(G). Using this it was shown in [CPG83] and [SB97] that a

single step of the inside-outside algorithm implies consistency for a probabilistic CFG. In the next

section we will give an alternative method that exploits the context-free nature of TAG derivations.

This will allow us to leverage earlier results shown for probabilistic CFGs.

A.5 Conclusion

We have shown here that the conditions under which a given probabilistic TAG can be shown to be

consistent. We gave a simple algorithm for checking consistency and gave the formal justification

for its correctness. The result is practically significant for its applications in checking for deficiency

in probabilistic TAGs. By leveraging the results shown for consistency in probabilistic CFGs and

because of the context free nature of TAG derivations we can show the correctness of parameter

estimation algorithms for probabilistic TAGs. And finally, the mathematical framework can be

used to discover various statistical properties in a probabilistic TAG and the language it generates.

We also use the results shown in this chapter to compute the off-line equations that are required

in Chapter 2 probability computation from probabilistic TAGs.
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Appendix B

Prefix Probabilities from Probabilistic

TAGs

Language models for speech recognition typically use a probability model of the form:

Pr(an|a1, a2, . . . , an−1)

Probabilistic grammars, on the other hand, are typically used to assign structure to utterances.

A language model of the above form is constructed from such grammars by computing the pre-

fix probability
∑

w∈Σ∗ Pr(a1 · · · anw), where w represents all possible terminations of the prefix

a1 · · · an. The main result in this chapter is an algorithm to compute such prefix probabilities

given a probabilistic Tree Adjoining Grammar (TAG). The algorithm achieves the required com-

putation in O(n6) time. The probability of subderivations that do not derive any words in the prefix,

but contribute structurally to its derivation, are precomputed to achieve termination. This algorithm

enables existing corpus-based estimation techniques for probabilistic TAGs to be used for language

modeling.

B.1 Prefix Probabilities

Given some word sequence a1 · · · an−1, speech recognition language models are used to hypothe-

size the next word an, which could be any word from the vocabulary Σ. This is typically done using
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a probability model Pr(an|a1, . . . , an−1). Based on the assumption that modeling the hidden struc-

ture of natural language would improve performance of such language models, some researchers

tried to use probabilistic context-free grammars (CFGs) to produce language models [WW89,

JL91, Sto95]. The probability model used for a probabilistic grammar was
∑

w∈Σ∗ Pr(a1 · · · anw).

However, language models that are based on trigram probability models out-perform probabilistic

CFGs. The common wisdom about this failure of CFGs is that trigram models are lexicalized

models while CFGs are not.

Tree Adjoining Grammars (TAGs) are important in this respect since they are easily lexical-

ized while capturing the constituent structure of language. More importantly, TAGs allow greater

linguistic expressiveness. The trees associated with words can be used to encode argument and

adjunct relations in various syntactic environments. TAGs have been shown to have relations with

both phrase-structure grammars and dependency grammars [RJ95], which is relevant because re-

cent work on structured language models [CEJ+97] have used dependency grammars to exploit

their lexicalization. We use probabilistic TAGs as such a structured language model in contrast

with earlier work where TAGs have been exploited in a class-based n-gram language model [Sri96].

This chapter derives an algorithm to compute prefix probabilities
∑

w∈Σ∗ Pr(a1 · · · anw). The

algorithm assumes as input a probabilistic TAG G and a string which is a prefix of some string

in L(G), the language generated by G. This algorithm enables existing corpus-based estimation

techniques [Sch92] in probabilistic TAGs to be used for language modeling.

B.2 Notation

A probabilistic Tree Adjoining Grammar (STAG) is represented by a tuple (N,Σ,I,A, φ) where N

is a set of nonterminal symbols, Σ is a set of terminal symbols, I is a set of initial trees and A is a

set of auxiliary trees. Trees in I ∪ A are also called elementary trees.

We refer to the root of an elementary tree t as Rt. Each auxiliary tree has exactly one distin-

guished leaf, which is called the foot. We refer to the foot of an auxiliary tree t as Ft. We let V

denote the set of all nodes in the elementary trees.

For each leaf N in an elementary tree, except when it is a foot, we define label(N) to be the

label of the node, which is either a terminal from Σ or the empty string ε. For each other node N,

149



label(N) is an element from N.

At a node N in a tree such that label(N) ∈ N an operation called adjunction can be applied,

which excises the tree at N and inserts an auxiliary tree.

