
Inductive Semi-supervised Learning
with Applicability to NLP

Anoop Sarkar and Gholamreza Haffari
anoop,ghaffar1@cs.sfu.ca

School of Computing Science

Simon Fraser University

Vancouver, BC, Canada

http://natlang.cs.sfu.ca/

2

Outline

• Introduction to Semi-Supervised Learning (SSL)

• Classifier based methods: Part 1
– EM, Stable mixing of Complete and Incomplete Information

• SSL using Generative Models for Structured Labels

• Classifier based methods: Part 2
– Self-training, the Yarowsky Algorithm, Co-training

• Data based methods
– Manifold Regularization, Harmonic Mixtures, Information Regularization

– Learning Predictive Structure from Multiple Tasks

• SSL using Discriminative Models for Structured Labels

3

Learning Problems

• Supervised learning:

– Given a sample consisting of object-label pairs (xi,yi), find the
predictive relationship between objects and labels.

• Un-supervised learning:

– Given a sample consisting of only objects, look for interesting
structures in the data, and group similar objects.

• What is Semi-supervised learning?

– Supervised learning + Additional unlabeled data

– Unsupervised learning + Additional labeled data

4

Motivation for SSL

• Pragmatic:

– Unlabeled data is cheap to collect (compared to labeled data).

– Example: Classifying web pages,

• There are some annotated web pages.

• A huge amount of un-annotated web pages are easily available by
crawling the web.

• Philosophical:

– The brain can exploit unlabeled data.

– Learning in a setting where data is randomly labeled or
labeled by a lazy teacher.

– Reduces to unsupervised learning in the worst case.

5

Why should more data help?
(Banko & Brill, 2001)

6

Why should unlabeled data help?

• If you have labeled data, why bother with unlabeled data?

– Don’t! If you have sufficient labeled data or very few
parameters = no sparse data problem: rarely occurs in NLP!

– Injecting unlabeled data can be a way to address the sparse
data problem

– Too many languages: cannot afford to annotate a million
words in each one

– For task of predicting y given x, you (should?) have a good
idea of how to predict p(x)

– Redundantly sufficient learners can be built (Mitchell, 1999)

– We provide more intuition in different learning settings in
the next few slides

Preliminaries ...

7

+

+

_

_

Labeled data only

+

+

_

_

+

+

_

_

Transductive SVM

SVM

(Vapnik, 2000; Joachims, 1999)

Intuition in Large-Margin Setting

Training a Support Vector Machine
(SVM), input x, label = {+,-}

Key idea: avoid regions with
high values for p(x)

(Zhang and Oles, 2000)

8

Intuition when using the EM algorithm
(Castelli, 1994; Castelli and Cover, 1995; Castelli and Cover, 1996; Cohen et.al., 2004)

• Assume we have “good” generative model for the data

• That is, there is a parameter setting such that probability p(x,y)

from the generative model captures the labeled data, and

• There is a parameter setting such that probability p(x) from the

generative model captures the probability of the unlabeled data

• Then EM can be used to identify which unlabeled examples

belong to the same class without knowing the true class label

• Labeled data can then be used to identify the actual class label

for each group

• For example, let us consider that a mixture of two Gaussians is

a good model for our binary classification task

(Dempster, Laird & Rubin, 1977)

9

Intuition when using the EM algorithm
Figure from (Nigam et.al., 2000)

The parameters µ0, µ1, the variance

and mixing parameters can be learnt

using EM which gives the Bayes

optimal decision boundary d

10

Intuition when using the EM algorithm
But the clusters are not labeled yet!

Assume that labeled data can be

used to identify the class labels for

each cluster.

(Castelli and Cover, 1995) show that

this process converges

exponentially wrt number of labeled

examples

11

Intuition when using the EM algorithm

• Note that we had to assume that the labeled
data can be used to identify the two classes

• Mixtures of Gaussians are known to be
identifiable; the details are in (Castelli &
Cover, 1995)

• However, other kinds of models may not be
identifiable;

• For more on this see the (Zhu, 2005) survey
which covers `Identifiability’

12

• Class distributions P(x|y,!) and class prior P(y|") are

parameterized by ! and ", and used to derive:

! "

x y• Unlabeled data gives information about the

marginal P(x|!,") which is:

• Unlabeled data can be incorporated naturally

(Zhang & Oles, 2000; Seeger, 2000)

Intuition for Generative models

13

• Unlabeled data gives information about µ,

and P(y|x) is parameterized by !.

• If µ affects ! then we are done!

– Impossible: ! and µ are independent given

unlabeled data.

• What is the cure?

– Make µ and ! a priori dependent.

– Input Dependent Regularization

• In Discriminative approach P(y|x,!) and P(x|µ) are

directly modeled.
!µ

x y

!µ

x y

(Zhang & Oles, 2000; Seeger, 2000)

Intuition for Discriminative models

14

Semi-Supervised Learning Methods

• A wide variety of methods exist:

– EM with generative mixture models (mix L + U)

– Self-training

– Co-training

– Data based methods

– Transductive Support Vector Machines (TSVMs)

– Graph-based methods

• In this tutorial we will make a distinction between:

– Inductive SSL methods

– Transductive SSL methods

15

• Transductive: Produce label only for the available

unlabeled data.

– The output of the method is not a classifier.

• Inductive: Not only produce label for unlabeled data,

but also produce a classifier.

• Analogy from (Zhu, 2005):

– Transductive learning: take-home exam

– Inductive learning: in-class exam

Inductive vs.Transductive

16

• Based on our definition: a Transductive SVM
(TSVM) is an inductive learner!

• This is because TSVM can be naturally used on
unseen data

• However, the name TSVM originates from the
following argument given in (Vapnik, 1998)

– Learning on the entire data space is solving a more difficult
problem

– If task is to annotate the test data, then only work on the
observed data (L+T): solve a simpler problem first!

