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Abstract
Corrected co-training (Pierce & Cardie, 2001)
and the closely related co-testing (Muslea et al.,
2000) are active learning methods which exploit
redundant views to reduce the cost of manually
creating labeled training data. We extend these
methods to statistical parsing algorithms for nat-
ural language. Because creating complex parse
structures by hand is significantly more time-
consuming than selecting labels from a small
set, it may be easier for the human to correct
the learner’s partially accurate output rather than
generate the complex label from scratch. The
goal of our work is to minimize the number of
corrections that the annotator must make. To
reduce the human effort in correcting machine
parsed sentences, we propose a novel approach,
which we call one-sided corrected co-training
and show that this method requires only a third as
many manual annotation decisions as corrected
co-training/co-testing to achieve the same im-
provement in performance.

1. Introduction

Acquiring sufficient quantities of usefully labeled training
examples is a major bottleneck for many supervised learn-
ing algorithms. This is especially true for tasks where the
output is a complex structure rather than an N-ary atomic
classification.

Two promising approaches to address the annotation bot-
tleneck are sample selection, a variant of active learning

(Cohn et al., 1994), in which the learner finds training ex-
amples that are the most informative for the human to label,
and co-training (Blum & Mitchell, 1998), in which two (or
more) learners label training examples for each other. More
recently, researchers have begun to explore ways of com-
bining ideas from sample selection with that of co-training.
One example of this approach is corrected co-training as
proposed by Pierce and Cardie (2001). This approach in-
serts a person into the co-training framework so that the
machine labeled examples are reviewed and corrected by
the human before being added to the training set. A related
work in a similar spirit is co-testing (Muslea et al., 2000).
Like co-training, the framework consists of two classifiers
with redundant views, but instead of using the learners’ out-
puts as new training examples, the algorithm uses them as
a test for finding informative examples for a human to la-
bel. More specifically, the algorithm compares the outputs
produced by the learners for the same example. If they dis-
agree, then the example is considered a contention point,
and therefore a good candidate for human labeling.

In practice, co-testing and corrected co-training have the
same effect (i.e., a human is asked to arbitrate over exam-
ples selected by co-training); however, they have a subtly
different philosophy. The former emphasizes sample selec-
tion while the latter emphasizes co-training.

In this work, we extend these combined sample selection
and co-training methods to a learning task in which the
learner’s output is a complex structure. An instance of such
a learning problem is training a statistical parser to pro-
duce parse trees. Current state-of-the-art statistical parsers
(Charniak, 2000; Collins, 1999) are trained on large collec-
tions of human parsed sentences such as the Penn Treebank
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(Marcus et al., 1993). Because producing large-scale tree-
banks is time-consuming and expensive, there is is consid-
erable interest in methods for reducing the logistic cost of
human annotation of training data.

Considering complex structures complicates the problem in
two ways. First, because the learner’s output is a complex
structure, greater nuance is required in accuracy judgment.
For example, even if a syntactic tree produced by a parser is
not entirely correct, it may have many locally correct parts
(such as noun phrase analyses). Thus, in finding contention
points, one must determine how much of the learners’ out-
puts disagree, and which learner is more right. Second,
because labeling complex structures is a significantly more
time-consuming process, it may be easier for a human to
correct the learner’s partially accurate output rather than
generate the label from scratch. Therefore, another major
challenge is in finding informative training examples that
also require minimal corrections. The complex structure
learning task highlights the philosophical differences be-
tween co-testing and corrected co-training. To emphasize
the corrective nature of the human’s task, we shall use the
term corrected co-training throughout the rest of the paper.

To address these new challenges, we present a method of
combining co-training, sample selection and manual inter-
vention for training statistical English parsers called one-
sided corrected co-training. One-sided co-training consists
of two models, A and B, which are used to find a set of
contention points. Those points labeled by A are manually
corrected before being passed to B. B however, passes to
A the examples that it automatically labels. We conduct
an empirical study comparing a continuum of approaches,
from a fully automatic method (pure co-training), to par-
tially automated methods (one-sided corrected co-training)
to fully manual methods (such as corrected co-training and
the more traditional single-learner sample selection (Lewis
& Catlett, 1994)). It is our hypothesis that partially au-
tomated methods such as one-sided corrected co-training
can combine the advantages of manual corrections of the
output of one parser with the bootstrapping method of co-
training and can transfer the benefits of the corrections from
one parser to the other thus reducing the effort for the hu-
man annotator. Our results suggest that one-sided corrected
co-training is an effective way to balance the trade-offs be-
tween the performance of the trained parsers, the number
of training examples reviewed by a human, and the amount
of human effort in making corrections.