Function φ assigns a probability to each adjunction. The probability of adjunction of t ∈ A

at node N is denoted by φ(t,N). The probability that at N no adjunction is applied is denoted by

φ(nil,N). We assume that each STAG G that we consider is proper. That is, for each N such that

label(N) ∈ N,
∑

t∈A∪{nil}

φ(t,N) = 1.

For each non-leaf node N we construct the string cdn(N) = N̂1 · · · N̂m from the (ordered) list

of children nodes N1, . . . ,Nm by defining, for each d such that 1 ≤ d ≤ m, N̂d = label(Nd) in case

label(Nd) ∈ Σ ∪ {ε}, and N̂d = Nd otherwise. In other words, children nodes are replaced by their

labels unless the labels are nonterminal symbols.

To simplify the exposition, we assume an additional node for each auxiliary tree t, which we

denote by ⊥. This is the unique child of the actual foot node Ft. That is, we change the definition

of cdn such that cdn(Ft) = ⊥ for each auxiliary tree t. We set

V⊥ = {N ∈ V | label(N) ∈ N} ∪ Σ ∪ {⊥}.

We use symbols a, b, c, . . . to range over Σ, symbols v,w, x, . . . to range over Σ∗, symbols

N, M, . . . to range over V⊥, and symbols α, β, γ, . . . to range over (V⊥)∗. We use t, t′, . . . to denote

trees in I ∪ A or subtrees thereof.

We define the predicate dft on elements from V⊥ as dft(N) if and only if (i) N ∈ V and N

dominates ⊥, or (ii) N = ⊥. We extend dft to strings of the form N1 . . .Nm ∈ (V⊥)∗ by defining

dft(N1 . . .Nm) if and only if there is a d (1 ≤ d ≤ m) such that dft(Nd).

For some logical expression p, we define δ(p) = 1 iff p is true, δ(p) = 0 otherwise.

B.3 Overview

The approach we adopt in the next section to derive a method for the computation of prefix proba-

bilities for TAGs is based on transformations of equations. Here we informally discuss the general

ideas underlying equation transformations.
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Let w = a1a2 · · · an ∈ Σ
∗ be a string and let N ∈ V⊥. We use the following representation which

is standard in tabular methods for TAG parsing. An item is a tuple [N, i, j, f1, f2] representing the

set of all trees t such that (i) t is a subtree rooted at N of some derived elementary tree; and (ii) t’s

root spans from position i to position j in w, t’s foot node spans from position f1 to position f2 in

w. In case N does not dominate the foot, we set f1 = f2 = −. We generalize in the obvious way to

items [t, i, j, f1, f2], where t is an elementary tree, and [α, i, j, f1, f2], where cdn(N) = αβ for some

N and β.

To introduce our approach, let us start with some considerations concerning the TAG parsing

problem. When parsing w with a TAG G, one usually composes items in order to construct new

items spanning a larger portion of the input string. Assume there are instances of auxiliary trees t

and t′ in G, where the yield of t′, apart from its foot, is the empty string. If φ(t,N) > 0 for some

node N on the spine of t′, and we have recognized an item [Rt, i, j, f1, f2], then we may adjoin t at

N and hence deduce the existence of an item [Rt′ , i, j, f1, f2] (see Fig. B.1(a)). Similarly, if t can be

adjoined at a node N to the left of the spine of t′ and f1 = f2, we may deduce the existence of an

item [Rt′ , i, j, j, j] (see Fig. B.1(b)). Importantly, one or more other auxiliary trees with empty yield

could wrap the tree t′ before t adjoins. Adjunctions in this situation are potentially nonterminating.
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Figure B.1: Wrapping in auxiliary trees with empty yield

One may argue that situations where auxiliary trees have empty yield do not occur in practice,

and are even by definition excluded in the case of lexicalized TAGs. However, in the computation

of the prefix probability we must take into account trees with non-empty yield which behave like
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trees with empty yield because their lexical nodes fall to the right of the right boundary of the

prefix string. For example, the two cases previously considered in Fig. B.1 now generalize to those

in Fig. B.2.
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Figure B.2: Wrapping of auxiliary trees when computing the prefix probability

To derive a method for the computation of prefix probabilities, we give some simple recursive

equations. Each equation decomposes an item into other items in all possible ways, in the sense

that it expresses the probability of that item as a function of the probabilities of items associated

with equal or smaller portions of the input.