Inductive vs.Transductive

17

Inductive vs.Transductive

• TSVM can be seen as a different way to do supervised

learning:

– we can get around i.i.d. assumption by learning a classifier geared

towards each test case (or all test cases together)

– e.g. when learning to recognize handwriting, transduction should help

if all test cases were handwritten digits by the same person; compare

with (Hinton and Nair, 2005)

• Training a TSVM is NP-hard

• But approximations exist: e.g. (Joachims, 1999) and many

others

• (Zhang and Oles, 2000) argue against TSVMs, but empirically

TSVMs seem to be beneficial

18

Inductive vs.Transductive

• (Goutte et. al., 2002) use transductive SVMs for finding
named entities in Medline abstracts, i.e. learns a binary
classifier

• (Niu, Ji & Tan, 2005) provide a semi-supervised feature
clustering algorithm for word-sense disambiguation; it is
transductive because it clusters features from test data with
those from the training data

• There are many IR related works in this area, see e.g.

– (Joachims, 1999) for text classification and

– (Okabe, Umemura and Yamada, 2005) for query expansion

• If TSVM is not an example of a transductive SSL method,
then what is?

19

• Graph mincuts (Blum and Chawla, 2001)

– Pose SSL as a graph mincut (also called st-cut) problem

– Two class classification setting: Positive labels (1) act as
sources and Negative labels (0) as sinks

– Unlabeled nodes are connected to other nodes with
weights based on similarity between examples (L or U)

– Objective is to find a minimum set of edges to remove so
that all flow from sources to sinks is blocked

– In other words, given the constraint that each label yi is
either 0 or 1 the task is to minimize the function:

Inductive vs.Transductive

Do not change labels
on labeled data: weight
is infinity

Provides the “flow”
across the edges in
the graph

Example

20

• Graph mincuts have been used in NLP: (Pang and Lee, 2004)

• To train a binary sentence classifier: subjective vs. objective

– Can be used to create a subjective extract/summary from a movie
review

• Then the extract is categorized as a positive/negative review

• Labeled data external to dataset was used to train sentence
level subjective vs. objective classifiers

– Sentences were labeled using this classifier trained on labeled data

• Unlabeled data: sentences were given weights based on simple
proximity to other sentences

• Graph mincut method was used to extract the sentences
“attracted” to the subjective class

Inductive vs.Transductive

21

• For this tutorial we will focus on Inductive SSL methods:

Why?

• Most graph-based transductive methods scale badly with

respect to the time complexity, which is typically O(n3)

• It is possible to improve the complexity to O(n) but these ideas

are based on assumptions or methods that may or may not

apply to common NLP tasks

• Most interest in NLP is for the use of very large datasets (like

those used to train language models) and inductive methods

are more suitable for such a setting

Focus on Inductive SSL

22

• Other surveys do a good job of covering transductive
SSL methods, see

– Semi-Supervised Learning (Chappelle et.al., to appear)

– Semi-Supervised Learning Literature Survey (Zhu, 2005)

– Learning with Labeled and Unlabeled Data (Seeger, 2000)

– Learning from L and U data: An Empirical Study Across
Techniques and Domains (Chawla & Karakoulas, 2005)

• In particular Chapter 25 of (Chappelle et. al., to
appear) which is available online has a lengthy
discussion comparing semi-supervised learning and
transductive learning.

Focus on Inductive SSL

Note: these surveys also cover many
Inductive SSL methods!

23

• Classifier based methods:

– Start from initial classifier(s), and iteratively enhance it

(them)

• Data based methods:

– Discover an inherent geometry in the data, and exploit it in

finding a good classifier.

Two Algorithmic Approaches

24

• The first classifier based method we will study uses the EM
algorithm which provides the Maximum Likelihood (ML)
estimates for unlabeled data treating the labels as hidden data

• For labeled data: ML estimates usually reduce to simply the
relative frequency counts

• For unlabeled data: ML estimates are computed using EM (an
iterative re-estimation algorithm to find parameter values)

• If we have a prior over models, MAP estimation can be used
to find a good model from the space of all models and
likelihood of the data given this model.

• We will assume some familiarity with EM in this tutorial (but
typically we will use it as a black box inside other algorithms)

Classifier based Methods: Part 1

25

• Basic EM:

1. Initialize model using parameter estimation from labeled

data

2. Re-estimate model on unlabeled data using the EM

algorithm

3. Return model after EM converges; This model is used to

measure performance on test data

EM: Combining Labeled and Unlabeled Data
(Dempster, Laird & Rubin, 1977)

Forward link ...

26

• Use EM to maximize the joint log-likelihood of

labeled and unlabeled data:

: Log-likelihood of

labeled data

: Log-likelihood of

unlabeled data

(Dempster, Laird & Rubin, 1977)

EM: Mixtures of Labeled and Unlabeled Data

27

• Labeled examples from XL: (xi, yi), where yi is the

label and unlabeled examples xi from XU

• Each input xi is generated from a mixture mi with

prob f(xi | !i)

• If there are L mixture components then the density

has mixing parameters #k which sum to 1

EM: Mixtures of Experts
(Miller and Uyar, 1997; Shahshahani and Landgrebe, 1994)

28

• Labeled examples from XL and unlabeled examples

from XU

• The likelihood of the data XL and XU is given by:

EM: Mixtures of Experts
(Miller and Uyar, 1997; Shahshahani and Landgrebe, 1994)

29

• (Miller and Uyar, 1997) show that EM can

be used to learn the parameters f(xi | !i) as

well as the mixture parameters #k

• They provide two variants:

– (1) the mixture components and the class labels

are conflated to be the same, and

– (2) the mixture components are predicted first

given the feature value and the class label is

predicted given the mixture component

EM: Mixtures of Experts
(Miller and Uyar, 1997; Shahshahani and Landgrebe, 1994)

30

EM: Mixtures of Labeled and Unlabeled Data

• So far we have equal contributions from labeled and
unlabeled data

• In practice, it is better to discount the unlabeled data

• We can do this in a mixture model

 $ LU + (1 - $) LL

• Standard ML estimation means that the value of $ is
set proportional to the size of each set, LL and LU, but
this is not what we want

• We generally discount the estimates from LU since
they are less reliable

31

• (Nigam et.al., 2000) combine labeled and unlabeled
data for document classification using EM

• Classification model is a Naive Bayes model

• Setting is similar to (Miller and Uyar, 1997) except
for model parameters

• f(xi | !i) is now a Naive Bayes classifier defined as
the product of all the words xij in document xi given
the doc. class/feature value

• The mixture parameters #k indicate the likelihood
of each word in a document belonging to a topic or
a class

EM: Mixtures of Labeled and Unlabeled Data
(Nigam et.al, 2000)

32

• They provide two variants:

– (1) the mixture components and the class labels are
conflated to be the same and EM counts are discounted
using an extra parameter $, and

– (2) each class has several sub-topics each with a word
distribution; each word is conditioned on a mixture
component and the class label is conditioned on the
component (a many to one mapping)

• Both $ and the number of mixture components for
unlabeled data are tuned on a held-out set.