2. A Continuum of Bootstrapping Methods

Both sample selection and co-training are iterative learning
algorithms that are initialized with a small set of labeled
seed data, and both make use of a large pool of unlabeled
candidates. The main difference is that sample selection

continues to include a human in the training process while
co-training does not.

Sample selection can be sub-categorized into uncertainty-
based sampling (Lewis & Catlett, 1994) and committee-
based sampling (Freund et al., 1997). An uncertainty-based
algorithm has a single learner and asks the human to label
examples about which it is the least certain. A committee-
based algorithm consists of multiple learners (but they do
not need to have redundant views) and asks the human to
label examples for which the learners disagree the most.

Co-training (Blum & Mitchell, 1998) is also a multi-learner
algorithm, but the learners must have different views of the
data. Blum and Mitchell prove that, when the two views are
conditionally independent given the label, and each view
is sufficient for learning the task, co-training can boost an
initial weak learner using unlabeled data. Goldman and
Zhou (2000) show that, through careful selection of newly
labeled examples, co-training can work even when the clas-
sifiers’ views do not satisfy the independence assumption.
In particular, they show that combining different machine
learning algorithms (using the same set of features) using
hypothesis testing can result in a successful setting for co-
training. As explained in section 4.1, our approach builds
upon this idea. We use different grammatical frameworks,
with different probabilistic models as the basis of our sys-
tem.

Figure 1 provides a side-by-side pseudo-code comparison
between sample selection and co-training (in particular, for
training statistical English parsers).1 In both cases, the
learners are initially trained on a small set of labeled sen-
tences, L. At each training iteration, a small set of sen-
tences is drawn from a large pool of unlabeled sentences
and stored in a cache. The parsers then attempt to label
every sentence in the cache. The parsers also assign a con-
fidence score to their outputs using some scoring function
f . Next, both algorithms must select a subset of the newly
labeled sentences to be added to the training data. In the
sample selection case, the n sentences with the lowest con-
fidence scores are selected for a human to label. The pro-
cess is a little more involved in the co-training case. The
examples added to the training set of one parser (referred to
as the student) are only those produced by the other parser
(referred to as the teacher).2 During selection, one parser
first acts as the teacher and the other as the student, and then
the roles are reversed. The labeled sentences are chosen

1The pseudo-code for the single-learner uncertainty-based
sample selection algorithm can be generalized to a committee-
based algorithm if we redefine M0

A to be a set of parsers M0
Aj

that have different initial parameters and f to assign high uncer-
tainty scores to sentences for which the parsing models produced
the most different parse trees.

2The methods we use generalize to the case in which the
parsers share a single training set.



according to some selection method, S based on the scores
assigned by f . Both algorithms terminate when either all of
the sentences in the large pool have been labeled, or when
a predetermine number of rounds have been reached.

Pierce and Cardie (2001) while investigating the appli-
cation of co-training for noun-phrase chunking discov-
ered that the output of the bootstrapped classifiers intro-
duced too much noise into the labeled set, thereby reduc-
ing their overall performances. They show that corrected
co-training could reduce the impact of noise.

Muslea et al. (2000) propose a approach called co-testing
for sample selection which exploits redundant views to re-
duce cost for labeling data for classifiers. As shown in
(Muslea et al., 2000), co-testing is a different class of sam-
ple selection technique than uncertainty-based sampling or
committee-based sampling. In subsequent work, Muslea
et al. (2003) exploit unequal (strong and weak) redundant
views in a variant of co-testing called aggressive co-testing.

To describe corrected co-training (co-testing) in terms of
Figure 1(b), we change the lines that update the training
sets, instead augmenting the training sets with manually
corrected examples.

The line Li+1

A
← Li

A
∪ {PB} is replaced with:

Li+1

A
← Li

A ∪ Corrected({PB}),

and the line Li+1

B
← Li

B
∪ {PA} is replaced with:

Li+1

B
← Li

B ∪ Corrected({PA}).

For one-sided corrected co-training, the correction step is
applied to just one parser. From a co-training-centric view,
the single-learner sample selection algorithm as described
in Figure 1(a) can be seen as a form of corrected self-
training.

