
Handling Coordination in a Tree Adjoining

Grammar

Anoop Sarkar and Aravind Joshi

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

fanoop,joshig@linc.cis.upenn.edu

Draft of August 19, 1997
Longer version of (Sarkar and Joshi, 1996)

Abstract

In this paper we show that an account for coordination can be con-
structed using the derivation structures in a lexicalized Tree Adjoining
Grammar (LTAG). We present a notion of derivation in LTAGs that
preserves the notion of �xed constituency in the LTAG lexicon while
providing the exibility needed for coordination phenomena. We also
discuss the construction of a practical parser for LTAGs that can han-
dle coordination including cases of non-constituent coordination.

1 Introduction

Lexicalized Tree Adjoining Grammars (LTAG) and Combinatory Categorial
Grammar (CCG) (Steedman, 1997) are known to be weakly equivalent but
not strongly equivalent. Coordination schema have a natural description in
CCG, while these schema have no natural equivalent in a standard LTAG.

In (Joshi and Schabes, 1991) it was shown that in principle it is pos-
sible to construct a CCG-like account for coordination in the framework
of LTAGs, but there was no clear notion of what the derivation structure
would look like. In this paper, continuing the work of (Joshi and Schabes,
1991), we show that an account for coordination can be constructed using
the derivation structures in an LTAG.

1

Combinatory Categorial Grammar (CCG) (Steedman, 1985; Steedman,
1997) violates traditional notions of constituency in assigning multiple struc-
tures to unambiguous strings. For instance, CCG assigns multiple bracket-
ings to the sentence Keats steals apples.

(1) (Keats (steals apples))
(2) ((Keats steals) apples)

Although \spuriously" ambiguous structures are generated by CCG they
produce appropriate and fully compositional semantics. The justi�cation for
such \spurious" ambiguous structures is that they provide an explanation
for a variety of coordination constructions and that they correspond directly
to intonation. Coordination in CCG has a natural de�nition due to this
exible notion of phrase structure. The combinators added to the context-
free categorial grammar in CCG can account for a number of otherwise
\non-constituent" coordination phenomena. For instance, the bracketing
in (2) is necessary for the CCG account for (3)

(3) (((Keats grows) and (Shelley steals)) apples)

In this paper we show how a CCG-like account for coordination can be
de�ned over the elementary trees of a LTAG and present a notion of deriva-
tion in LTAGs that preserves the notion of �xed constituency in the LTAG
lexicon while providing for the exibility needed for the various coordination
phenomena. In CCG, being a constituent is the same as being a function or
semantic type and vice versa. In the (Joshi and Schabes, 1991) treatment
and in our present treatment a constituent is always a function or semantic
type but the converse is not necessarily true. In our account, the standard
notion of constituency in a LTAG is retained; phrase structure is preserved
at the level of an elementary tree.

Using the notions given in this paper we also discuss the construction of
practical parser for LTAGs that can handle coordination including cases of
non-constituent coordination. This approach has been implemented in the
XTAG system (XTAG Research Group, 1995) thus extending it to handle
coordination. This is the �rst full implementation of coordination in the
LTAG framework.

2

2 LTAG

An LTAG is a set of trees which have at least one terminal symbol on its
frontier called the anchor of that tree. For example, Figure 1 shows an
example of a tree for a transitive verb cooked. Each node in the tree has a
unique address obtained by applying a Gorn tree addressing scheme. For
instance, the object NP has address 2:2. In the LTAG formalism, trees can
be composed using the two operations of substitution (corresponds to string
concatenation) and adjunction (corresponds to string wrapping). A history
of these operations on elementary trees in the form of a derivation tree can be
used to reconstruct the derivation of a string recognized by a LTAG. Figure 2
shows an example of a derivation tree and the corresponding parse tree for
the derived structure obtained when �(John) and �(beans) substitute into
�(cooked) and �(dried) adjoins into �(beans) giving us a derivation tree for
John cooked dried beans. Trees that adjoin are termed as auxiliary trees,
trees that are not auxiliary are called initial. Each node in the derivation
tree is the name of an elementary tree. The labels on the edges denote the
address in the parent node where a substitution or adjunction has occured.

α (cooked)

S

VPNP

V NP

1

0

2.1 2.2

2

cooked

α (John)

NP

N

John

α(beans)

N

NP

beans

(dried)β
N

ADJ

dried

N*

Figure 1: Example of a lexicalized TAG

3 Trees as Structured Categories

In (Joshi and Schabes, 1991) elementary trees as well as derived trees in
a LTAG (a lexicalized TAG with both substitution and adjunction) were
considered as structured categories. A structured category was a 3-tuple
of an elementary or derived tree, the string it spanned and the functional
type of the tree, e.g the 3-tuple h�1; l1; �1i in Figure 3. The functional types
for trees could be thought of as de�ning un-Curried functions corresponding

3

S

NP VP

N V NP

John cooked N

ADJ N

dried beans

1 2.2

(beans)

1

α

β

α(John) α

(cooked)

(dried)

Derivation Tree

Figure 2: Example of a derivation tree and corresponding parse tree

to the Curried CCG counterpart. A functional interpretation was given to
sequences of lexical items in trees even when they were not contiguous; hence
discontinuous constituents were also assigned types. They were, however,
barred from coordinating.