In specifying the equations, we exploit techniques used in the parsing of incomplete input

[Lan88]. This allows us to compute the prefix probability as a by-product of computing the inside

probability.

In order to avoid the problem of nontermination outlined above, we transform our equations

to remove infinite recursion, while preserving the correctness of the probability computation. The

transformation of the equations is explained as follows. For an item I, the span of I, written S(I),

is the 4-tuple representing the 4 input positions in I. We will define an equivalence relation on

spans that relates to the portion of the input that is covered. The transformations that we apply to

our equations produce two new sets of equations. The first set of equations are concerned with all

possible decompositions of a given item I into set of items of which one has a span equivalent to

that of I and the others have an empty span. Equations in this set represent endless recursion. The

system of all such equations can be solved independently of the actual input w. This is done once

for a given grammar.
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The second set of equations have the property that, when evaluated, recursion always termi-

nates. The evaluation of these equations computes the probability of the input string modulo the

computation of some parts of the derivation that do not contribute to the input itself. Combination

of the second set of equations with the solutions obtained from the first set allows the effective

computation of the prefix probability.

B.4 Computing Prefix Probabilities

This section develops an algorithm for the computation of prefix probabilities for probabilistic

TAGs.

B.4.1 General equations

The prefix probability is given by:

∑

w∈Σ∗
Pr(a1 · · · anw) =

∑

t∈I

P([t, 0, n,−,−]),

where P is a function over items recursively defined as follows:

P([t, i, j, f1, f2]) = P([Rt, i, j, f1, f2]); (B.1)

P([αN, i, j,−,−]) = (B.2)
∑

k(i ≤ k ≤ j)

P([α, i, k,−,−]) · P([N, k, j,−,−]),

if α , ε ∧ ¬dft(αN);

P([αN, i, j, f1, f2]) = (B.3)
∑

k(i ≤ k ≤ f1)

P([α, i, k,−,−]) · P([N, k, j, f1, f2]),

if α , ε ∧ dft(N);

P([αN, i, j, f1, f2]) = (B.4)
∑

k( f2 ≤ k ≤ j)

P([α, i, k, f1, f2]) · P([N, k, j,−,−]),

if α , ε ∧ dft(α);

P([N, i, j, f1, f2]) = (B.5)

φ(nil,N) · P([cdn(N), i, j, f1, f2]) +
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∑

f ′1 , f ′2 (i ≤ f ′1 ≤ f1 ∧ f2 ≤ f ′2 ≤ j)

P([cdn(N), f ′1 , f ′2, f1, f2]) ·

∑

t∈A

φ(t,N) · P([t, i, j, f ′1 , f ′2]),

if N ∈ V ∧ dft(N);

P([N, i, j,−,−]) = (B.6)

φ(nil,N) · P([cdn(N), i, j,−,−]) +
∑

f ′1 , f ′2 (i ≤ f ′1 ≤ f ′2 ≤ j)

P([cdn(N), f ′1 , f ′2,−,−]) ·

∑

t∈A

φ(t,N) · P([t, i, j, f ′1 , f ′2]),

if N ∈ V ∧ ¬dft(N);

P([a, i, j,−,−]) = (B.7)

δ(i + 1 = j ∧ a j = a) + δ(i = j = n);

P([⊥, i, j, f1, f2]) = δ(i = f1 ∧ j = f2); (B.8)

P([ε, i, j,−,−]) = δ(i = j). (B.9)

Term P([t, i, j, f1, f2]) gives the inside probability of all possible trees derived from elementary tree

t, having the indicated span over the input. This is decomposed into the contribution of each single

node of t in equations (B.1) through (B.6). In equations (B.5) and (B.6) the contribution of a node

N is determined by the combination of the inside probabilities of N’s children and by all possible

adjunctions at N. In (B.7) we recognize some terminal symbol if it occurs in the prefix, or ignore

its contribution to the span if it occurs after the last symbol of the prefix. Crucially, this step allows

us to reduce the computation of prefix probabilities to the computation of inside probabilities.

B.4.2 Terminating equations

In general, the recursive equations (B.1) to (B.9) are not directly computable. This is because

the value of P([A, i, j, f , f ′]) might indirectly depend on itself, giving rise to nontermination. We

therefore rewrite the equations.