• In several expts, these variants of EM are shown to
exploit unlabeled data effectively in the document
classification task.

EM: Mixtures of Labeled and Unlabeled Data
(Nigam et.al, 2000)

33

EM: Mixtures of Labeled and Unlabeled Data

• (Callison-Burch et. al., 2004) proposes a mixture model for
statistical MT

– The model combines human annotated word-aligned data with EM
learnt word-alignments (using IBM models)

– It uses the discounting idea; Setting $ = 0.9 (almost all weight on
labelled data) seemed to perform the best in the experiments

• (McClosky et. al, 2006) use discounting to combine counts
from parsed output with labeled data for statistical parsing:
improves parse f-score from 91.3 to 92.1 for parsing WSJ

• (Corduneanu & Jaakkola, 2002) provide a general framework
for optimizing the log-likelihood $ LU + (1 - $) LL and the
optimal value of $

skip ahead ...

34

• Use $ to combine the log-likelihood of labeled and

unlabeled data in an optimal way:

 $ LU + (1 - $) LL

• EM can be adapted to optimize it.

• Additional task is determining the best value for $.

(Corduneanu & Jaakkola 2002)

Stable Mixing of Information

35

• E and M steps update the value of the parameters for

an objective function with particular value of $.

• Name these two steps together as EM$ operator:

• The optimal value of the parameters is a fixed point

of the EM$ operator:

Stable Mixing: EM$ Operator

36

0 1 0 1$ $

• How to choose the best $?

– By finding the path of optimal solutions as a function of $

– Choosing the first $ where a bifurcation or discontinuity

occurs; after such points labeled data may not have an

influence on the solution.

! !

Stable Mixing: Path of solutions

$ LU + (1 - $) LL

37

SSL for Structured Labels

• Generative model based:

– Hidden Markov Model (HMM)

– Stochastic Context Free Grammar (SCFG)

• Discriminative model based (to be covered later):

– Co-Hidden Markov Perceptron

– Semi-Structured Support Vector Machines (SSVM)

– Co-Structured SVM (Co-SSVM)

– Semi-Kernel Conditional Random Fields (KCRF)

38

Hidden Markov Models

• Hidden Markov Model (HMM) is the standard
generative model for sequence learning: input
sequence labeled with output sequence of same
length.

• EM can be used to train HMM when unlabeled data
exists: Forward-Backward algorithm

• Decoding (finding the best label sequence for given
input sequence) can be done in linear time by the
Viterbi algorithm

39

Probabilistic Context Free Grammars

• Probabilistic Context Free Grammar (PCFG) is the
standard generative model for tree structure: input
sequence is labeled with a tree (input = leaves)

• EM can be used to train PCFG when unlabeled data
exists: Inside-Outside algorithm

• Decoding (finding the best parse tree for a given
input) can be done in polynomial time by the Viterbi
algorithm

40

Basic EM for HMMs

• (Cutting et. al., 1992) used Basic EM with HMMs for
a part-of-speech tagging task and produced great
results by boosting performance using unlabeled data
and EM

• (Brill, 1997) did a similar likelihood estimation in the
Transformation-based learning framework

• Both rely on implicitly or explicitly knowing the tag
dictionary for words in the unlabeled data.

each word in the unlabeled data is associated with a list of
possible tags,using clustering or morphological classes

41

Basic EM for HMMs

• (Merialdo, 1994) and (Elworthy, 1994) used varying amounts
of labeled and unlabeled data to test effectiveness of basic EM
using HMMs for the part-of-speech tagging task

• Different settings corresponded to varying amounts of
supervision (or quality of labeled data)

• (Merialdo, 1994) also tried various constraints to keep p(t|w)
fixed or to keep the marginal probability p(t) fixed at each EM
iteration -- although these were not very effective

• These expts showed that EM for HMMs seems to work only in
cases of very little labeled data and hurts accuracy in all other
cases with large or medium amount of labeled data

42

Basic EM for HMMs

Figure from (Elworthy, 1994)

43

• The second class of classifier based methods we will
study are bootstrapping methods

• These include methods like: self-training, the
Yarowsky algorithm, co-training, etc.

• In these methods, we start by training model(s) on
some labeled data

• Then unlabeled data is labeled using model(s) and
some examples are selected to be added as newly
labeled examples

• This procedure is iterated and the labeled data set is
grown

Classifier based Methods: Part 2

44

• Self-training procedure:

– A classifier is trained with a small amount of labeled data

– The classifier is then used to classify the unlabeled data

– Typically the most confident unlabeled points, along with
the predicted labels are incorporated into the training set

– The classifier is re-trained and the procedure is repeated

• This is the simplest form of a bootstrapping method

• Learning using EM is related to self-training;

– self-training only uses the mode of the prediction
distribution

Self-Training

45

• (Charniak, 1997) reported a single round of self-training on
30M words for statistical parsing: resulted in a 0.2~0.4 point f-
score improvement on WSJ parsing

• (McClosky et. al., 2006) improve on vanilla self-training by
discounting the events learnt from unlabeled data: resulted in a
f-score improvement from 91.3 to 92.1

• (Riloff et. al., 2003; Phillips & Riloff, 2002) use self-training
to extract patterns that identify subjective nouns

Self-Training

46

• (Maeireizo et. al., 2004) use self-training between two
classifiers to classify dialogues as emotional or non-emotional.
Each classifier was trained on a single class

• (Hindle & Rooth, 1993) proposed an idea for prepositional
phrase (PP) attachment disambiguation which is now
commonly used in self-training for NLP:

• Extract unambiguous cases from a large unlabeled corpus and
then use those cases as training data in a disambiguation
classifer

• (Ratnaparkhi, 1998) has further experiments along these lines,
also for PP attachment

Self-Training

47

• (Yarowsky, 1995) created a new form of self-training for
word-sense disambiguation which incorporated high
confidence examples as labeled data

• The algorithm is similar to self-training but also used a second
constraint: “one sense per discourse/document” to bootstrap
new features.