S

VPNP

V NP

cookieseats

SNP

σ

τ
eats cookies

1

l 1

1

Figure 3: Structured Category for eats cookies

Coordination of two structured categories �1; �2 succeeded if the lex-
ical strings of both categories were contiguous, the functional types were
identical, and the least nodes dominating the strings spanned by the com-
ponent tree have the same label. However, in (Joshi and Schabes, 1991)
coordination was not the simple conjunction of equivalent functional types.
It was a multi-step operation that picked the appropriate node at which

4

coordination should take place, equated the shared arguments in the two
structures being conjoined, and produced the appropriate derived structure
(by collapsing parts of the original tree). For example, in Figure 4 the tree
corresponding to eats cookies and drinks beer would be obtained by:

1. equating the NP nodes1 in �1 and �2, preserving the linear precedence
of the arguments.

2. coordinating the VP nodes, which are the least nodes dominating the
two contiguous strings.

3. collapsing the supertrees above the VP node.

4. selecting the leftmost NP as the lexical site for the argument, since
precedence with the verb is maintained by this choice.

beer

SNP τ1:
l1: eats cookies

SNP τ2:
l2: drinks beer

Sσ1

NP VP

V

eats

NP

cookies

and

σ2 S

NP VP

V

drinks

NP

VP

SNP τ:
l: eats cookies and drinks beer

S

NP VP

VP
and

VP

V NP V NP

eats cookies drinks beer

Figure 4: Coordination of eats cookies and drinks beer

This process handles cases of nonconstituent coordination as in (4) by
coordinating at the label S, at the root of the two trees for likes and hates.

(4) John likes and Bill hates bananas.

In such an approach the process of coordination builds a new derived
structure given previously built pieces of derived structure (or perhaps ele-
mentary structures). However, there was no clear notion of what the deriva-
tion tree for this process of coordination should be in this approach to coor-
dination. Given these insights from (Joshi and Schabes, 1991), we present a

1This notion of sharing should not be confused with a deletion type analysis of co-
ordination. The scheme presented in (Joshi and Schabes, 1991) as well as the analysis
presented in this paper are not deletion analyses.

5

notion of coordination in LTAG that makes the same linguistic predictions
as the earlier model but which operates on the elementary trees of a stan-
dard LTAG and which has a well de�ned notion of derivation for coordinate
structures.

4 Coordination in TAG

An account for coordination in a standard LTAG cannot be given without
introducing a notion of sharing of arguments in the two lexically anchored
trees because of the notion of locality of arguments in LTAG. Consider (5)
for instance, the NP the beans that I bought from Alice in the Right-Node
Raising (RNR) construction has to be shared by the two elementary trees
(which are anchored by cooked and ate respectively). Notice that in CCG this
notion of \sharing" is vestigial due to type raising and function composition.

(5) (((Harry cooked) and (Mary ate)) the beans that I bought from
Alice)

The notation # in Figure 1 is used to denote that a node is a non-
terminal and hence expects a substitution operation to occur. The notation
� is used to mark the foot node of an auxiliary tree. This denotes, for
example, that when �(dried) adjoins into �(beans) the subtree under Gorn
address 1 in �(beans) is placed under the foot node of �(dried). Making this
notation explicit we can view an elementary tree as an ordered pair of the
tree structure and an ordered set2 of such nodes from its frontier3, e.g. the
tree for cooked will be represented as h�(cooked); f1; 2:1; 2:2gi4 . Note that
this representation is not required by the LTAG formalism. The second
projection of this ordered pair is used here for ease of explication. We will
occasionally use the �rst projection of the elementary tree to refer to the
ordered pair.

4.1 Setting up Contractions

We introduce an operation called build-contraction that takes an elementary
tree, places a subset from its second projection into a contraction set and
assigns the di�erence of the set in the second projection of the original

2The ordering is given by the fact that the elements of the set are Gorn addresses.
3In this paper, we shall assume there are no adjunction constraints.
4The reason why node address 2:1 is included in the second projection is discussed in

Section 6

6

elementary tree and the contraction set to the second projection of the new
elementary tree. The contents of the contraction set of a tree can be inferred
from the contents of the set in the second projection of the elementary tree.
Hence, while we refer to the contraction set of an elementary tree, it does
not have to be stored along with its representation.

Figure 5 gives some examples of this operation; each node in the con-
traction set is circled in the �gure. In the tree h�(cooked); f1; 2:1; 2:2gi ap-
plication of this operation on the NP node at address 2:2 gives us a tree with
the contraction set f2:2g. The new tree is denoted by h�(cooked)f2:2g ; f1gi,
or �(cooked)f2:2g for short. Targeting the NP nodes at addresses 1 and 2:2
of the tree �(cooked) gives us �(cooked)f1;2:2g.

NP*

S*

(believe)
{2.2}

β

S

VPNP

V

believes

NP

S

VPNP

V

cooked

(cooked)
{1, 2.2}

α

(cooked)β
{1}

S

NP

S

VPNP

V NP

cooked

(cooked)α
{2.2}

0

1 2

2.1 2.2

SRP

VPNP

V NP

εcooked

Figure 5: Building contraction sets

We assume that the anchor (the terminal that lexicalizes an elementary
tree) cannot be the target of build-contraction. This assumption needs to
be revised in the case of verbs when gapping is considered in this framework
(See Section 6).

7

4.2 The Coordination Schema

We use the standard notion of coordination which is shown in Figure 6 which
maps two constituents of like type, but with di�erent interpretations, into a
constituent of the same type5.

X XConj

X

Figure 6: Coordination schema

We add a new operation to the LTAG formalism (in addition to substi-
tution and adjunction) called conjoin6. While substitution and adjunction
take two trees to give a derived tree, conjoin takes three trees and composes
them to give a derived tree. One of the trees is always the tree obtained by
specializing the schema in Figure 6 for a particular category7.

