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Abstract

In this paper we show that an account
for coordination can be constructed us-
ing the derivation structures in a lexical-
ized Tree Adjoining Grammar (LTAG).
We present a notion of derivation in
LTAGs that preserves the notion of
�xed constituency in the LTAG lexicon
while providing the exibility needed
for coordination phenomena. We also
discuss the construction of a practi-
cal parser for LTAGs that can han-
dle coordination including cases of non-
constituent coordination.

1 Introduction

Lexicalized Tree Adjoining Grammars (LTAG)
and Combinatory Categorial Grammar (CCG)
(Steedman, 1997) are known to be weakly equiv-
alent but not strongly equivalent. Coordination
schema have a natural description in CCG, while
these schema have no natural equivalent in a stan-
dard LTAG.
In (Joshi and Schabes, 1991) it was shown that

in principle it is possible to construct a CCG-
like account for coordination in the framework of
LTAGs, but there was no clear notion of what the
derivation structure would look like. In this pa-
per, continuing the work of (Joshi and Schabes,
1991), we show that an account for coordination
can be constructed using the derivation structures
in an LTAG.
Using the notions given in this paper we also

discuss the construction of practical parser for
LTAGs that can handle coordination including
cases of non-constituent coordination. This ap-
proach has been implemented in the XTAG sys-
tem (XTAG Research Group, 1995) thus extend-
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ing it to handle coordination. This is the �rst
full implementation of coordination in the LTAG
framework.

2 LTAG

An LTAG is a set of trees (elementary trees) which
have at least one terminal symbol on its frontier
called the anchor. Each node in the tree has a
unique address obtained by applying a Gorn tree
addressing scheme, shown in the tree �(cooked)
(Fig. 1). Trees can be rewritten using substitu-
tion and adjunction. A history of these operations
on elementary trees in the form of a derivation
tree can be used to reconstruct the derivation of a
string recognized by a LTAG. In Fig. 1, the tree
�(dried) adjoins into �(beans) and trees �(John)
and �(beans) substitutes into �(cooked) to give a
derivation tree for John cooked dried beans. Each
node in the derivation tree is the name of an ele-
mentary tree. The labels on the edges denote the
address in the parent node where a substitution
or adjunction has occured.
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Figure 1: Example of an LTAG and an LTAG
derivation

3 Trees as Structured Categories

In (Joshi and Schabes, 1991) elementary trees as
well as derived trees in an LTAG were considered
as structured categories de�ned as a 3-tuple of an
elementary or derived tree, the string it spanned



and the functional type of the tree, e.g h�1; l1; �1i
in Fig. 2. Functional types for trees could be
thought of as de�ning un-Curried functions cor-
responding to the Curried CCG counterpart. A
functional type was given to sequences of lexical
items in trees even when they were not contiguous;
i.e. discontinuous constituents were also assigned
types. They were, however, barred from coordi-
nating.
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Figure 2: Structured Category for eats cookies

Coordination of two structured categories
�1; �2 succeeded if the lexical strings of both
categories were contiguous, the functional types
were identical, and the least nodes dominating the
strings spanned by the component tree have the
same label. For example, in Fig. 3 the tree corre-
sponding to eats cookies and drinks beer would be
obtained by:

1. equating the NP nodes1 in �1 and �2, pre-
serving the linear precedence of the argu-
ments.

2. coordinating the VP nodes, which are the
least nodes dominating the two contiguous
strings.

3. collapsing the supertrees above the VP node.

4. selecting the leftmost NP as the lexical site
for the argument, since precedence with the
verb is maintained by this choice.
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Figure 3: Coordination of eats cookies and drinks
beer

The process of coordination built a new de-
rived structure given previously built pieces of

1This notion of sharing should not be confused
with a deletion type analysis of coordination. The
scheme presented in (Joshi and Schabes, 1991) as well
as the analysis presented in this paper are not deletion
analyses.

derived structure (or perhaps elementary struc-
tures). There is no clear notion of a derivation
structure for this process.

4 Coordination in TAG

An account for coordination in a standard LTAG
cannot be given without introducing a notion of
sharing of arguments in the two lexically anchored
trees because of the notion of locality of arguments
in LTAG. In (1) for instance, the NP the beans in
the \right node raising" construction has to be
shared by the two elementary trees (anchored by
cooked and ate respectively).