We define an equivalence relation over spans, that expresses when two items are associated

with equivalent portions of the input:

(i′, j′, f ′1, f ′2) ≈ (i, j, f1, f2) if and only if
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((i′, j′) = (i, j))∧

(( f ′1 , f ′2) = ( f1, f2)∨

(( f ′1 = f ′2 = i ∨ f ′1 = f ′2 = j ∨ f ′1 = f ′2 = −)∧

( f1 = f2 = i ∨ f1 = f2 = j ∨ f1 = f2 = −)))

We introduce two new functions Plow and Psplit. When evaluated on some item I, Plow recursively

calls itself as long as some other item I′ with a given elementary tree as its first component can be

reached, such that S(I) ≈ S(I′). Plow returns 0 if the actual branch of recursion cannot eventually

reach such an item I′, thus removing the contribution to the prefix probability of that branch. If item

I′ is reached, then Plow switches to Psplit. Complementary to Plow, function Psplit tries to decompose

an argument item I into items I′ such that S(I) 0 S(I′). If this is not possible through the actual

branch of recursion, Psplit returns 0. If decomposition is indeed possible, then we start again with

Plow at items produced by the decomposition. The effect of this intermixing of function calls is

the simulation of the original function P, with Plow being called only on potentially nonterminating

parts of the computation, and Psplit being called on parts that are guaranteed to terminate.

Consider some derivation tree spanning some portion of the input string, and the associated

derivation tree τ. There must be a unique elementary tree which is represented by a node in τ that

is the “lowest” one that entirely spans the portion of the input of interest. (This node might be the

root of τ itself.) Then, for each t ∈ A and for each i, j, f1, f2 such that i < j and i ≤ f1 ≤ f2 ≤ j,

we must have:

P([t, i, j, f1, f2]) = (B.10)
∑

t′ ∈ A, f ′1 , f ′2 ((i, j, f ′1 , f ′2 ) ≈ (i, j, f1, f2))

Plow([t, i, j, f1, f2], [t′, f ′1, f ′2]).

Similarly, for each t ∈ I and for each i, j such that i < j, we must have:

P([t, i, j,−,−]) = (B.11)
∑

t′ ∈ {t} ∪ A, f ∈ {−, i, j}

Plow([t, i, j,−,−], [t′, f , f ]).

The reason why Plow keeps a record of indices f′1 and f ′2, i.e., the spanning of the foot node of the

lowest tree (in the above sense) on which Plow is called, will become clear later, when we introduce

equations (B.29) and (B.30).
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We define Plow([t, i, j, f1, f2], [t′, f ′1, f ′2]) and Plow([α, i, j, f1, f2], [t′, f ′1, f ′2]) for i < j and

(i, j, f1, f2) ≈ (i, j, f ′1 , f ′2), as follows.

Plow([t, i, j, f1, f2], [t′, f ′1, f ′2]) = (12)

Plow([Rt, i, j, f1, f2], [t′, f ′1, f ′2]) +

δ((t, f1, f2) = (t′, f ′1, f ′2)) ·

Psplit([Rt, i, j, f1, f2]);

Plow([αN, i, j,−,−], [t, f ′1, f ′2]) = (13)

Plow([α, i, j,−,−], [t, f ′1, f ′2]) ·

P([N, j, j,−,−]) +

P([α, i, i,−,−]) ·

Plow([N, i, j,−,−], [t, f ′1 , f ′2]),

if α , ε ∧ ¬dft(αN);

Plow([αN, i, j, f1, f2], [t, f ′1, f ′2]) = (14)

δ( f1 = j) · Plow([α, i, j,−,−], [t, f ′1, f ′2]) ·

P([N, j, j, f1, f2]) +

P([α, i, i,−,−]) ·

Plow([N, i, j, f1, f2], [t, f ′1 , f ′2]),

if α , ε ∧ dft(N);

Plow([αN, i, j, f1, f2], [t, f ′1, f ′2]) = (15)

Plow([α, i, j, f1, f2], [t, f ′1 , f ′2]) ·

P([N, j, j,−,−]) +

δ(i = f2) · P([α, i, i, f1, f2]) ·

Plow([N, i, j,−,−], [t, f ′1 , f ′2]),

if α , ε ∧ dft(α);

Plow([N, i, j, f1, f2], [t, f ′1, f ′2]) = (16)
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φ(nil,N) ·

Plow([cdn(N), i, j, f1, f2], [t, f ′1, f ′2]) +

Plow([cdn(N), i, j, f1, f2], [t, f ′1, f ′2]) ·

∑
t′∈A φ(t′,N) · P([t′, i, j, i, j]) +

P([cdn(N), f1, f2, f1, f2]) ·
∑

t′∈A

φ(t′,N) · Plow([t′, i, j, f1, f2], [t, f ′1 , f ′2]),

if N ∈ V ∧ dft(N);