Informally, the conjoin operation works as follows: The two trees be-
ing coordinated are substituted into the conjunction tree. This notion of
substitution di�ers from the traditional LTAG substitution operation in the
following way: In LTAG substitution, always the root node of the tree being
substituted is identi�ed with the substitution site. In the conjoin operation
however, the node substituting into the conjunction tree is given by an algo-
rithm, which we shall call FindRoot that takes into account the contraction
sets of the two trees. FindRoot returns the lowest node that dominates all
nodes in the second projection of the elementary tree8.

For example, FindRoot(�(cooked)f2:2g) will return the root node, i.e.

5In this paper, we do not consider coordination of unlike categories, e.g. Pat is a

Republican and proud of it. (Jorgensen and Abeill�e, 1992) contains an analysis of these
types of coordination in a TAG framework.

6Later we will discuss an alternative which replaces this operation by the traditional
operations of substitution and adjunction.

7The tree obtained will be a lexicalized tree, with the lexical anchor as the conjunction:
and, but, etc.

8This will allow a node being coordinated to dominate a pair of foot nodes. Such a
case occurs, for instance, when two auxiliary trees with substitution nodes at the same
tree address are coordinated with only the substitution nodes in the contraction set. This
is resolved by stating the restriction on not having a discontinuous constituent in the
de�nition of the conjoin operation. This particular problem was captured (in a similar
way) by the string contiguity condition in (Joshi and Schabes, 1991).

8

corresponding to the S conj S instantiation of the coordination schema.
FindRoot(�(cooked)f1;2:2g) will return node address 2:1, corresponding to
the V conj V instantiation, and FindRoot(�(cooked)f1g) will return address
2, corresponding to the VP conj VP instantiation.

The conjoin operation then creates a contraction between nodes in the
contraction sets of the trees being coordinated. The term contraction is
taken from the graph-theoretic notion of edge contraction. In a graph, when
an edge joining two vertices is contracted, the nodes are merged and the new
vertex retains edges to the union of the neighbors of the merged vertices9.
The conjoin operation supplies a new edge between each corresponding node
in the contraction set and then contracts that edge. For the purposes of this
paper, the contraction sets are taken to be identical10.

Another way of viewing the conjoin operation is as the construction of an
auxiliary structure from an elementary tree. For example, from the elemen-
tary tree h�(drinks); f1; 2:1; 2:2gi, the conjoin operation would create the
auxiliary structure h�(drinks)f1g; f2:2gi shown in Figure 7. The adjunction
operation would now be responsible for creating contractions between nodes
in the contraction sets of the two trees supplied to it. Such an approach is
attractive for two reasons. First, it uses only the traditional operations of
substitution and adjunction. Secondly, it treats conj X as a kind of \modi-
�er" on the left conjunct X. A similar view is taken in the CCG approach.
We do not choose between the two representations but for this paper, we
will continue to view the conjoin operation as a part of our formalism.

In summary, the conjoin operation works as follows. Let C be some
instance of the coordination schema and T1 and T2 be two elementary trees:

� substitute T1 and T2 into C using FindRoot if nodes in T1 and T2 where
substitution occurs do not dominate footnodes.

� create edges between identical nodes in the contraction sets of T1 and
T2 and contract each edge.

For example, applying conjoin to the trees Conj(and), �(eats)f1g and
�(drinks)f1g gives us the derivation tree and derived structure for the con-
stituent in (6) shown in Figure 8.

9Merging in the graph-theoretic de�nition of contraction involves the identi�cation of
two previously distinct nodes. In the process of contraction over nodes in elementary trees
it is the operation on that node (either substitution or adjunction) that is identi�ed.

10This is a constraint on the application of the conjoin operation similar to the notion
of adjoining constraints.

9

NPVP* and

VP
S

NP

S

VP

V NP

eats

(eats)α

(drinks)β
{1}

{1}

VP

V NP

drinks

(eats)α (drinks)β {1}{1}

S

VP

V NP

drinks

S

VP

V NP

eats

NP

VP

and

Derivation tree

John eats cookies and drinks beer

Figure 7: Coordination as adjunction.

10

(6) . . . eats cookies and drinks beer.

VPConj(and)

VP and VP

Derived structure

and

S

NP VP

V NP

VP

eats

S

VP

V NP

cookies beerdrinks

α

Conj(and)

αα

1

2.2

(cookies)

(eats)
{1}

(drinks)
{1}

α (beer)

2.2

3

Derivation tree

Figure 8: An example of the conjoin operation.

The contraction set corresponds to a set of arguments that remain to
be supplied to a functor. A node in a derivation tree with a non-empty
contraction set indicates that the derivation is incomplete. So, for instance,
in Figure 8 the nodes �(eats)f1g and �(drinks)f1g signify an incomplete
derivation.

4.3 The E�ects of Contraction

One of the e�ects of contraction is that the notion of a derivation tree for
the LTAG formalism has to be extended to an acyclic derivation graph.
Simultaneous substitution or adjunction modi�es a derivation tree into a
graph as can be seen in Figure 911. We shall use the general notation
derivation structure to refer to both derivation trees and derivation graphs.

If a contracted node in a tree (after the conjoin operation) is a substi-
tution node, then the argument is recorded as a substitution into the two
elementary trees as for example in the sentences (7) and (8).

(7) Chapman eats cookies and drinks beer.
(8) Keats steals and Chapman eats apples.

11The notion of simultaneous modi�cation at the same node address was also explored in
(Schabes and Shieber, 1994) for independent reasons. However, in their formalism distinct
trees modify a single node address. Hence they do not have to contend with derivation
graphs.