(1) (((Harry cooked) and (Mary ate)) the
beans)

We introduce a notation that will enable us to
talk about this more formally. In Fig. 1 the no-
tation # denotes that a node is a non-terminal
and hence expects a substitution operation to oc-
cur. The notation � marks the foot node of an
auxiliary tree. Making this explicit we can view
an elementary tree as a ordered pair of the tree
structure and a ordered set2 of such nodes from
its frontier3, e.g. the tree for cooked will be rep-
resented as h�(cooked); f1; 2:2gi. Note that this
representation is not required by the LTAG for-
malism. The second projection of this ordered
pair is used here for ease of explication. Let the
second projection of the pair minus the foot nodes
be the substitution set. We will occasionally use
the �rst projection of the elementary tree to refer
to the ordered pair.

Setting up Contractions. We introduce an op-
eration called build-contraction that takes an ele-
mentary tree, places a subset from its second pro-
jection into a contraction set and assigns the dif-
ference of the set in the second projection of the
original elementary tree and the contraction set to
the second projection of the new elementary tree.
The contents of the contraction set of a tree can be
inferred from the contents of the set in the second
projection of the elementary tree. Hence, while
we refer to the contraction set of an elementary
tree, it does not have to be stored along with its
representation.
Fig. 4 gives some examples; each node in the

contraction set is circled in the �gure. In the tree
h�(cooked); f1; 2:2gi application of the operation
on the NP node at address 2:2 gives us a tree with
the contraction set f2:2g. The new tree is de-
noted by h�(cooked)f2:2g; f1gi, or �(cooked)f2:2g

for short. Placing the NP nodes at addresses 1
and 2:2 of the tree �(cooked) into the contraction
set gives us �(cooked)f1;2:2g.

2The ordering is given by the fact that the elements
of the set are Gorn addresses.

3We shall assume there are no adjunction con-
straints in this paper.
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We assume that the anchor cannot be involved
in a build-contraction. This assumption needs
to be revised when gapping is considered in this
framework (x5).

The Coordination Schema. We use the stan-
dard notion of coordination shown in Fig. 5 which
maps two constituents of like type, but with di�er-
ent interpretations, into a constituent of the same
type4.

X XConj

X

Figure 5: Coordination schema

We add a new rewriting operation to the LTAG
formalismcalled conjoin5. While substitution and
adjunction take two trees to give a derived tree,
conjoin takes three trees and composes them to
give a derived tree. One of the trees is always the
tree obtained by specializing the schema in Fig. 5
for a particular category6.
Informally, the conjoin operation works as fol-

lows: The two trees being coordinated are sub-
stituted into the conjunction tree. This no-
tion of substitution di�ers from the traditional
LTAG substitution operation in the following
way: In LTAG substitution, always the root
node of the tree being substituted is identi�ed
with the substitution site. In the conjoin op-
eration however, the node substituting into the
conjunction tree is given by an algorithm, which
we shall call FindRoot that takes into account
the contraction sets of the two trees. Find-
Root returns the lowest node that dominates all
nodes in the substitution set of the elementary
tree7, e.g. FindRoot(�(cooked)f2:2g) will re-
turn the root node, i.e. corresponding to the S

4In this paper, we do not consider coordination of
unlike categories, e.g. Pat is a Republican and proud
of it. (Sarkar and Joshi, 1996) discusses such cases,
following Jorgensen and Abeill�e (1992).

5Later we will discuss an alternative which replaces
this operation by the traditional operations of substi-
tution and adjunction.

6The tree obtained will be a lexicalized tree, with
the lexical anchor as the conjunction: and, but, etc.