In summary, in this section we reviewed a continuum of
bootstrapping methods for active learning, and placed our
own proposal of one-sided corrected co-training into this
continuum.

3. Selecting Training Examples for
Co-training Parsers

In each iteration of the three variants of co-training algo-
rithms we consider, selection is performed in two steps.
First, each parser uses some scoring function, f , to as-
sess the parses it generated for the sentences in the cache.
The cache is called U i in Figure 1. In our experiments, all
parsers use the same scoring function. Second, a selection
method, S, is used to choose a subset of these labeled sen-
tences (based on the scores assigned by f ) to add to the
parsers’ training data. This set of examples is similar to
what Muslea et al. (2000) referred to as contention points.

The scoring function attempts to quantify the correctness of
the parses produced by each parser. An ideal scoring func-
tion would give the true accuracy rates (e.g., F-score, the
combined labeled precision and recall rates). In practice,
accuracy is approximated by some notion of confidence.
For example, one easy-to-compute scoring function mea-
sures the conditional probability of the (most likely) parse.
If a high probability is assigned, the parser is said to be
confident in the label it produced.

In our experiments, we considered two scoring functions:
an oracle scoring function fF-score that returns the F-score
of the parse as measured against a gold standard, and a
practical scoring function fprob that returns the conditional

probability of the parse.3 The oracle study shows the ef-
fects of correction knowing the absolute quality of machine
labeled examples; the practical methods shows the effects
of correction as actually witnessed (selected by fprob).

Based on the scores assigned by the scoring function, the
selection method chooses a subset of the parser labeled
sentences that best satisfy some selection criteria. In our
previous work, we have explored different selection meth-
ods (Steedman et al., 2003a). For the experiments in this
paper, we focus on the difference method (denoted as Sdiff).
This selection method selects a sentence (as labeled by the
teacher parser) if the score of the teacher’s parse is greater
than the score of the student’s parse by some threshold n.

4. Experiments

Experiments were performed to compare corrected co-
training / co-testing against one-sided corrected co-
training. Additionally, experiments compared these multi-
view active learning methods with a single-view method.
As a baseline, we compared all of our active learning meth-
ods with co-training.

We used the following four learning methods that used dif-
ferent amounts of manually annotated training data:

• Co-training. This method requires the least amount of
human involvement as only the initial training set is
human labeled.

• Single-learner sample selection. This method requires
the human to review and correct the training examples
for one parser.

• Single-sided corrected co-training. This method also
requires the human to review and correct the train-
ing examples for one parser. It is our hypothesis that
the combination of manual corrections of the output

3A nice property of using conditional probability,
Pr(parse|sentence), as the scoring function is that it nor-
malizes for sentence length.



A is a parser.
M i

A is the model of A at step i.
U is a set of unlabeled candidates.
U i is a small cache holding a subset of U at step i.
L is a set of manually labeled seed data.
Li

A are the labeled training examples for A at step i.
Initialize:

L0
A ← L.

M0
A ← Train(A,L0

A).
Loop:

U i ← Add unlabeled sentences from U .
M i

A parses the sentences in U i and assigns
uncertainty scores to them according to
a scoring functions f .

Select the n parses {PA} with the highest
scores according to f and remove them from
the unlabeled pool.

Ask a person to correct {PA}.
Li+1

A
← Li

A ∪ Corrected({PA}).
M i+1

A
← Train(A, Li+1

A
)

A and B are two different parsers.
M i

A and M i

B are the models of A and B at step i.
U is a large pool of unlabeled sentences.
U i is a small cache holding a subset of U at step i.
L is the manually labeled seed data.
Li

A and Li

B are the labeled training examples for A and B
at step i.

Initialize:
L0

A ← L0
B ← L.

M0
A ← Train(A,L0

A)
M0

B ← Train(B, L0
B)

Loop:
U i ← Add unlabeled sentences from U .
M i

A and M i

B parse the sentences in U i and
assign scores to them according to their scoring
functions fA and fB .

Select new parses {PA} and {PB} according to some
selection method S, which uses the scores
from fA and fB .