• We refer to this and other variants of self-training that depend
on high precision models as the Yarowsky algorithm

Self-Training

48

The Yarowsky Algorithm

Iteration: 0

+

-

A

Classifier

trained

by SL

Choose instances

labeled with high

confidence

Iteration: 1

+

-

Add them to the

pool of current

labeled training

data

……

(Yarowsky, 1995)

Iteration: 2

+

-

49

The Yarowsky Algorithm

Figure from (Yarowsky, 1995)

50

The Yarowsky Algorithm

Figure from (Yarowsky, 1995)

One sense per
discourse
constraint can
help
bootstrapping
by injecting
new patterns

51

The Yarowsky Algorithm

Figure from (Yarowsky, 1995)

52

The Yarowsky Algorithm

• Input: each example x is

either labeled L(x) or

unlabeled U0(x)

• For U0(x) a special class

label is used for unknown: %

• Classifier prediction:

 y = arg maxj Pr(j | x , !) if

Pr(j | x , !) > threshold &

 y = % otherwise

t = 0

Loop:

for each example x:

estimate Pr(j | x , !) using L
and Ut(x)

Ut+1(x) = y, where

y = arg maxj Pr(j | x , !) if
Pr(j | x , !) > threshold &

 y = % otherwise

If Ut+1(x) = Ut(x) then Stop

Else t = t+1 and restart Loop

53

(Abney, 2004)

Analysis of the Yarowsky Algorithm

• It can be shown that some variants of the Yarowsky algorithm
optimize either negative log likelihood H or an upper bound on
it, called K

• Definition:
– Empirical labeling distribution 'x(j)

• For a labeled data point x, it is 1 if j is the label of x and 0
otherwise

• For an unlabeled data point x it is the uniform distribution over the
possible labels.

– Model’s prediction distribution "x(j) = P(j | x , !)

• ! is the parameter vector of the model

54

• Once an unlabeled example x is labeled, it remains

labeled (its label is recomputed and may change)

• The threshold (is eliminated

• The resulting algorithm Y1 optimizes the following

objective function:

KL-DivergenceEntropy

A Modified Algorithm: Y1

55

!fj

j

f

• Each rule: f) j

– !fj : the score of feature f in

predicting the label j

– ! : the parameter vector of the model

• Let Fx to be the set of features of the

example x where |Fx| = m

• Define the prediction distribution for the

example x :

A Decision List based Model

56

Initialize N[f, j] = 0, Z[f] = 0
for all f, j

For each example-label pair
(x,j)

 For each feature f

increment N[f, j] and
Z[f]

For each feature f and label j

The empirical labeling

distribution 'x(j):

1. For a labeled data

point x, it is 1 if j is the

label of x and 0

otherwise

2. For an unlabeled data

point x it is the

uniform distribution

over the possible

labels.

A Modified Algorithm: DL-1-R

57

The Objective Function K

58

• Instances contain two sufficient sets of features

– i.e. an instance is x=(x1,x2)

– Each set of features is called a View

• Two views are independent given the label:

• Two views are consistent:

x
x1 x2

(Blum & Mitchell, 1998)

Co-Training

59

Co-Training

Iteration: t

+

-

Iteration: t+1

+

-

……

C1: A

Classifier

trained

on view 1

C2: A

Classifier

trained

on view 2

Allow C1 to label

Some instances

Allow C2 to label

Some instances

Add self-labeled

instances to the pool

of training data

60

(Blum & Mitchell, 1998)

Co-Training

• An example: build a classifier that categorizes

web pages into two classes:

+ is a course web page and

– is not a course web page

• Usual model, build a Naive Bayes classifier

61

(Blum & Mitchell, 1998)

Co-Training

• Notice that we can choose to classify each
labeled example in two natural ways

• x1 = text in the hyperlink to the page

 CSE 120, Fall semester

• x2 = text in the web page

 <html> ... Assignment #1 </html>

62

(Blum & Mitchell, 1998)

Co-Training

• Train one NB classifier for x1 and another NB classifer on x2

• Baseline model trained on L: Px1(.) * Px2(.)

• Co-training model is a modified version of self-training: with
two views

• The x1 classifier produces high confidence output from U and
provides it to x2 (and vice versa)

• On the WebKB dataset, co-training outperforms the baseline;

• One trick used was to ensure that the label distribution did not
change when new labeled data was added using co-training

• Instead of labeling entire unlabeled set, a cache was used for
computational efficiency

63

• Assume we are learning binary classifiers F and G for class
labels 0 and 1. F and G use two views.

 a = P(F = 1, G = 1) c = P(F = 1, G = 0)

 b = P(F = 0, G = 0) d = P(F = 0, G = 1)

• Assume that a * b > c * d + !

• But when G agrees with F on the unlabeled data, F still does
not know which label to predict

• We assume we have a weak predictor h for F which uses the
labeled data to return the label

• Theorem (Blum & Mitchell, 1998):

Co-Training

64

• Highly confident labeled data points in the view 1 provide

randomly scattered data points in the view 2 (conditional

independence).

• These highly confident labeled data points are noisy, however

learning in view 2 is immune to noise.

