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Abstract

Hierarchical phrase-based machine translation [1]
(Hiero) is a prominent approach for Statistical Ma-
chine Translation usually comparable to or better than
conventional phrase-based systems. But Hiero typi-
cally uses the CKY decoding algorithm which requires
the entire input sentence before decoding begins, as it
produces the translation in a bottom-up fashion. Left-
to-right (LR) decoding [2] is a promising decoding
algorithm for Hiero that produces the output transla-
tion in left to right order. In this paper we focus on
simultaneous translation using the Hiero translation
framework. In simultaneous translation, translations
are generated incrementally as source language speech
input is processed. We propose a novel approach for
incremental translation by integrating segmentation
and decoding in LR-Hiero. We compare two incre-
mental decoding algorithms for LR-Hiero and present
translation quality scores (BLEU) and the latency of
generating translations for both decoders on audio
lectures from the TED collection.

Index Terms— Statistical Machine Translation (SMT), In-
cremental Decoding, Hierarchical Phrase-based Translation
(Hiero), Left-to-Right Decoding

1. INTRODUCTION

Hierarchical phrase-based translation (Hiero) [3] is a promi-
nent approach for SMT as it is a simple, yet powerful ma-
chine translation model. Hiero models encode the translation
correspondences in hierarchical phrases, unlike the phrase-
based models that use contiguous translation phrases. The
notion of hierarchy allows the Hiero models to capture long-
distance reordering between source and target languages
unlike phrase-based models. Additionally they also model
discontiguous translations, e.g. translating the English word
not as ne pas in French (with an appropriate verb form
inserted between ne and pas). These properties make Hi-
ero models more appropriate for some language pairs than
phrase-based models [4, 5, 6].

Hiero uses a lexicalized synchronous context-free gram-
mar (SCFG) extracted from word and phrase alignments of
a bitext. Typically, Hiero uses a CKY-style decoding algo-
rithm with time complexityO(n3) where the source input has
n words. Computing the language model score for each hy-
pothesis within CKY decoding requires two histories, the left
and the right edge of each span, due to the fact that the target
side is built bottom-up from sub-spans.

Typically decoders in statistical machine translation
(SMT) make use of language models to ensure that the out-
put is grammatically correct sentence, hence computing the
language model score is a crucial part of the process, but an
expensive one as well.

The size of a Hiero SCFG grammar is typically larger than
phrase-based models extracted from the same data creating
challenges in rule extraction and decoding time especially for
larger datasets [7].

[2] proposed left-to-right (LR) decoding for Hiero (LR-
Hiero henceforth). It is a beam-search decoder which runs in
time O(n2b) in practice where n is the length of source sen-
tence and b is the size of beam [8]. LR-Hiero generates the
target side translation left-to-right, by restricting the gram-
mar to SCFG rules which are prefix-lexicalized or in so-called
Greibach Normal Form (GNF) on target side. This constraints
drastically reduces the size of grammar for LR-Hiero in com-
parison to Hiero grammars [9]. Restricting the target genera-
tion to be left-to-right requires a single language model (LM)
history for each hypothesis and this helps speed up the decod-
ing process considerably.

Recently an augmented version of LR decoding has been
proposed which is able to address some limitations in terms
of translation quality and time efficiency. It shows that LR
decoding is a viable alternative to the usual CKY decoding
algorithm for Hiero on different language pairs like Czech-
English, Chinese-English and German-English [9, 10].

In simultaneous translation, the output translation should
be generated incrementally as the user speaks the source lan-
guage input instead of waiting for the entire sentence. Pre-
vious translation services proposed for real-time translation



environments, are mainly phrase-based [11, 12, 13, 14, 15].
Since a phrase-based decoder generates translations in a left-
to-right manner, it is more suited than the CKY based de-
coding algorithm used in Hiero decoders which requires the
entire input sentence before generating the translation.

We propose to use LR-Hiero for simultaneous translation.
LR-Hiero uses a beam-search decoding algorithm and gener-
ates the translation in left-to-right manner. In simultaneous
translation, the delay between a source language chunk and
its translation should be minimal. Previous research on si-
multaneous translation reduces the task to splitting the input
into appropriate segments and then incrementally translating
those segments [13, 14, 15]. Like [14], we train a segmenta-
tion model that exploits the alignment structure between the
source and target languages. We investigate different sets of
features for this segmentation task. The trained segmentation
model is integrated with an LR-Hiero translation system. We
experiment with two different decoding strategies and evalu-
ate our incremental translation system on the speech transla-
tion of TED talks from English to French.