Plow([N, i, j,−,−], [t, f ′1 , f ′2]) = (17)

φ(nil,N) ·

Plow([cdn(N), i, j,−,−], [t, f ′1 , f ′2]) +

Plow([cdn(N), i, j,−,−], [t, f ′1, f ′2]) ·

∑
t′∈A φ(t′,N) · P([t′, i, j, i, j]) +

∑

f ′′1 , f ′′2 ( f ′′1 = f ′′2 = i ∨ f ′′1 = f ′′2 = j)

P([cdn(N), f ′′1 , f ′′2 ,−,−]) ·

∑

t′∈A

φ(t′,N) · Plow([t′, i, j, f ′′1 , f ′′2 ], [t, f ′1, f ′2]),

if N ∈ V ∧ ¬dft(N);

Plow([a, i, j,−,−], [t, f ′1 , f ′2]) = 0; (18)

Plow([⊥, i, j, f1, f2], [t, f ′1 , f ′2]) = 0; (19)

Plow([ε, i, j,−,−], [t, f ′1, f ′2]) = 0. (20)

The definition of Plow parallels the one of P given in §B.4.1. In (B.12), the second term in the

right-hand side accounts for the case in which the tree we are visiting is the “lowest” one on which

Plow should be called. Note how in the above equations Plow must be called also on nodes that do

not dominate the footnode of the elementary tree they belong to (cf. the definition of ≈). Since no

call to Psplit is possible through the terms in (B.18), (B.19) and (B.20), we must set the right-hand

side of these equations to 0.

The specification of Psplit([α, i, j, f1, f2]) is given below. Again, the definition parallels the one

of P given in §B.4.1.
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Psplit([αN, i, j,−,−]) = (B.21)
∑

k(i < k < j)

P([α, i, k,−,−]) · P([N, k, j,−,−]) +

Psplit([α, i, j,−,−]) · P([N, j, j,−,−]) +

P([α, i, i,−,−]) · Psplit([N, i, j,−,−]),

if α , ε ∧ ¬dft(αN);

Psplit([αN, i, j, f1, f2]) = (B.22)
∑

k(i < k ≤ f1 ∧ k < j)

P([α, i, k,−,−]) · P([N, k, j, f1, f2]) +

δ( f1 = j) · Psplit([α, i, j,−,−]) ·

P([N, j, j, f1, f2]) +

P([α, i, i,−,−]) · Psplit([N, i, j, f1, f2]),

if α , ε ∧ dft(N);

Psplit([αN, i, j, f1, f2]) = (B.23)
∑

k(i < k ∧ f2 ≤ k < j)

P([α, i, k, f1, f2]) · P([N, k, j,−,−]) +

Psplit([α, i, j, f1, f2]) · P([N, j, j,−,−]) +

δ(i = f2) · P([α, i, i, f1, f2]) ·

Psplit([N, i, j,−,−]),

if α , ε ∧ dft(α);

Psplit([N, i, j, f1, f2]) = (B.24)

φ(nil,N) · Psplit([cdn(N), i, j, f1, f2]) +
∑

f ′1 , f ′2 (i ≤ f ′1 ≤ f1 ∧ f2 ≤ f ′2 ≤ j ∧

( f ′1 , f ′2) , (i, j) ∧ ( f ′1 , f ′2) , ( f1 , f2))

P([cdn(N), f ′1 , f ′2, f1, f2]) ·

∑

t∈A

φ(t,N) · P([t, i, j, f ′1, f ′2]) +

Psplit([cdn(N), i, j, f1, f2]) ·
∑

t∈A

φ(t,N) · P([t, i, j, i, j]),
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if N ∈ V ∧ dft(N);

Psplit([N, i, j,−,−]) = (B.25)

φ(nil,N) · Psplit([cdn(N), i, j,−,−]) +
∑

f ′1 , f ′2 (i ≤ f ′1 ≤ f ′2 ≤ j ∧ ( f ′1 , f ′2) , (i, j) ∧

¬( f ′1 = f ′2 = i ∨ f ′1 = f ′2 = j))