View 1

View 2

Figure from (Zhu, 2005)

Intuition behind the Theorem

65

• (Nigam & Ghani, 2000) consider the following table

of variants of EM and Bootstrapping

• Using WebKB they use Naive Bayes in the four

settings shown in the table

Incremental vs. Iterative and

Feature splits

EMco-EMIterative

self-trainingco-trainingIncremental

Does not use

Feature split

Uses Feature

split

Method

66

• (Nigam & Ghani, 2000) experiments on document

classification show that using a feature split helped on this task

and iterating over the unlabeled set also helped

• The lowest error rate was for co-EM (3.3) vs. co-training (3.7);

self-training (5.8) and EM (8.9) did far worse on this task

• They also reported results on choosing conditionally

independent feature splits vs. a random feature split

• The theory behind co-training was borne out as the random

split did worse than the carefully chosen split

Incremental vs. Iterative and

Feature splits

67

• A side effect of the Co-Training: Agreement between

two views.

• What if the agreement becomes the explicit goal?

• Intuitively, it helps by reducing the concept space in

views to the consistent concepts.

– Unlabeled data is used to check consistency

– Labeled data is used to locate the target concept in the

reduced spaces

Agreement Maximization

68

History of Agreement Maximization

• (Collins & Singer, 1999) suggest a variant of co-training
where the agreement of the two classifiers is explicitly
optimized. The algorithm is a variant of the AdaBoost
algorithm that considers agreement on unlabeled data as part
of the objective function.

• (Dasgupta et al, 2001) Provide bound on generalization error
of the learned classifier in co-training based on the empirically
measurable quantities. More analysis is done in (Abney,
2002).

• It formalizes the agreement maximization suggested by
(Collins & Singer, 1999)

69

History of Agreement Maximization

• (Leskes 2005) provides theoretical justification for agreement
maximization among multiple views and suggests the Agreement Boost
algorithm (belongs to the boosting family of algorithms)

• (Banko & Brill, 2001) also provide a method to maximize agreement
among a large number of bagged classifiers and show good results on
spelling correction when using upto 10 classifiers

• Early versions of the idea of using multiple views in learning from
unlabeled data occur in:

– (Becker and Hinton, 1992; Becker 1995)

– (de Sa, 1994)

• For a discussion on these and other related cases, see the survey article:
(Seeger, 2000)

70

• EM: Maximize likelihood of unlabeled data

• Co-training: Maximize agreement between two views
on unlabeled data

• What can this second objective buy us?

• Theorem (Dasgupta et. al., 2001): The agreement
rate between two classifiers (under certain strict
conditions) is an upper bound on the error of either
classifier

• Note: the classifiers are partial, i.e. they will say “I do
not know” or % if they cannot predict the class

(Dasgupta et al, 2001, Abney 2002)

Analysis of Co-training

71

Analysis of Co-training

• Assume two views X1 and X2 used to build two
classifiers F and G, respectively

• Standard assumption of co-training is view
independence

 P(X1 = x1 | X2 = x2, Y = y) = P(X1 = x1 | Y = y)

• But this does not directly tell us about the agreement
rate between F and G

• A new assumption: classifier independence

 P(F = u | G = v, Y = y) = P(F = u | Y = y)

• If view independence holds then classifier
independence must hold as well

72

Analysis of Co-training

• An additional assumption for non-trivial cases:

 minu P(F = u) > P(F * G)

• To keep things simple, let us consider only classifiers
over 2 classes and there’s no “I don’t know” class %

• If Y is the true labeling and F and G are classifiers
which satisfy classifier independence and are non-
trivial then either:

 P(F * Y) + P(F * G) or P(F’ * Y) + P(F * G)

• Since each example is one of two classes: we define
F’ to be the complement of F

73

P(F * Y) + P(F * G) or P(F’ * Y) + P(F * G)

• This is an upper bound on error: we assume we can
pick between F and F’ using the labeled data

• Co-training learns upto a permutation of predicted
labels: the correct labeling from this permutation
requires labeled data

• The precision of a classifier F is P(Y = u | F = u)

• (Abney, 2002) shows that classifier independence
implies that if we know the precision of F then we
know precision of G

• This can result in trivial agreement between F and G

Analysis of Co-training

74

(Abney, 2002)

Attention shifts to

the other classifier

Greedy Agreement Algorithm

• Input: Seed rules h1 and h2

• Loop:

– for each atomic rule g

• H2 = h2 + g

• evaluate cost of (h1 , H2)

• keep lowest cost H2

– if H2 is worse than h2 then quit

– swap h1 , H2

75

 Cost(h1 , h2) = # [upper bound of errh2(h1) +

 upper bound of errh1(h2)]

 disagreement , = P(h1 $ h2 | h1 , h2 $ %)

 minor probability µ = minu P(h1 = u | h1 $ %)

Cost of a pair of Classifiers

Estimation of the error of

h1 by the help of the classifier

in the other view h2

76

More PAC Analysis

• (Balcan, Blum & Yang, 2004) try to relax the strong

assumptions needed to theoretically analyze the

performance of co-training; they also heuristically

analyze the error propagation during co-training

• (Balcan & Blum, 2005) provide a PAC-style model

for the analysis of learning from labeled and

unlabeled data; and discuss the special case of co-

training with linear separators

77

Co-training Experiments

• (Collins & Singer, 1999) proposed the co-boosting algorithm

and performed expts on the named entity classification task

• natural feature split: spelling vs. contextual classifier

• using only 7 simple seed rules, unlabeled data was used to

achieve 83.1% accuracy;

• although self-training seemed to perform just as well

• (Barzilay & McKeown, 2001) uses co-training to find lexical
and syntactic paraphrases

• natural feature split: contextual vs. paraphrase classifier

78

Co-training Experiments

• (Pierce & Cardie, 2001) proposed a feature split for noun-

phrase chunking: one view was a left-context chunker while

the other was a right-context chunker; used a NB learner

• the learning curves for co-training was disappointing

• there was no analysis of the feature split so it is hard to tell if

the conditions for co-training were satisfied in this case

• problems with noise entering into the labeled data

79

Co-training Experiments

• (Sarkar, 2001) applied co-training to statistical parsing

• a feature split was obtained by using a statistical parser and a
HMM-based SuperTagger

• both learners had to label sentences using the same set of
complex lexical descriptions to each word (trees from a Tree-
adjoining grammar)

• some knowledge about the unseen trees (a grammar) was
assumed in the experiment due to the small size of the seed set