Li+1

A
← Li

A ∪ {PB}
Li+1

B
← Li

B ∪ {PA}
M i+1

A
← Train(A, Li+1

A
)

M i+1

B
← Train(B, Li+1

B
)

(a) (b)

Figure 1. The pseudo-code for (a) a single-learner sample selection algorithm and (b) a co-training algorithm

of one parser with the bootstrapping method of co-
training and can transfer the benefits of the corrections
from one parser to the other thus reducing the effort
for the human annotator.

• Corrected co-training. This method requires the hu-
man to review and correct training examples for both
parsers. Although the human will probably review
many more sentences than the others, this method may
still be useful if it trains much better parsers and if the
human does not need to make many corrections.

The algorithms are judged on several factors: the perfor-
mance of the trained parser on unseen test sentences, the
number of corrections a human has to make, the number of
sentences a human has to review, and the convergence rate.

We report the results of two sets of experiments. In the
first set of experiments, all the learning algorithms use the
oracle scoring function, fF-score. This study shows the ef-
fects of correction when we know the absolute amount of
noise in each newly parsed sentence. In the second set of
experiments, all the learning algorithms use a more practi-
cal scoring function, fprob, as a confidence estimator. This
study show the effects of correction when examples are se-
lected using parse probabilities. All experiments shared the
same general setup, as described below.

4.1. Experimental Setup

For the single-learner sample selection case, we use a lex-
icalized context free grammar parser developed by Collins
(1999) as the learner. For the three co-training variants,
we use the Collins parser and a lexicalized Tree Adjoining
Grammar parser developed by Sarkar (2002). As we have
shown in earlier work, these two parsers are sufficiently
distinct from each other for bootstrapping to be effective
(Steedman et al., 2003b). For our one-sided corrected co-
training experiment, we arbitrarily choose to correct the
training examples for the Collins parser. That is, the parses
produced by the LTAG parser were manually corrected be-
fore being passed to the Collins parser. The parses pro-
duced by the Collins parser were not corrected. Note that
this means that the Collins parser never sees its own cor-
rected data. The LTAG parser is indirectly improved due to
the manual corrections.4

For all learning algorithms, all parsers were initialized with
the same set of manually labeled training examples (seed
data). Since the general goal is to minimize human an-
notated data, the size of the seed data should be small.

4Note that the graphs show the performance of the Collins
parser output, however as a result of how one-sided corrected co-
training is set up, if the LTAG parser output did not improve then
many more manual corrections would have to be made on the
LTAG parser output. LTAG parser performance is discussed in
Section 5.



In this paper we used a seed set size of 1, 000 sentences,
taken from section 2 of the Wall Street Journal (WSJ) Penn
Treebank. The total pool of unlabeled sentences was the
remainder of sections 2-21 (stripped of their annotations),
consisting of about 38,000 sentences. The human effort
is measured using the expert human annotation taken from
the Penn Treebank. The utility of the output of statistical
parsers in real annotation, in terms of the amount of time
saved in correcting constituents vs. producing entire trees
has been explored in various studies (see (Chiang et al.,
2001) for an example of how the Chinese Treebank was
augmented using this kind of active learning). In our ex-
periments, the cache size is set at 500 sentences.

The parsers were evaluated on unseen test sentences (sec-
tion 23 of the WSJ corpus). Section 0 was used as a de-
velopment set for determining parameters. The evaluation
metric is the Parseval F-score over labeled constituents:
F-score = 2×LR×LP

LR+LP
, where LP and LR are labeled preci-

sion and recall rate, respectively. For the co-training exper-
iments, both parsers were evaluated, but to be comparable
to the sample selection experiment, all results reported here
are for the Collins parser.5

4.2. Comparison of learning algorithms using the
oracle scoring function

Figure 2 compares all four learning algorithms in terms of
the parser improvement rates. Each curve in this graph
charts the improvement in the parser’s accuracy in parsing
the test sentences (y-axis) as it is trained on more training
sentences (x-axis). The curves have different endpoints be-
cause the selection methods chose a different number of
sentences from the same 38K unlabeled pool. All three
sample selection variants performed significantly better
than pure co-training (at the cost of requiring human in-
tervention).

In Figure 3, we focus on the three methods that use sample
selection; the graph compares them in terms of the amount
of human effort. The graph on the left shows the improve-
ment in the parsing performance (y-axis) as the numbers
of sentences reviewed by a person increases (x-axis); the
graph on the right shows the improvement as the number
of constituents manually corrected increases.