2. LEFT-TO-RIGHT HIERO

LR-Hiero uses a constrained lexicalized SCFG which we call
a GNF grammar: X → 〈γ, b̄ β〉, whereX is a non-terminal, γ
is a string of non-terminal and terminal symbols, b̄ is a string
of terminal symbols and β is a possibly empty sequence of
non-terminals. This ensures that as each rule is used in a
derivation, the target side is generated from left to right. The
rules are obtained from a word and phrase aligned bitext using
the rule extraction algorithms in [2, 16].

LR-Hiero decoding uses a top-down depth-first search,
which strictly grows the hypotheses in target surface ordering.
Search on the source side follows an Earley-style search [17],
the dot jumps around on the source side of the rules based on
the order of nonterminals on the target side. This search is in-
tegrated with beam search or cube pruning to find the k-best
translations.

Algorithm 1 shows the pseudocode for LR-Hiero decod-
ing with cube pruning [3] (CP). LR-Hiero with CP was intro-
duced in [9].

Each source side non-terminal is instantiated with the le-
gal spans given the input source string, e.g. if there is a Hiero
rule 〈aX1, a

′X1〉 and if a only occurs at position 3 in the in-
put, then source side can be matched to span [3, i] for all i,
4 < i ≤ n, where n is length of input. Fig. 1 shows a worked
out example of how the decoder works.

Each partial hypothesis h is a 4-tuple (ht, hs, hcov, hc):
a translation prefix ht, a (LIFO-ordered) list hs of uncovered
spans, source words coverage set hcov and the hypothesis cost
hc which includes future cost and a score computed based on

1The future cost is precomputed in a way similar to the phrase-based mod-
els [18] using only the terminal rules of the grammar.

Algorithm 1 LR-Hiero Decoding with CP
1: Input sentence: f = f0f1 . . . fn
2: F = FutureCost(f) (Precompute future cost1for spans)
3: S0 = {} (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (based on the first uncovered span)

10: for g ∈ {G} do
11: [u, v] = gspan
12: R = GetSpanRules([u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and add new

hypotheses to it)
17: return argminh ∈ Snhc

18: Merge(CubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: h′ = getBestHypotheses((H,R),F) (best hypotheses of

cubes)
22: push(heapQ, (h′

c, h
′, [H,R]) (Push new hyp in the

queue)
23: hypList = {}
24: while |heapQ| > 0 and |hypList| < K do
25: (h′

c, h
′, [H,R]) = pop(heapQ) (pop the best hypothesis)

26: push(heapQ,GetNeighbours([H,R]) (Push
neighbours to queue)

27: Add h′ to hypList
28: return hypList

feature values (using a log-linear model). The initial hypoth-
esis is a null string with just a sentence-initial marker 〈s〉 and
the list hs containing a span of the whole sentence, [0, n]. The
hypotheses are stored in stacks S0, . . . , Sn, where Sp contains
hypotheses covering p source words, just like in stack decod-
ing for phrase-based SMT [19].

To fill stack Si we consider hypotheses in each stack Sp

(for all p, p < i)2, which are first partitioned into a set of
groups {G}, based on their first uncovered span (line 9). Each
group g is a 2-tuple (gspan, ghyps), where ghyps is a list of
hypotheses which share the same first uncovered span gspan.
GetSpanRules finds rules matching the span gspan. Cubes are
created from each pair of ghyps and possible Rs, which are
added to cubeList.

The Merge routine gets the best hypotheses from all
cubes. GetBestHypotheses((H,R),F) produces new hy-
potheses using current hypothesis H and rule R. The first
best hypothesis, h′ along with its score h′c and corresponding

2As the length of rules are limited (at most MRL), we can ignore stacks
with index less than i− MRL.