• co-training outperformed simply using the labeled data

80

Co-training Experiments

• (Steedman et. al., 2003a) also applied co-training to statistical
parsing

• a feature split was obtained by using one view as the Collins
parser (a CFG-based model) while the other view was an Tree-
adjoining grammar statistical parser; the two views were
experimentally shown to be distinct

• experiments showed improvement of 2.5% for co-training vs.
a decrease of 0.1% for self-training with a 500 word seed set

• the same experimental setup was used for domain adaptation:
a small seed set of 100 WSJ sentences was added to a larger
(1K) set of Brown corpus sentences and after co-training on
WSJ, the parsers were tested on WSJ data

• in this setting, co-training was able to improve f-score from
75.4 to 78.2

81

Co-training Experiments

• (Steedman et. al., 2003b) is about the method for selection of
examples for each view for inclusion into the labeled data

• this paper considers alternative methods for selecting such
examples:

– above-n: the score of an example for each view is greater than or equal
to n

– difference-n: score for an example of one view is greater than score of
the other by some threshold n (difference-10% performed the best)

– intersection-n: an example is in the bottom n percent of one view is in
the set of the other view’s n percent highest scoring sentences

• the parameter n controls the amount of newly labeled data in
each iteration; can be used to deal with noise entering the data

• as in many other co-training papers, an active learning
component was added to correct some of the co-training
labeled examples added to the labeled set

82

Co-training Experiments

• (Müller et. al., 2002) apply co-training to the task of
co-reference resolution

• base learners used were C4.5 decision trees

• co-reference chains were split up into individual
binary classification decisions

• it is not clear if there is a natural feature split that
could be exploited in this setting

• (mostly) negative results for co-training

83

Co-training Experiments

• (Callison-Burch, 2002) proposed a co-training algorithm for
statistical machine translation

• the idea is to use multiple languages A, B, C, D each of which
translate into English E

• in addition, A, B, C and D are sentence aligned with each
other, so that if a sentence from C is found to be accurately
translated into English then the corresponding sentences in A,
B, and D now have a new labeled parallel text

• expts used the EU corpus and word error rate (WER)
improvement was highest for German to English (2.5%)

• noise injected into the labeled set was a problem when large
amounts of co-trained data was added

84

Co-training Experiments

• (Clark, Curran & Osborne, 2003) report on co-training expts
for part-of-speech tagging

• using two previously built taggers: TnT and a MaxEnt tagger

• performs an explicit greedy agreement based co-training
algorithm

• naive co-training (using the whole cache)

• a held-out set was used to measure agreement on addition of
newly labeled example(s)

• agreement-based selection is more picky and so can reduce
noise in the newly labeled data

• with small seed sets (~500) there was significant
improvement, but no significant improvement was seen with
large seed sets (all Treebank)

85

Dealing with Noise

• One common issue that crops up in co-training expts
is the issue of noise when a large number of newly
labeled examples are added into the training set

• (Goldman & Zhou, 2000) deal with this issue by
using hypothesis testing to check if each example if
added to the labeled data is likely improve accuracy
for the classifier

• (Zhou & Goldman, 2004) use an ensemble of three or
more classifiers to vote on whether a newly labeled
example should be added into the labeled set

86

Dealing with Noise

• Note that in the Yarowsky algorithm, we can choose
to relabel any unlabeled example or even drop a
previously labeled example from U altogether (in
some versions of the algorithm)

• Most research in co-training has focused on keeping
the best examples from the unlabeled data rather than
re-labeling previously seen examples

• This is mainly due to the computational inefficiency
caused by re-labeling the entire unlabeled set in each
iteration

87

Data Based Methods

• From bootstrapping methods we now move to methods that
use some inherent geometry in the unlabeled data. We call
these methods: data based methods

• For many of these methods we represent learning as trying to
maximize some objective function

• This maximum is found using standard methods such as
gradient descent

• A good objective function tries to minimize error on training
data using a loss function

• And tries to find a small model so that it can generalize and so
that it does not overfit: this is done by adding an additional
factor to the function called regularization.

88

Loss Function

• Goal: finding a good classifier, i.e. one which has the

minimum expected loss or risk

• Often we build classifiers based on functions

– Example of a 2-class classifier:

 c(x) = 1 if f(x) > 0

 c(x) = -1 otherwise

89

Loss Function

• loss(c(x), y, x) : The penalty induced by assigning
class c(x) instead of the true class y to the instance x

• 0-1 loss: loss(c(x) , y , x) = 1 if c(x) $ y

 loss(c(x) , y , x) = 0 otherwise

• Negative log loss :

 loss(c(x) , y , x) = - log P(y | c(x) , x)

90

Regularization

• Expected risk or loss:

 r = - loss(f(x) , y , x) P(x) dx

• But often P(x) is unknown. Moreover, y is not given for all x

• The expected risk is upper-bounded by empirical risk

plus a regularization term (or complexity term)

91

Regularization

• Prefers simple functions over complex ones

 r % !i loss(f(xi) , yi , xi) + " #(f)

Empirical risk + regularization parameter * Complexity term

• Goal : Find f which minimizes the upper-bound

expression

• Often f is searched in a function class

92

• Gaussian regularization for a log-linear model

– W is the parameter vector, and .(x,y) is the feature vector

– Penalizes large weights W

• Bayesian interpretation of the Gaussian regularization: It puts a

Gaussian prior over the weights W and combines it with the log-

likelihood to compute the maximum of the posterior distribution.

Log likelihood of the log linear model Gaussian

regularization

Example

93

• What is the label?

• Knowing the geometry affects the answer.

– Geometry changes the notion of similarity.

– Assumption: Data is distributed on some low dimensional

manifold.

• Unlabeled data is used to estimate the geometry.

+

-

?

Data Manifold

94

Smoothness assumption

• Desired functions are smooth with respect to the
underlying geometry.

– Functions of interest do not vary much in high density
regions or clusters.

• Example: The constant function is very smooth, however it has to
respect the labeled data.

• The probabilistic version:

– Conditional distributions P(y|x) should be smooth with
respect to the marginal P(x).

• Example: In a two class problem P(y=1|x) and P(y=2|x) do not vary
much in clusters.