11

Figure 9 contains the derivation and derived structures for (7) and Fig-
ure 10 for (8). Notice that in Figure 10 the derivation graph for sen-
tence (8) accounts for the coordinations of the traditional nonconstituent
\Keats steals" by carrying out the coordination at the root, i.e. S conj S.
No constituent corresponding to \Keats steals" is created in the process of
coordination. An example of coordination at the V category is given in
Figure 11.

andVP

S

NPV

NP

eats cookies

S

VP

V NP

drinks beer

Chapman

VP
Conj(and)

1 3

(eats)α (drinks)α{1} {1}

2.2 1 1 2.2

(Chapman)α(cookies)α (beer)α

Derivation structure Derived structure

Figure 9: Derivation for Chapman eats cookies and drinks beer.

On the other hand if a foot node is contracted in an auxiliary tree then
the e�ect of contraction is that both conjuncts adjoin into the same structure
simultaneously, as in the sentence (9). Figure 12 contains the derivation
graph and the various elementary trees for the sentence in (9).

(9) I liked the beans that Harry cooked and which Mary ate.

Considerations of the locality of movement phenomena and its represen-
tation in the LTAG formalism (Kroch and Joshi, 1986) can also now explain
constraints on coordinate structure, such as across-the-board exceptions to
the well known coordinate structure constraint, see Fig. 13. Also in cases of
unbounded right node raising such as Keats likes and Chapman thinks Mary
likes beans simply adjoins into the right conjunct of the coordinate structure
as shown in Figure 4.3.

If we consider how the derivation obtained in Figure 13 works within
the context of a larger derivation, like for instance, I know who laughed and
seemed to be happy, then comparing the approach of using the conjoin oper-
ation as opposed to using the modi�ed adjunction approach to coordination
(shown for the same example in Figure 4.3), we �nd that in Figure 13 there
is an ambiguity as the clause I know can attach to either S node, while in

12

Conj(and)
1 3

α α(steals) (eats)
{2.2} {2.2}

(apples)α(Keats)α α(Chapman)
2.2 2.21 1

S

S and S

NP VP

VKeats

NP

Chapman

VP

V NP

steals eats apples

Conj(and)
1 3

α α(steals) (eats)
{2.2} {2.2}

1

(Keats)α
1

(Chapman)α

Derived structure

Derivation structures

Figure 10: Derivation for Keats steals and Chapman eats apples.

S

V

NP VP

NP

S

VP

V
and

V

beanscooked

John

ate

Conj(and)
1 3

α α
1 1

2.22.2 (John)α

(ate)

(beans)α

(cooked)
{1}{1}

Derivation structure Derived structure

Figure 11: Derivation and derived structures for John cooked and ate the
beans.

13

S

NP VP

V

liked

NP

NP

I

NP

the beans

S

andS S

NP

NP*i

εi

S

S

VP

V NP

cooked/ate

NP

RP

(cooked)β
{1}

(Harry)α

β(that)
(ate)β

{1}

(Mary)α(which)β
2.2.12.1

1 2.2

(beans)α(I)α

α(liked)

1

Conj(and)

1

2.2.1

2.1

3

1

Elementary structures

Derivation structure

Figure 12: Derivation graph for I liked the beans that Harry cooked and
which Mary ate

14

εi

S

S

VP

iNP

NP

laughed

S

andS S

V

VP

seemed/be

VP*

NP

who
εi

NP

Elementary trees

S

VP

V

iNP

AP

happyε

S

εi
εi

S S S

S

VPNP

laughed

NP

S

VP

APV

ε happy

VP

VP

VP

V

V

V

seemed

be

to

andNP
i

who

Conj(and)
1 3

(happy)α(laughed)α
1

1
(be)β

2.2

(who)α
0

(to)β
0

(seemed)β

Derived structure
Derivation structure

Figure 13: Derivation for Who laughed and seemed to be happy?

15

S

andS S

S

VPNP

V NP

likes

beans

S

VPNP

V

likes

Keats

S

VP

V

NP

S

S

and

thinks
NP VP

Mary
V

likes

NP

Chapman

Derived structure

Conj(and)
1 3

α(likes)

1

α(Chapman)

(thinks)βαα(Keats) (beans)

2.2 2.2
0

1

(likes)α

α(Mary)

1

Derivation structure

Elementary trees
α(likes)

{2.2}
β(thinks)

S

VPNP

V

thinks

{2.2}

S*

Figure 14: Derivation for Keats likes and Chapman thinks Mary likes beans.

16

Figure 4.3 since the right conjunct is a modi�er, there is no such ambiguity
as the derivation tree in Figure 4.3 shows.

S

NP

V

VP

S*

know

εi
εi

APV

ε happy

VP

VP

VP

V

V

V

be

to

seemed

VP*

S

NP

V

VP

know

I
NP S

VPNP

laughed

NP

Si

VP
and

S S
S

who

I know who laughed and seemed to be happy

εi

S

S

VPNP

laughed

NPi

εi

NP

S

NPi

S*

S

S

VP

V AP

happyε

and

β

α (laughed)

(I)α

β(happy)
0 2

1
1

(who)

(know)

1

α(be)

2.2

β

β

0
(seemed)

0

(to)β

Elementary trees

Derived structure

Derivation structure

Figure 15: Derivation for I know who laughed and seemed to be happy.

4.4 Creating Tree Structures

The derived structures created in the above examples are di�cult to rec-
oncile with traditional notions of phrase structure. However, the derivation
structure encodes the history of a derivation, i.e. exactly how the derived
structure is built from particular elementary structures. Hence the derived
structure is much less signi�cant in an LTAG. Also, the derivation tree gives
us all the information about dependency that we need about the constituent.