As we can see from Figure 3, our approach of one-sided
corrected co-training provides the same parsing accuracy
as corrected co-training but at a substantially reduced cost:
the number of constituents that need to be checked when
correcting the output of only one parser in the one-sided
version is about a third as much as the number for cor-

5Note that we could produce the best set of constituents rather
than the single best tree by a weighted merging of the constituents
produced by the two parsers. However, we simply use the output
of one parser for convenience.
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Figure 2. Comparison of the rate of improvements of the learning
algorithms when they use an oracle scoring function.

recting both parsers. Compared to the single-view sample
selection method, one-sided corrected co-training requires
many fewer constituents to be corrected.

4.3. Comparison of learning algorithms using the parse
probability scoring function
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Figure 4. Comparison of the rate of improvements of the learning
algorithms when they use the parse probability scoring function.

In the previous set of experiments, we relied on an ora-
cle scoring function to provide the true parsing accuracy
rates of the parsers’ outputs because it allowed us to study
the effects of selections and corrections without complica-
tions from whether the parser provides good accuracy es-
timates. In practice, however, defining a scoring function
that gives good accuracy estimates of parser outputs is a
difficult problem. In this section, we use the conditional
probability of the parse tree as the scoring function. Al-
though very easy to compute (especially when computed
from a partially trained parser), the estimates produced will
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Figure 3. Comparison of the three active learning algorithms, using the oracle scoring function to compute their confidence in their
outputs. The graph in (a) shows the parsing performances of the parsers in terms of the number of sentences that the human reviewed,
and the one in (b) shows parsing performances in terms of the number of constituents that the human corrected.

usually be unreliable.

As in the previous set, we first compare all four learning
algorithms for their parser improvement rates in Figure 4.
Then, in Figure 5, we compare the three sample selection
algorithms in terms of the amount of human effort.

When we retrain our parses with newly labeled examples
using a practical scoring function, we see similar findings:
both the single-sided corrected co-training and the single
view active learning methods require fewer constituents to
be manually corrected that does corrected co-training. The
same statement can be made regarding the numbers of sen-
tences that need to be reviewed. However, this time we
find that one-sided corrected co-training is more profligate
in its use of manually labeled examples than before: more
examples need to be corrected than before, and difference
between this method and the others is less.

5. Discussion

As our experimental evidence suggests, one-sided cor-
rected co-training is an effective algorithm for finding ex-
amples that, when annotated by humans, will lead to more
accurate statistical parsers. This shows that the feedback
from a second parser helps to substantially reduce the cost
of labeling data. Compared with pure co-training, we find
that manual correction improves results: some correction is
better than none at all. Our study raises two questions.

First, why does one-sided corrected co-training do better
(i.e., require fewer manual labeling decisions) than cor-
rected co-training (co-testing)? By definition, correcting
the output of one parser is less work than correcting the
output of both parsers. But, this is only true if single-

sided corrected co-training yields the same level of perfor-
mance as corrected co-training. It is possible that, within
single-sided corrected co-training, the noise levels intro-
duced by the uncorrected view will continue to drag down
performance, even though the other view is manually cor-
rected. We find that this is not the case, and that co-training
with a mixture of noisily labeled examples (those produced
by the uncorrected view) and correctly labeled examples
(those that are manually corrected) can be as effective as
co-training just using cleanly labeled examples. Single-
sided corrected co-training therefore appears to be robust
to noise.

Second, will one-sided corrected co-training help in cases
other than the one we are considering? In cases of classi-
fication (where typically there are 2 or 3 classes), labeling
agreement is in terms of equality between atomic labels, the
particular problem that distinguishes corrected co-training
from the one-sided case does not arise. However, the sit-
uation that benefits from one-sided corrected co-training
is likely to arise in other complex learning problems, for
example finding the span and the classification of named-
entities in text. Thus, we conjecture that our proposed
approach should also benefit the application discussed in
Pierce and Cardie (2001).