95

The decision
boundary

• Cluster assumption: Put the decision boundary in low

density area.

– A consequence of the smoothness assumption.

 A Smooth Function

96

• Let . Penalty at :

• Total penalty:

• p(x) is unknown, so the above quantity is

estimated by the help of unlabeled data:

Figure from
(Krishnapuram, et. al.,
2005)

W

What is smooth? (Belkin & Niyogi)

97

Data dependent
regularization

• Where:

– H is the RKHS associated with kernel k(.,.)

– Combinatorial laplacian can be used for smoothness term:

Fitness to
Labeled data

Function complexity:
Prior belief

Smoothness term:
Unlabeled data

(Belkin et al, 2004)

Manifold Regularization

98Return to SSL for structured…

The Representer Theorem

• The Representer theorem guarantees the following

form for the solution of the optimization problem:

99

• Data is modeled by a mixture of Gaussians.

– Assumption: Look at the mean of Gaussian components,

they are distributed on a low dimensional manifold.

• Maximize the objective function:

– includes mean of the Gaussians and more.

– is the likelihood of the data.

– is taken to be the combinatorial laplacian.

• Its interpretation is the energy of the current configuration of the

graph.

(Zhu & Lafferty 2005)

Harmonic Mixtures

100

– I(x,y) = 0

– Given the label is +, we

cannot guess which (x,+)

has been chosen

(independent).

+

+

+ +

+

+

– I(x,y) = 1

– Given the label is +, we can

guess which (x,+) has been

chosen.

+

+

+

-

-

-

• Gives the amount of variation of y in a local region Q:

 Q Q

Mutual Information

101

• We are after a good conditional P(y|x).

– Belief: Decision boundary lays in low density area.

– P(y|x) must not vary so much in high density area.

• Cover the domain with local regions, the resulting

maximization problem is:

(Szummer & Jaakkola 2002)

Information Regularization

102

• A two class problem (Szummer&Jaakkola)

+-

Return to smoothness

Example

103

(Ando & Zhang 2005)

More intuition on multi-task..

Predict Classifier Structure

• Often semi-supervised learning algorithms are not
reliable

– They improve the performance when the labeled data is
small but may degrade the performance when the labeled
data is large

– This method does not have this deficiency

• The usual approach is to consider a distance measure
in the input space, enforce the smoothness of
functions w.r.t. the underlying geometry

– But, what is a good metric?

104

• First learn the common predictive structure, and then

learn the final classifier

– Example: Classifiers are linear, and share parameter :

• Generate several auxiliary problems from unlabeled
data, learn the corresponding classifiers, and discover
the common structure

Prior belief
Fitness to labeled data Risk of the classifier, for

the linear example:

Structural Learning

105

• Parameters are found by optimizing the following

objective function:

Common structure
parameter vector

Parameters of the
 auxiliary problems

Risk of the
classifier

More on Multi-Task

• Recall:

Example: Linear Classifiers

106

SSL for Structured Labels

• Generative model based (already covered with EM):

– Hidden Markov Model (HMM)

– Stochastic Context Free Grammar (SCFG)

• Discriminative model based:

– Co-Hidden Markov Perceptron

– Semi-Structured Support Vector Machines (SSVM)

– Co-Structured SVM (Co-SSVM)

– Semi-Kernel Conditional Random Fields (KCRF)

107

• Example: Part-of-speech tagging:

 The representative put chairs on the table.

• The input is a complex object as well as its label.

– Input-Output pair (x,y) is composed of simple parts.

– Example: Label-Label and Obs-Label edges:

Observation

DT NN VBD NNS IN DT NNLabel

DT NN NN VBD

The

DT NN

Table

Structured Prediction

108

Figure from
(Tsochantaridis et al 2004)

Structured Prediction: Parsing

109

• For a given x, consider the set of all its candidate labelings as
Yx

– For a sentence x, consider all of the parse trees Yx which have x at their
leaves

• We are interested in a function

• Instead, learn a scoring function over the
input-output space

• In general, decoding (doing the above argmax) is intractable
except for special cases

More on Scoring Function

Scoring Function

110

• Construct d-nearest neighbor graph on all parts seen in the

sample.

– For unlabeled data, put all parts for each candidate.

• Belief: f(.) is smooth on this graph (manifold).

-

-

AT NN

AT The

W

(Altun et al, 2005)

More on Discriminative Structured…

Manifold of “simple parts”

111

SSL for Structured Labels:

Semi-KCRF and Semi-SSVM
• The final maximization problem:

• The Representer theorem:

– R(S) is all the simple parts of labeled and unlabeled instances in

the sample.

– Note that f(.) is related to .

Fitness to
Labeled data

Function complexity:
Prior belief

Smoothness term:
Unlabeled data

Data dependent
regularization

112

• Plugging the form of the best function in the

optimization problem gives:

– Where Q is a constant matrix.

– By introducing slack variables :

Subject to

Modified problem

113

• Loss function:

– SVM:

– CRF:

– Note that an # vector gives the f(.) which in turn gives the

scoring function S(x,y). We may write S#(x,y).

Hamming
distance

Subject to

Modified problem(cont’d)

More ...

114

• We reviewed some important recent works on SSL:

• Classifier based methods

– EM, Stable mixing of Complete and Incomplete Information

– Self-training, The Yarowsky Algorithm, Co-training

• Data based methods

– Manifold Regularization, Harmonic Mixtures, Information
Regularization

– Learning Predictive Structure from Multiple Tasks

• SSL for structured prediction

– EM for HMMs and PCFGs

– Semi-KCRF, Semi-SSVM

– Co-SSVM, Co-HM Perceptron

Generative Models

Discriminative Models

Conclusions

115

Conclusions

• Different learning methods for SSL are based on
different assumptions

– Cluster assumption, View-independence assumption, ...

– Fulfilling these assumptions is crucial for the guaranteed
success of the methods

• SSL for structured domains is an exciting area of
research

• SSL is related to Active Learning and Sample
Selection methods

116

Thank You

117

Some Preliminaries

Generative Models:

Discriminative Models:

Example of a Generative Model: Naive Bayes

Example of a Discriminative Model: SVM

Back ...