Figure 16 shows one way of reconciling the derived structure given by the
derivation graph in Figure 9 to a tree structure. The root of the conjunction
tree assumes the position of its conjuncts in the derived tree. The parents
of each conjunct are also merged. In general, for any coordinated node the

17

supertree upto the root of its elementary tree has to be merged.12.

cookies

Chapman

NP

S

VP

V NP

S

VP

V NP

eats drinks beer

VP

and

cookies

Chapman

NP VP

V NP

VP

V NP

eats drinks beer

VP

and

S

Figure 16: Producing a tree by collapsing supertrees in a derived structure.

5 Comparisions

Using the analogy of elementary trees as structured categories, we can view
substitution either as function application or in cases where the substituted
element itself brings in its argument structure as function composition. Ad-
junction is always like function composition. Contraction can be viewed as
distributing the arguments or functors for the simultaneous use of functional
application or composition

Although the approach presented using TAGs is CCG-like, it builds
derivations over larger structures, namely the elementary trees in a TAG.
This encodes locally in a tree, a derivation history which is non-local in a
CCG. Sometimes, such a history can be useful. For instance, in the sentence
John thinks Mary and Harry won using type raising and composition rules,
the string John thinks Mary can be associated with the type S/(SnNP) (see
Figure 17. This is the type associated with a type raised NP such as Harry,
thus the coordination rule can apply on these constituents to give us ((John
thinks Mary) and (Harry)) won. (This was also noted in (Henderson, 1992).)
One way to rule out this derivation is by adding some kind of feature to the
type S/(SnNP). Such a feature would encode (in some appropriate way)
the fact that the type S/(SnNP) for the left conjunct, John thinks Mary,
has been derived from the type S/S while the type S/(SnNP) for the right

12The tree addresses in the tree created by the derivation structure also have to be
properly updated.

18

conjunct, Harry, has been type raised from an NP. In the approach to coor-
dination presented in this paper, such a problem does not arise since entire
elementary trees are coordinated. This provides enough context to rule out
an LTAG derivation analogous to the CCG derivation.

John

NP
> T

S/(SnNP)

thinks

(SnNP)/S

> B
S/S

Mary

NP
> T

S/(SnNP)

> B
S/(SnNP)

and

CONJ

Harry

NP
> T

S/(SnNP)

&
S/(SnNP)

won

SnNP

>
S

Figure 17: A CCG derivation for John thinks Mary and Harry won.

6 Contractions on Anchors

We now address the earlier assumption that the anchor (the terminal that
lexicalizes a tree) cannot be the target of build-contraction. An LTAG along
with the operations of substitution and adjunction also has the implicit oper-
ation of lexical lookup or lexical insertion (represented as the diamond mark
in Figure 18). Under this view, the LTAG trees are taken to be templates.
For example, the tree in Figure 18 is represented as h�(eat); f1; 2:1; 2:2gi.

If we extend the notion of contraction in the conjoin operation together
with the operation of lexical insertion we have the following observations:

� The two trees to be used by the conjoin operation are no longer strictly
lexicalized as the label associated with the diamond mark is a preter-
minal.

� Previous uses of conjoin applied to two distinct trees. If the lexical-
ization operation is to apply simultaneously the same anchor projects
two elementary trees from the lexicon.

� Since two distinct copies of the anchor are not selected from the lexi-
con, the terminal string at the anchor position in one of the two ele-

19

S

VPNP

V NP

α S

VPNP

V NP

α
{2.1}{2.1}

S

VPNP

V NP
◆

α

eats

Copy of α

Figure 18: Lexicalization in a LTAG.

mentary trees is realized as the null string. Its interpretation however
is determined by the common anchor.

Earlier in Section 4.2 we had considered an alternative to the conjoin
operation which involves only the usual operations of substitution and ad-
junction. However, when contractions are performed on anchors it is not
appropriate to treat conj X as a \modi�er" on some category X. Here we
have to use the conjoin operation, as combining three elementary structures,
instead. This is perhaps consistent with the observation that the construc-
tions discussed in Sections 6.1 and 6.2 are di�cult to describe as conj X
\modifying" the left conjunct X. For these reasons, although treating con-
juncts as introduced by adjunction has several appealing advantages, we
have presented most of the discussion in this paper in terms of the conjoin
operation.

6.1 Gapping

Using this extension to conjoin, we can handle sentences that have the \gap-
ping" construction like sentence (10).

(10) John ate bananas and Bill strawberries.

20

The conjoin operation applies to copies of the same elementary tree when
the lexical anchor is in the contraction set. For example, let �(eats) be the
tree selected by eats. The coordination of �(eats)f2:1g with a copy of itself
and the subsequent derivation tree is depicted in Fig. 1913.

NP

John
NP

fish

NP

Harry
NP

chips

1
1

S

S and

NP VP

S

NP VP

V NP NP◆

eats

John eats fish and Harry, chips

α

α α

α

Conj

nx0Vnx1(eats) nx0Vnx1()

(John)

(fish) (Harry)

(chips)

(and)

Figure 19: Handling the gapping construction using contractions.

From a parsing perspective, for these simple cases of gapping, the struc-
ture can be built before the input is handed to the parser.

(11) John wants Penn to win and Bill, Princeton.
(12) John wants to try to see Mary and Bill, Susan.

However, to handle cases such as sentences (11) and (12), lexical insertion
has to be handled by the parser while building a derivation. The identity of
copies of trees as opposed to originals is relevant here as allowing adjunctions
of copies onto originals and vice versa would create incorrect derivations.
Hence appropriate constraints on adjunction have to be imposed on copies
made while targeting an anchor for contraction.