P([cdn(N), f ′1 , f ′2,−,−]) ·

∑

t∈A

φ(t,N) · P([t, i, j, f ′1, f ′2]) +

Psplit([cdn(N), i, j,−,−]) ·
∑

t∈A

φ(t,N) · P([t, i, j, i, j]),

if N ∈ V ∧ ¬dft(N);

Psplit([a, i, j,−,−]) = δ(i + 1 = j ∧ a j = a); (B.26)

Psplit([⊥, i, j, f1, f2]) = 0; (B.27)

Psplit([ε, i, j,−,−]) = 0. (B.28)

We can now separate those branches of recursion that terminate on the given input from the

cases of endless recursion. We assume below that Psplit([Rt, i, j, f ′1 , f ′2]) > 0. Even if this is not

always valid, for the purpose of deriving the equations below, this assumption does not lead to

invalid results. We define a new function Pouter, which accounts for probabilities of subderivations

that do not derive any words in the prefix, but contribute structurally to its derivation:

Pouter([t, i, j, f1, f2], [t′, f ′1, f ′2]) = (B.29)
Plow([t, i, j, f1, f2], [t′, f ′1, f ′2])

Psplit([Rt′ , i, j, f ′1 , f ′2])
;

Pouter([α, i, j, f1, f2], [t′, f ′1, f ′2]) = (B.30)
Plow([α, i, j, f1, f2], [t′, f ′1, f ′2])

Psplit([Rt′ , i, j, f ′1, f ′2])
.

We can now eliminate the infinite recursion that arises in (B.10) and (B.11) by rewriting

P([t, i, j, f1, f2]) in terms of Pouter:

P([t, i, j, f1, f2]) = (B.31)
∑

t′ ∈ A, f ′1 , f ′2 ((i, j, f ′1 , f ′2) ≈ (i, j, f1 , f2))

Pouter([t, i, j, f1, f2], [t′, f ′1 , f ′2]) ·

Psplit([Rt′ , i, j, f ′1, f ′2]);
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P([t, i, j,−,−]) = (B.32)
∑

t′ ∈ {t} ∪ A, f ∈ {−, i, j}

Pouter([t, i, j,−,−], [t′, f , f ]) ·

Psplit([Rt′ , i, j, f , f ]).

Equations for Pouter will be derived in the next subsection.

In summary, terminating computation of prefix probabilities should be based on equations (B.31)

and (B.32), which replace (B.1), along with equations (B.2) to (B.9) and all the equations for Psplit.

B.4.3 Off-line Equations

In this section we derive equations for function Pouter introduced in §B.4.2 and deal with all remain-

ing cases of equations that cause infinite recursion.

In some cases, function P can be computed independently of the actual input. For any i < n

we can consistently define the following quantities, where t ∈ I ∪ A and α ∈ V⊥ or cdn(N) = αβ

for some N and β:

Ht = P([t, i, i, f , f ]);

Hα = P([α, i, i, f ′, f ′]),

where f = i if t ∈ A, f = − otherwise, and f ′ = i if dft(α), f = − otherwise. Thus, Ht is the

probability of all derived trees obtained from t, with no lexical node at their yields. Quantities Ht

and Hα can be computed by means of a system of equations which can be directly obtained from

equations (B.1) to (B.9). Similar quantities as above must be introduced for the case i = n. For

instance, we can set H′t = P([t, n, n, f , f ]), f specified as above, which gives the probability of all

derived trees obtained from t (with no restriction at their yields).

Function Pouter is also independent of the actual input. Let us focus here on the case f1, f2 <

{i, j,−} (this enforces ( f1, f2) = ( f ′1 , f ′2) below). For any i, j, f1, f2 < n, we can consistently define

the following quantities.

Lt,t′ = Pouter([t, i, j, f1, f2], [t′, f ′1, f ′2]);

Lα,t′ = Pouter([α, i, j, f1, f2], [t′, f ′1, f ′2]).

In the case at hand, Lt,t′ is the probability of all derived trees obtained from t such that (i) no

lexical node is found at their yields; and (ii) at some ‘unfinished’ node dominating the foot of t,
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the probability of the adjunction of t′ has already been accounted for, but t′ itself has not been

adjoined.

It is straightforward to establish a system of equations for the computation of Lt,t′ and Lα,t′ ,

by rewriting equations (B.12) to (B.20) according to (B.29) and (B.30). For instance, combin-

ing (B.12) and (B.29) gives (using the above assumptions on f1 and f2):

Lt,t′ = LRt ,t′ + δ(t = t′).