118

Intuition in Large-Margin Setting

+

+

_

_

Labeled data only

+

+

_

Right vs. Wrong Margin

SVM

_

+

+

_

_

Training a Support Vector Machine
(SVM), input x, label = {+,-}

(Zhang & Oles, 2000)

Back to slide ...

119

Graph Mincuts

Labeled Examples: +1

(source)

Labeled Examples: -1

(sink)

use edge
weights to
compute a
min-cut

Back ...

120

• Classifier independence

 P(F = u | G = v, Y = y) = P(F = u | Y = y)

• dy: Deviation from Classifier independence:

 dy = (1/2) (|P(F = u | G = v, Y = y) - P(F = u | Y = y)|

 + |P(F = v | G = u, Y = y) - P(F = v | Y = y)|)

• (Abney, 2002) showed that instead of classifier independence
we can use a weaker version to show the same upper bound on
error:

 P(F * Y) + P(F * G) or P(F’ * Y) + P(F * G)

Weak Classifier Dependence

121

Weak Classifier Dependence
(Abney, 2002)

p1 = minu P(F = u | Y = y)

p2 = minu P(G = u | Y = y)

• By non-triviality, p1 and

p2 must be > 0.5

• q1 = 1 - p1

• F and G are weakly

dependent if:

Back ...

122

• There are several relevant learning tasks (assumption)

– Good classifiers are similar to each other, or share a common

predictive structure.

• Example: Without knowing the metric inherent to the

input space, a good classifier should have:

– Similar values at A,C,D

– Similar values at F,E

Example from
(Ando & Zhang 2005)

Classifier 1

Classifier 2

Classifier 3

Finding Good Structure

123

w

u1

u2

Line !: the shared structure
among the classifiers (!1 u1 + !2 u2 = 0)

 Each point
is a classifier

Induce a penalty only for the part

orthogonal to the common structure

Linear classifier:

Intuition in the Classifier Space

124

Linear classifier:

Return to structural learning

u2 Line !

u1

C1

C2

A C D B F E

C1

A C D B F E

C2

• Key idea: Classifiers close to the shared structure, partition

(cluster) the input space roughly the same

Classifier Space vs Input Space

125
Return to structured label..

Structural Learning for NLP

• In Named Entity Chunking task, unlabeled data can be used to

generate lots of auxiliary problems: Predict the current word

based on other features in the current position

– Auxiliary problem 1: predict word1

– Auxiliary problem 2: predict word2

– …

• (Ando & Zhang 2005) have done several experiments on text

chunking and the results are promising.

– It shows improvement on CoNLL’00 syntactic chunking and

CoNLL’03 named entity chunking tasks compared with the best

previous systems

126

• Assume S(x,y) can be written as the sum of scores for

each simple part:

– R(x,y) is the set of simple parts for (x,y).

• Tagging example: Total score is the sum of scores of

label-label and observation-label interactions (parts)

• How to find f(.)?

NN VBD

NN

Table

Return to manifold of parts

Scoring Function

127

Input-Output Feature Space

• .(x,y) maps an input-output pair to a fixed
dimensional feature space Rd (d is the dimension)

• Parsing example:

– Here d is the number of rules in the grammar

Example from
Tsochantaridis et al 2004

128

HM Perceptron

• Primal formulation:

• Dual formulation:

– Kernel functions can be used to compute the inner products
without explicitly mapping points to the feature space

• Training:

– If the prediction is instead of the correct do the
following until convergence

Training
points

(Altun et al 2003, Collins 2002)

129

SSL for Structured Labels:

Co-HM Perceptron

• We are looking for a good linear scoring function

which separates the correct label from wrong labels for

each training example

– Here there is not any notion of margin, just a separator!

• In the training phase, each classifier uses the prediction

of the other view for each unlabeled instance.

130

Co-HM Perceptron

• In each view, use the prediction of the classifier in the other view for each
unlabeled instance

• Training in view 1:

– Labeled instance (xi,yi) has caused a mistake:

– Unlabeled instance xi has caused a disagreement:

– is the prediction of the view 2.

– controls the influence of an unlabeled instance

• Training in view 2 is similar to the above

(Brefeld et al 2005)

131

Experiments

• (Brefeld & Scheffer 2006) applied Co-SSVM to the named
entity recognition (NER) and parsing tasks.

• (Brefeld et al 2005) applied Co-SSVM and Co-HM Perceptron
to the named entity recognition task.

• In the above papers, random splitting of features into two views
results in a good performance for NER.

• Better performance of Co-SSVM and Co-HM Perceptron
compared to their single view counterparts comes at the cost of
longer training time

– Co-SSVM scales quadratically and Co-HM Perceptron scales linearly in
the number of unlabeled instances

Back ...

132

SSL for Structured Labels:

Co-Structured SVM

• Multi-view learning methods naturally allow the

inclusion of unlabeled data in discriminative learning

• In Co-SSVM, there are two views each of which has its

own way of converting Input-Output (x,y) to features:

.1(x,y) and .2(x,y)

– The scoring function is a linear model for each view:

133

SSL for Structured Labels:

Co-Structured SVM

• In each view an SSVM is learnt, the goal is to

maximize the agreement between these two SSVMs

• The final scoring function:

View 1 View 2

134

Structured SVM with 0/1 loss

• Optimization problem of SSVM with hard constraints:

• Optimization problem of SSVM with soft constraints:

Subject to :

Subject to :

Upper bound on
Empirical error

Complexity term

135

SSVM with arbitrary loss

Subject to :

Loss function

• However in max-margin markov networks (M3N), the

margin is rescaled: (Taskar et al 2003)

Complexity term Upper bound on
empirical error

(Tsochantaridis et al 2004)

136

• Agreement of the two SSVMs on an unlabeled point is
expressed by:

• We pretend the prediction of the SSVM in the other view is
correct, and

• Expect the SSVM in the current view to produce the same label
with enough confidence.

Measuring the Agreement

Prediction of
the other view

137

Co-Structured SVM

Subject to :

Labeled :

Unlabeled :

(Brefeld et al 2006)

Back ...