6.2 Coordinating Ditransitive verbs.

In sentence (13) if we take the position that the string Mary a book is not
a constituent (i.e. give has a structure as in Fig. 20), then we can use the
notion of contraction over the anchor of a tree to derive the sentence in (13).
The structure we derive is shown in Fig. 21.

13In English, following (Ross, 1970), the anchor goes to the left conjunct.

21

(13) John gave Mary a book and Susan a ower.

S

NP VP

V NP

gave

NP

Figure 20: Tree for a ditransitive verb in LTAG.

S

NP VP

V NP

gave

S

VP

VP

and

John

Mary a book

NP

Susan a flower

NP NP

Figure 21: Derived tree for John gave Mary a book and Susan a ower.

6.3 Interactions.

Permitting contractions on multiple substitution and adjunction sites along
with contractions on the anchor allow the derivation of stripping structures
such as (14) (where the conjunct Bill too can be interpreted as [John loves]
Bill too or as Bill [loves Mary] too.

(14) John loves Mary and Bill too.

7 Parsing Issues

This section discusses the parsing issues that arise in the modi�ed TAG
formalism that we have presented in this paper. We do not discuss the

22

general issues in parsing TAGs, rather we give the appropriate modi�cations
that are needed for the formalism in this paper to the existing algorithm
for TAGs due to (Schabes and Joshi, 1988). Modi�cations to the parser
are given as inference rules in the deductive parsing framework described
in (Shieber, Schabes, and Pereira, 1995), following (Schabes, 1994).

7.1 Notation

Let G = (�; NT; I; A; S; C) be a TAG with the operations of substitution,
adjunction and the conjoin operation. � is the set of terminal symbols,
NT is the set of non-terminals distinct from �, I and A are the sets of
initial and auxiliary trees, I [A is the set of elementary trees, S is the
distinguished start symbol and C is the set of trees that are instantiations
of the coordination schema (see Figure 6). All the sets are �nite. Suppose
a1 : : : an is an input string. The Greek letters �, � and � are used to denote
nodes in elementary trees. Greek letters and � are used to denote nodes in
trees from the set C. We assume that multiple adjunctions on a single node
are allowed (Schabes and Shieber, 1994). This is a modi�cation from the
standard TAG derivation (Vijay-Shanker, 1987) where it was disallowed.

C

D

S

S* B

A

b

Figure 22: An auxiliary tree with a contraction set

A layer of an elementary tree is represented textually in a style similar
to a production rule, e.g. �X ! �Y �Z . For instance, the tree in Figure 22
is represented by the production rules in (1)14.

The predicate Init(�X) is true if and only if �X is the root of an initial
tree. For each 2 C, Init() is de�ned to be true. The predicate Aux(�X)

14This representation and the notations for presenting the deductive parsing algorithm
have been inspired by (Schabes and Waters, 1995).

23

is true if and only if �X is the root of an auxiliary tree. The predicate
Subst(�X) is true if and only if �X is marked for substitution. The predicate
Foot(�X) is true if and only if �X is the foot node of an auxiliary tree. The
predicate Share(�X) is true if and only if �X is in the contraction set of an
elementary tree �. The predicate Root(�X) is true if and only if �X is the
highest node (smallest Gorn address) that dominates all nodes �Y such that
:Share(�X) and Subst(�Y) or Foot(�Y) is true. The predicate Conj(X)
is true if and only if X is the category being coordinated in some tree
 2 C. The predicate Conjoin(X ; �X ; �X) is true if and only if � and �

can be conjoined at node X using 2 C. This predicate can check certain
constraints such as identical contraction sets in the trees being coordinated.

�0S ! �1S�
2

B (1)

�2B ! �2:1A �2:2C

�2:1A ! �2:2:1D �2:2:2b

Aux(�0S)

Root(�2:1A)

Foot(�1S) ^ Share(�1S)

Subst(�2:2C) ^ Share(�2:2C)

Subst(�2:2:1D)

7.2 Left to Right Parsing

The algorithm relies on a tree traversal that scans the input string from left
to right while recognizing the application of the conjoin operation on the
elementary trees selected by the terminals in the input string. The nodes in
the elementary trees are visited top-down left to right as de�ned in (Schabes,
1994) (see Figure 23).

In a manner analogous to dotted rules for CFGs as de�ned in (Earley,
1970) the dot in Figure 23 divides a subtree into a left context and a right
context, enabling the algorithm to scan the elementary tree in a top-down
left to right manner while trying to recognize possible applications of the
conjoin operation.

The derived structure corresponding to a succesful conjoin operation is
a composite structure built by conjoining two elementary trees into an in-
stantiation of the coordination schema. The algorithm never builds derived

24

S

B

A

b

C

D

S

a

Figure 23: Example of a tree traversal

structures. It builds the derivation by visiting the appropriate nodes during
its tree traversal in the following order (see Figure 24).

1 2 � � � 3 4 � � � 5 6 � � � 20 70 � � � 30 40 � � � 50 60 � � � 7 8

The other task of the algorithm is to compute the correct span of the
input string for the nodes that have been identi�ed with each other via a
contraction. Figure 24 gives the possible scenarios to be considered for the
position of shared nodes in the derivation (i.e. nodes that have been linked
by a contraction). All of the cases in Figure 24 can occur while building a
derivation structure for the conjoin operation.

Speci�cally, when foot nodes undergo contraction, the algorithm has to
ensure that both the foot nodes share the subtree pushed under them by the
predict completion move, e.g. � � � 9 10 � � � and � � � 90 100 � � � in Figure 24(a).
Similarly, when substitution nodes undergo contraction, the algorithm has
to ensure that the tree recognized due to the predict substitution move is
shared by the nodes, e.g. � � � 11 12 � � � and � � � 110 120 � � � in Figures 24(b)
and 24(c) . The various positions in a top-down, left-to-right traversal at
which these nodes can occur is also shown in Figure 24.