1)X→〈schuler X1/ students X1〉

2)X→〈X1heban X 2/have X 1X 2〉

3 )X→〈X 1nochnicht X2/not yet X 2X 1〉

4 )X→〈gemacht /done 〉

5 )X→〈 ihre arbeit / their work 〉

6 )X→〈 ./ . 〉

〈 , ⟦[0,8]⟧ ,−−−−−−−−,0〉
〈 students ,⟦[1,8]⟧ ,∗−−−−−−−,3.5 〉
〈 students have , ⟦[1,6] [7,8 ]⟧ ,∗−−−−−∗−,5.7 〉
〈 students have not yet ,⟦[5,6] [1,3][7,8]⟧ ,∗−−∗∗−∗−,10.2〉
〈 students have not yet done ,⟦[1,3 ][7,8]⟧ ,∗−−∗∗∗∗−,12.4 〉

〈 students have not yet done their work ,⟦[7,8]⟧ ,∗∗∗∗∗∗∗−,15.1〉
〈 students have not yet done their work . , ⟦⟧ ,∗∗∗∗∗∗∗∗,15.6 〉

rules hypotheses

G

G <s>

<s>

<s>

<s>

<s>

<s>

<s>

</s>

〈ht , hs , hcov , hc 〉

Fig. 1. The process of translating a German-English sentence pair in LR-Hiero. Word alignment is shown in Fig. 2. Left side
shows the rules used in the derivation (G indicates glue rules as defined in [2]). The hypotheses column shows 4-tuple partial
hypotheses: the translation prefix, ht, the ordered list of yet-to-be-covered spans, hs, source word coverage vector, hcov and
cost hc (cost includes future cost and hypothesis cost, but we just show hypothesis cost in this figure).

cube (H,R) is placed in a priority queue heapQ and (line 22
in Algorithm 1). The K best hypotheses in the queue are
iteratively popped (line 25) and for each hypothesis its neigh-
bours in the cube are pushed to the priority queue (line 26).
Decoding process finishes when stack Sn has been filled.

3. SEGMENTATION AND INCREMENTAL
TRANSLATION

In incremental translation, the entire input sentence is not
given, but we observe it word by word (or segment by seg-
ment). For each input sentence f = 〈f1...fn〉 different possi-
ble segmentations exist. We seek an optimal segmentation so
that segments can be translated to the target language mono-
tonically. In order to do this effectively, we should split the
input sentence into a segments that reordering occurs inside
each segment and not across segments.

To tackle the segmentation task, we use a classifier to find
the segment boundaries. Given the input sentence word by
word we apply the classifier to decide whether that word is a
segment boundary or not. Recognizing a segment boundary
in the input, the decoder then produces the translation chunk
for that segment.

To prepare the training data, we extract monotonic phrase
alignments using the word alignment produced by GIZA++.
Fig. 2 shows word alignment matrix and monotonic phrase
alignment for a German-English sentence pair. We run
GIZA++ over the entire set of parallel sentences in our train-
ing data, but we only use a portion of these parallel sentences
in order to extract training examples for training our segmen-
tation model (see section 4 for details). The training set is
restricted to segments of length at least 4.

For classification, we use a log-linear model trained on
our training set based on different groups of features. Basic
features, used in [14], are: words that are at the candidate seg-
ment boundary, the position of the boundary in the sentence,
and the length of candidate segment. We use this model as our
baseline. We use additional features which can be partitioned
to two groups:

schuler ihre arbeit noch nicht gemacht haben .

students X

have X

not X

yet X

done X

their X

work X

. X

Fig. 2. Word alignment matrix for a German-English sen-
tence pair. Monotone phrases are shown in dashed lines and
segment boundaries with red circles.

The first group uses Part Of Speech (POS) tags of the can-
didate segment as features. We considered the last three POS
tags in a segment and also bigrams and trigrams of the POS
tags inside each segment.

We hypothesize that the previous state of the decoder
might have useful information. This was the motivation for
the next group of features. These features can be seen as feed-
back from decoder about its output. Feedback from decoder
includes: language model score (lm), translation probabili-
ties p(e|f) and p(f |e) and two lexically-weighted translation
probabilities (tm0,tm1,tm2,tm3), and the model score (c).
We normalize these values and use them as features in seg-
mentation model. Table 1 compares results of using different
groups of features on the test set for the segmentation task
(10% of the training data is used as test set). In row 4 we use
only the lm, tm0 (which is p(e|f)) and c (score) from the
decoder.



features P R F1

Basic 0.77 0.86 0.81
+ POS 0.7924 0.84151 0.8162
+ Decoder (all) 0.7971 0.8295 0.8129
+ Decoder (lm,tm0,c) 0.8085 0.8137 0.8110
+ POS + Decoder (lm,tm0,c) 0.8041 0.8284 0.8161
+ POS + Decoder (all) 0.8084 0.8137 0.8110

Table 1. Results on the dev set using different groups of fea-
tures for segmentation model.