Also, if α , ε and dft(N), combining (B.14) and (B.30) gives (again, using previous assumptions

on f1 and f2; note that the Hα’s are known terms here):

LαN,t′ = Hα · LN,t′ .

For any i, f1, f2 < n and j = n, we also need to define:

L′t,t′ = Pouter([t, i, n, f1, f2], [t′, f ′1, f ′2]);

L′α,t′ = Pouter([α, i, n, f1, f2], [t′, f ′1, f ′2]).

Here L′t,t′ is the probability of all derived trees obtained from t with a node dominating the foot

node of t, that is an adjunction site for t′ and is ‘unfinished’ in the same sense as above, and

with lexical nodes only in the portion of the tree to the right of that node. When we drop our

assumption on f1 and f2, we must (pre)compute in addition terms of the form Pouter([t, i, j, i, i],

[t′, i, i]) and Pouter([t, i, j, i, i], [t′, j, j]) for i < j < n, Pouter([t, i, n, f1, n], [t′, f ′1, f ′2]) for i < f1 < n,

Pouter([t, i, n, n, n], [t′, f ′1, f ′2]) for i < n, and similar. Again, these are independent of the choice of i,

j and f1. Full treatment is omitted due to length restrictions.

B.5 Remarks on Complexity

Function Psplit is the core of the method. Its equations can be directly translated into an effective

algorithm, using standard functional memoization or other tabular techniques. It is easy to see that

such an algorithm can be made to run in time O(n6), where n is the length of the input prefix.

All the quantities introduced in §B.4.3 (Ht, Lt,t′ , etc.) are independent of the input and should

be computed off-line, using the system of equations that can be derived as indicated. For quantities

Ht we have a non-linear system, since equations (2) to (6) contain quadratic terms. Solutions can
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then be approximated to any degree of precision using standard iterative methods, as for instance

those exploited in [Sto95]. Under the hypothesis that the grammar is consistent, that is Pr(L(G)) =

1, all quantities H′t and H′α evaluate to one. For quantities Lt,t′ and the like, §B.4.3 provides linear

systems whose solutions can easily be obtained using standard methods. Note also that quantities

Lα,t′ are only used in the off-line computation of quantities Lt,t′ , they do not need to be stored for

the computation of prefix probabilities (compare equations for Lt,t′ with (B.31) and (B.32)).

We can easily develop implementations of our method that can compute prefix probabilities

incrementally. That is, after we have computed the prefix probability for a prefix a1 · · · an, on

input an+1 we can extend the calculation to prefix a1 · · · anan+1 without having to recompute all

intermediate steps that do not depend on an+1. This step takes time O(n5).

In this chapter we have assumed that the parameters of the probabilistic TAG have been pre-

viously estimated. In practice, smoothing to avoid sparse data problems plays an important role.

Smoothing can be handled for prefix probability computation in the following ways. Discounting

methods for smoothing simply produce a modified STAG model which is then treated as input to

the prefix probability computation. Smoothing using methods such as deleted interpolation which

combine class-based models with word-based models to avoid sparse data problems have to be

handled by a cognate interpolation of prefix probability models.

B.6 Computing the Off-line Probabilities

To compute the off-line probabilities we simply use the results already shown in Chapter A. The

stochastic expectation matrix computed for the input probabilistic TAG can be used directly to infer

the probability of the ‘jump’ between two nodes in separate elementary trees. The probabilities can

be directly examined by computing the expectation matrix assuming that each tree in the grammar

can be the root of a (sub)derivation and then examining the eigenvalues corresponding to each node

that accepts adjunction that can be reached from the node in that tree.

We will include more detailed equations for this computation in a later version of this docu-

ment.
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B.7 Conclusion

The result here is presented in a theoretical framework and to address implementational issues we

give precise steps for the computation of prefix probabilities during the steps taken by a parser in

Appendix 2.5.2.

The main result in this chapter is an algorithm to compute such prefix probabilities given a

probabilistic Tree Adjoining Grammar (TAG). The algorithm achieves the required computation

in O(n6) time. The probability of subderivations that do not derive any words in the prefix, but

contribute structurally to its derivation, are precomputed to achieve termination. This algorithm

enables existing corpus-based estimation techniques for probabilistic TAGs to be used for language

modeling. We show how to parse substrings in the input and the off-line computation of probabil-

ities for portions of the derivation that are indirectly used but which do not directly contribute any

lexical items towards the parse of the initial substring.
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