In order to achieve this traversal across and within trees, some data
structures need to be de�ned.

7.3 Chart states

Dot positions in an elementary tree are represented by placing a dot in the
production for the corresponding layer in the tree. For example, the �rst

25

A A

A A

A AAA

(3) (6)

(5)(4)

(11) (12) (11)

X

(12)

(3’) (6’)

(4’) (5’)

(11’) (12’) (11’) (12’)

X

(c)

(2) (7)

X

X X

(1) (8)

(3) (3’)(6) (6’)

(4) (4’)(5) (5’)

A A

X X

(3)

(4) (5)

(6)X X
(3’) (6’)

(4’) (5’)

(11) (12) (11’) (12’)

(9) (10) (9’) (10’)

(a)

(b)
X does not dominate A

(2’) (7’)

Figure 24: Moving the dot while recognizing a conjoin operation

26

dot position in Figure 23 is �0S ! ��1S�
2

B. In dotted layer productions, the
Greek letters , �, and � are used to represent sequences of zero or more
nodes.

The algorithm collects states into a set called a chart. States are placed
and maintained in the chart by a suitable agenda mechanism. A state is a
6-tuple [p; i; j; k; l; rec?] where: p is a position in an elementary tree, i; j; k; l
are indices of positions in the input string recognized so far, i and l are
always bound, j and k can be unbound written as �, rec? is a boolean ag
used at some state [�X ! �Y � �; i; j; k; l; rec?] and rec? is true if and only
if Share(�Y) and either the subtree under footnode �Y or a substitution at
�Y has been recognized.

Recognition of the subtree under the foot-node which is in a contrac-
tion set or completion of substitution on a node in a contraction set can
occur in a variety of environments. It can occur before the conjoin oper-
ation is predicted, as in Figure 24(a) (when X does not dominate A) and
Figure 24(c). It can also occur after prediction of the conjoin operation but
before completion, as in Figure 24(a) (X dominates A) and Figure 24(b).
Even after completion of the conjoin operation as in Figure 24(a) (X does
not dominate A) and Figure 24(c). To handle all of these cases it is useful
to de�ne a notation to handle unifying the indices of shared nodes in the
chart, say �X and �X , such that Share(�X) is true and Share(�X) is true.
Assuming [�X ! �; i; j; k; l; rec?�X] and [�X ! ��;m; n; o; p; rec?�X] are
states in the chart, let �X t �X be shorthand for [i; j; k; l] t [m;n; o; p] and
when the indices have values spanning the input string, i.e. they are not
unbound, rec?�X = rec?�X = true.

7.4 Parsing Algorithm

The algorithm is given as a set of inference rules. It is only concerned with
the conjoin operation. In a full parser, handling substitution and adjunction
would proceed exactly as de�ned in (Schabes, 1994).

We initialize the chart by adding all dot positions at the root of an initial
tree. This is also done for initial trees with non-empty contraction sets and
for instantiations of the coordination schema.

Init(�S) ` [�S ! �; 0;�;�; 0; rec?] (2)

The algorithm handles two tasks, one is the recognition of the conjoin
operation and the other is the handling of contractions. Traversal of all trees,

27

including trees with contractions, is handled by the traversal mechanisms of
the standard parser (Schabes, 1994).

We predict all possible elementary trees with the dot at some node X
in an instantiation of the coordination schema where a conjoin operation is
predicted, i.e. Conj(X) is true.

[mX ! � nX; i; j; k; l; rec?] ^ Conj(nX) ^ Root(�X) (3)

` [�X ! �; l;�;�; l; rec?]

Also, we predict completion of all nodes recognized under X .

[�X ! �; l;�;�;m; rec?] ^ Root(�X) (4)

^[mX ! � nX; i; j; k; l; rec?]

` [mX ! nX � ; i; j; k;m; rec?]

When the chart contains a state of the form [X ! �; i; j; k; l; rec?],
where X is the root of some instantiation of the coordination schema, we
can complete recognition of the conjoin operation. This rule searches the
chart for two conjuncts and completes the conjoin operation. This state also
triggers the rule that ensures that positions over the input string for nodes
that are shared will be identical. The actual positions may be computed by
the inference rules that handle contractions.

[X ! �; i; j; k; l; rec?] ^ Conjoin(X ,�X ,�X) (5)

^[�X ! ��; p; j; k; q; rec?] ^ [�X ! ��; j; x; y; k; rec?]

^8�iY (Share(�
i
Y))(�

i
Y t �iY)

` [X ! �; i; p; q; l; rec?]

The complexity of the algorithm stems from step (5). Since to recog-
nize completion of the conjoin operation the algorithm has to loop over the
chart to match values of eight distinct indices, the time complexity is O(n8).
This step accounts for the complexity of the entire algorithm since it is the
most expensive step. It is not clear if one can do better at this task, how-
ever by adopting the conjoin operation as a modi�ed adjunction operation
mentioned earlier, the complexity can be brought back to the O(n6) of a
standard Earley-style parser (Schabes, 1994).

The following inference rules handle substitution and the recognition of
the subtree under a foot node for the nodes that are shared via contractions
between two trees. Rather than repeat the inference rules in the parser for

28

a standard TAG, we will assume that those rules do not apply to nodes �X
when Share(�X) is true.

The �rst such inference rule skips over a contracted node without ac-
cepting any part of the input string.