BLEU Time (sec)
LR-Decoder1 25.72 31.06
LR-Decoder2 24.48 0.84
LR-Hiero (no segmentation) 25.72 19.62

Table 2. Translation quality (BLEU) and latency for translat-
ing English-French.

4. EXPERIMENTS

Following the International Workshop on Spoken Language
Translation (IWSLT) shared task, we would like to evalu-
ate our incremental translation system on the speech trans-
lation of TED talks for English-French. We use development
(dev2010) and test data (tst2010) of IWSLT 2010. We use the
parallel text provided as training data of IWSLT 2011 and Eu-
roparl (v7) as the training data for our translation task (about
2M sentence pairs). The training data from IWSLT 2011 is
used as the training set for segmentation model (90% as train-
ing and 10% as test set).

Table 1 shows the results of the segmentation task on cor-
responding test set. We use model trained with Basic+POS
features as our segmentation model. It outperforms model
with basic features in terms of precision and F1 measure and
has comparable results (F1 measure) to other models, while
it is faster, other models during decoding time (other mod-
els need the feedback from decoder to extract features, there-
fore it requires to run the decoder on the corresponding input
chunk, given each input word).

Typical Hiero rule extraction excludes phrase-pairs with
unaligned words on boundaries (loose phrases). We use simi-
lar rule extraction as Hiero, except that we exclude non-GNF
rules and include loose phrase-pairs as terminal rules.

We use a 4-gram language model trained on the WMT2011
corpus (Europarl, News Commentary and UN documents)
and use KenLM [20]. We tune weights by minimizing BLEU
loss on the devset through MERT [21] and report BLEU
scores on the test set (tst2010). We use pop limit 500 for LR-
Hiero. In these experiments, we use the reference transcript
of the utterance for dev and test sets.

We compare the results in terms of translation quality
(BLEU) and latency (of generating partial translations). We

concatenate all 11 test sets and report the results on the whole
test set. Two incremental decoding strategies using LR-Hiero
are used for translation. In both cases we integrate LR-Hiero
with the segmentation model: for each input word it queries
segmentation model. In our first strategy, LR-Decoder1, if
the word is at a segment boundary then LR-Hiero decodes
the entire input (from the beginning) and produces the trans-
lation so far as the output. In our second decoding strategy,
LR-Decoder2, when a segment boundary is recognized, the
decoder translates just the last source segment, produces the
the translation output for that segment and then updates the
last state of the decoder to the current best hypothesis.

LR-Decoder1 changes its output as it receives more in-
put and the final translation output is the same as applying
the LR-Hiero decoder over the entire input sentence. While
in LR-Decoder2, the translation output is updated over time
by adding the translation of later input segments (the decoder
does not change the output as it proceeds), which is more ap-
propriate for speech translation.

Table 2 compares the two decoding strategies. The BLEU
scores are computed on the final output. LR-Decoder1 ob-
tains a better BLEU score, which is not surprising because
the final output is identical to the output of the regular de-
coder on the entire input sentence. The second column of Ta-
ble 2 shows the average speed of translating input segments
(in terms of seconds). The latency is calculated as the total
time taken to translate the whole sentence divided by num-
ber of segments. We compute the average over 50 sentences
randomly selected from test set. The last row in table 2 shows
the results of the regular translation strategy (with no segmen-
tation employed). For a relatively small loss of 1.24 in the
BLEU score we obtain a much faster incremental translation
system.

5. CONCLUSION

In this paper we proposed the use of LR-Hiero for simultane-
ous translation for the first time. We trained a segmentation
model to split the input to monotone segments to achieve a
fast and accurate simultaneous translation. We investigated
different sets of features for segmentation task. We obtained
a very fast simultaneous translation system (23 times faster
than regular translation system) with reasonable translation
quality (just 1.24 BLEU score loss).

As future work we are interested to compare our trans-
lation framework with other simultaneous MT systems and
also apply it on complex word reordering language pairs like
Chinese-English. We would like to improve the segmentation
model and use it in regular translation tasks to achieve faster
translation systems with comparable translation quality.
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