Note that the performance level of the two parsers are
roughly comparable (as shown by the learning curves for
the two parsers given in (Steedman et al., 2003a)). How-
ever, our experiments in this paper clearly exploit a certain
difference between the LTAG parser and the Collins parser:
the LTAG parser when trained on less data abstains more
often and thus produces fewer trees to correct (explained
in detail in (Steedman et al., 2003a)). This means that the
use of one-sided corrected co-training leads to fewer man-



 80

 81

 82

 83

 84

 85

 86

 87

 2000  4000  6000  8000  10000  12000  14000  16000  18000

P
ar

si
ng

 A
cc

ur
ac

y 
on

 T
es

t D
at

a 
(F

sc
or

e)

Number of Training Sentences Seen by the Annotator

Single-learner sample selection
Corrected co-training

One-sided corrected co-training

 80

 81

 82

 83

 84

 85

 86

 87

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000

P
ar

si
ng

 A
cc

ur
ac

y 
on

 T
es

t D
at

a 
(F

sc
or

e)

Number of Training Constituents Corrected by the Annotator

Single-learner sample selection
Corrected co-training

One-sided corrected co-training

(a) (b)

Figure 5. Comparison of the three active learning algorithms, using parse probabilities to estimate the parser’s confidence in its outputs.
The graph in (a) shows the parsing performances of the parsers in terms of the number of sentences that the human reviewed, and the
one in (b) shows parsing performances in terms of the number of constituents that the human corrected.

ual corrections on the output of the LTAG parser as shown
in the graphs. The benefit of manual corrections is trans-
ferred indirectly via co-training to the Collins parser. We
conducted experiments in which the output of the Collins
parser was corrected instead (and we tested the Collins
parser as before), and this resulted in larger numbers of hu-
man corrections with a curve that matches the corrected co-
training curves. This is unsurprising, given that co-training
is unlikely to match human supervision on the training data.

6. Related Work

Corrected co-training can be seen as a form of active learn-
ing, whose goal is to identify the smallest set of unlabeled
data with high training utility for the human to label. Ac-
tive learning can be applied to a single learner (uncertainty
sampling) (Lewis & Catlett, 1994) and to multiple learners
(committee-based sample selection) (Engelson & Dagan,
1996; Freund et al., 1997; Ngai & Yarowsky, 2000). In
the context of parsing, most previous work (Hwa, 2000;
Tang et al., 2002; Thompson et al., 1999) has focussed
on single learners. Baldridge and Osborne (2003) applied
uncertainty sampling and query-by-committee methods for
re-ranking parsers. Muslea et al. (2002) introduced the
co-EMT algorithm for sample selection that is a variation
on co-testing which combines it with the co-EM algorithm
from (Nigam & Ghani, 2000) (a probabilistic variant of co-
training). The major difference between co-EM and co-
training is that co-EM uses expected fractional counts for
the unlabeled examples. However, co-EM is as yet too in-
efficient to apply to parsing.

7. Future Work

Our current work addresses one particular aspect of our
co-training setup: the labeled data created during each
co-training iteration is never revisited in subsequent itera-
tions. This was mainly done to improve the processing time
needed (statistical parsing is still quite computationally ex-
pensive). However, this has a negative result of incorpo-
rating noise into labeled data that is never re-evaluated at a
later stage (compare our approach with that in (Yarowsky,
1995)). To address this issue, we are running experiments
in which each parser, after it is retrained on the manually
corrected data, relabels the entire set of previously labeled
sentences for the other parser. Thus manual corrections not
only improves future labeled data but also possibly corrects
mistakes made in previous iterations.

When we corrected trees, we ensured that the entire parse
tree was correct. It may be possible that we can further
reduce the need for manual correction by only correcting
those parts of the parse tree that are crucial for good per-
formance. In addition, we plan to learn from partial parses
in future work, taking into account fractional events for pa-
rameter updates (borrowing from the EM algorithm) and
also by exploiting partial parse features in parse reranking.

8. Conclusion

Applying corrected co-training to an application area such
as parsing raises a number of interesting problems, many
of which stem from the fact that a parse (which in this case
is the output label of the learner) is usually a complicated
structure, arising from many interacting decisions. In this
paper, we have shown the following:



In terms of parsing performance, all forms of sample selec-
tion trained better parsers than pure co-training (at the cost
of manual labeling).

Corrected co-training requires fewer corrections than
single-learner sample selection. The redundant views used
in co-training are shown to be beneficial for the parsing do-
main.

Corrected co-training, however, requires the human to re-
view many sentences, because outputs from both parsers
have to be checked. In contrast, one-sided corrected co-
training only asks the human to review and correct sen-
tences for one of the parsers, therefore demands less effort
from the human. Moreover, our experimental results show
that, despite the inclusion of some errors (from the uncor-
rected parser labeled training examples), the degradation in
parsing performance is small.
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