[�X ! ��; i; j; k; l; rec?] ^ Share(�X) (6)

` [�X ! ��; i; j; k; l; false]

If some contracted foot node can complete recognition in the subtree
under the foot node we record this fact on the state for future reference.

[�X ! �A�; i; j; k; l; rec?] (7)

^[�Y ! ��A; i;�;�; i; rec?] ^ Foot(�A) ^ Share(�A)

` [�! �; i; i; l; l; true]

Similarly, if some contracted node can complete substitution then we
mark this fact on the state for future reference.

[�X ! �A�; l;�;�;m; rec?] (8)

^[�Y ! ��A; i; j; k; l; rec?] ^ Subst(�A) ^ Share(�A)

` [�Y ! �A�; i; j; k;m; true]

If there is a state of the form [�0S ! �; 0;�;�; n; rec?] in the chart with
� 2 I and for all states that contribute to the derivation (this can be done
in linear time if along with placing states in the chart we annotate them
with the reason for adding them to the chart), the value for rec? in those
states is true.

8 Conclusion

In summary, we have shown that a CCG-like account for coordination can
be given in a LTAG while maintaining the notion of a derivation tree which
is central to the LTAG approach. We showed that �xed constituency can be
maintained at the level of the elementary tree while accounting for cases of
non-constituent coordination. In the discussion of coordination the central
operation of contraction was disallowed on items that anchor an elementary
tree. We showed that the \gapping" construction as well as cases of non-
constituent coordination can be satisfactorily handled by allowing such an
operation to work on anchors. We have also briey presented a parser which

29

was used in extending the XTAG system (XTAG Research Group, 1995) thus
extending it to handle coordination. This is the �rst full implementation of
coordination in the LTAG framework.

9 Acknowledgements

We would like to thank Daniel Hardt, Nobo Komagata, Seth Kulick, David
Milward, Jong Park, James Rogers, Yves Schabes, B. Srinivas, and Mark
Steedman for their valuable comments.

References

Earley, J. 1970. An e�cient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94{102.

Henderson, James. 1992. A structural interpretation of combinatory cat-
egorial grammar. Technical Report MS-CIS-92-49, University of Penn-
sylvania, Philadelphia, PA.

Jorgensen, H. and A. Abeill�e. 1992. Coordination of \Unlike" Categories in
TAG. In Proceedings of the 2nd TAG Workshop, Philadelphia, PA.

Joshi, Aravind and Yves Schabes. 1991. Fixed and exible phrase structure:
Coordination in Tree Adjoining Grammar. In Presented at the DARPA
Workshop on Spoken Language Systems, Asilomar, CA.

Kroch, A. and A. K. Joshi. 1986. Analyzing extraposition in a tree adjoining
grammar. In G. Huck and A. Ojeda, editors, Syntax and Semantics:
Discontinuous Constituents. Academic Press, New York.

McCawley, James. 1982. Parentheticals and discontinuous constituent
structure. Linguistic Inquiry, 13(1):91{106.

Ross, John. 1970. Gapping and the order of constituents. In M. Bierwisch
and K. Heidolph, editors, Progress in Linguistics. Mouton, The Hague.

Sarkar, Anoop and Aravind Joshi. 1996. Coordination in TAG: Formaliza-
tion and implementation. In Proceeding of COLING'96, Copenhagen.

Schabes, Yves. 1990. The valid pre�x property and left to right parsing
of tree adjoining grammars. In Proceedings of the Second International

30

Workshop on Parsing Technologies, Cancun, Mexico, August. Associa-
tion for Computational Linguistics.

Schabes, Yves. 1994. Left to right parsing of lexicalized tree adjoining
grammars. Computational Intelligence, 10(4):506{524.

Schabes, Yves and Aravind K. Joshi. 1988. An Earley-type parsing algo-
rithm for tree adjoining grammars. In 26th Meeting of the Association
for Compuatational Linguistics (ACL '88), Bu�alo, NY. Association for
Computational Linguistics.

Schabes, Yves and Stuart Shieber. 1994. An alternative conception of tree-
adjoining derivation. Computational Linguistics, 20(1):91{124.

Schabes, Yves and Richard Waters. 1995. Tree insertion grammar: A cubic-
time, parsable formalism that lexicalizes context-free grammar without
changing the trees produced. Computational Linguistics, 21(4):479{513.

Shieber, Stuart, Yves Schabes, and Fernando Pereira. 1995. Principles and
implementation of deductive parsing. Journal of Logic and Computation,
24(1-2):3{36.

Steedman, Mark. 1985. Dependency and coordination in the grammar of
Dutch and English. Language, 61:523{568.

Steedman, Mark. 1990. Gapping as constituent coordination. Linguistics
and philosophy, 13:207{264.

Steedman, Mark. 1997. Surface Structure and Interpretation: Unbounded
and Bounded Dependency in Combinatory Grammar. Linguistic Inquiry
monograph (to appear). MIT Press.

Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D.
thesis, Department of Computer and Information Science, University of
Pennsylvania.

Vijay-Shanker, K., Aravind Joshi, and David Weir. 1990. The convergence
of mildly context-sensitive grammatical formalisms. In Peter Sells, Stu-
art Shieber, and Tom Wasow, editors, Foundational Issues in Natural
Language Processing. MIT Press, Cambridge MA.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar
Formalisms. Ph.D. thesis, Dept. of Computer and Info. Sc., University
of Pennsylvania, Philadelphia, PA.

31

XTAG Research Group. 1995. A lexicalized tree adjoining grammar for en-
glish. Technical report, IRCS, University of Pennsylvania, Philadelphia,
PA.

32