7This ensures the node picked by FindRoot always
dominates a contiguous string in a derivation. This
captures the string contiguity condition that was used

conj S instantiation of the coordination schema.
FindRoot(�(cooked)f1;2:2g) will return node ad-
dress 2:1, corresponding to the V conj V instanti-
ation.
The conjoin operation then creates a contrac-

tion between nodes in the contraction sets of the
trees being coordinated. The term contraction is
taken from the graph-theoretic notion of edge con-
traction. In a graph, when an edge joining two
vertices is contracted, the nodes are merged and
the new vertex retains edges to the union of the
neighbors of the merged vertices8. The conjoin
operation supplies a new edge between each cor-
responding node in the contraction set and then
contracts that edge. As a constraint on the ap-
plication of the conjoin operation, the contraction
sets of the two trees must be identical.
Another way of viewing the conjoin operation

is as the construction of an auxiliary structure
from an elementary tree. For example, from the
elementary tree h�(drinks); f1; 2:2gi, the conjoin
operation would create the auxiliary structure
h�(drinks)f1g; f2:2gi shown in Fig. 6. The ad-
junction operation would now be responsible for
creating contractions between nodes in the con-
traction sets of the two trees supplied to it. Such
an approach is attractive for two reasons. First,
it uses only the traditional operations of substitu-
tion and adjunction. Secondly, it treats conj X as
a kind of \modi�er" on the left conjunct X. We
do not choose between the two representations but
continue to view the conjoin operation as a part
of our formalism.
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Figure 6: Coordination as adjunction.

For example, applying conjoin to the trees
Conj(and), �(eats)f1g and �(drinks)f1g gives us
the derivation tree and derived structure for the
constituent in (2) shown in Fig. 7.

(2) : : :eats cookies and drinks beer.

In Fig. 7 the nodes �(eats)f1g and �(drinks)f1g
signify an operation left incomplete at address 1.

in (Joshi and Schabes, 1991). A coordinated node will
never dominate multiple foot nodes. Such a case oc-
curs, e.g., two auxiliary trees with substitution nodes
at the same tree address are coordinated with only the
substitution nodes in the contraction set.

8Merging in the graph-theoretic de�nition of con-
traction involves the identi�cation of two previously
distinct nodes. In the process of contraction over
nodes in elementary trees it is the operation on that
node (either substitution or adjunction) that is iden-
ti�ed.
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The E�ects of Contraction. One of the e�ects of
contraction is that the notion of a derivation tree
for the LTAG formalism has to be extended to an
acyclic derivation graph9. Simultaneous substitu-
tion or adjunction modi�es a derivation tree into
a graph as can be seen in Fig. 8.
If a contracted node in a tree (after the conjoin

operation) is a substitution node, then the argu-
ment is recorded as a substitution into the two el-
ementary trees as for example in the sentences (3)
and (4).

(3) Chapman eats cookies and drinks beer.
(4) Keats steals and Chapman eats apples.

Fig. 8 contains the derivation and derived struc-
tures for (3) and Fig. 9 for (4). In Fig. 9 the deriva-
tion graph for sentence (4) accounts for the coor-
dinations of the traditional nonconstituent \Keats
steals" by carrying out the coordination at the
root, i.e. S conj S. No constituent corresponding
to \Keats steals" is created in the process of co-
ordination.
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Figure 8: Derivation for Chapman eats cookies
and drinks beer.

The derived structures in Figs. 8 and 9 are
di�cult to reconcile with traditional notions of
phrase structure10 . However, the derivation struc-
ture gives us all the informationabout dependency

9We shall use the general notation derivation struc-

ture to refer to both derivation trees and derivation
graphs.

10McCawley (1982) raised the heterodox view that
a discontinuous constituent structure should be given
for right node raising cases, having the same notion of
constituency as our approach. However, no conditions
on the construction of such a structure was given. In
fact, his mechanism also covered cases of parenthetical
placement, scrambling, relative clause extraposition
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Figure 9: Derivation for Keats steals and Chap-
man eats apples.

that we need about the constituents. The deriva-
tion encodes exactly how particular elementary
trees are put together. Obtaining a tree struc-
ture from a derived structure built by the conjoin
operation is discussed in (Sarkar and Joshi, 1996).
Considerations of the locality of movement phe-

nomena and its representation in the LTAG for-
malism (Kroch and Joshi, 1986) can also now ex-
plain constraints on coordinate structure, such as
across-the-board exceptions to the well known co-
ordinate structure constraint, see Fig. 10. Also
in cases of unbounded right node raising such as
Keats likes and Chapman thinks Mary likes beans,
Chapman thinks simply adjoins into the right con-
junct of the coordinate structure11.
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Figure 10: Derivation for Mary cooked the beans
which Keats liked and Chapman hated.

5 Contractions on Anchors

An LTAG along with the operations of substitu-
tion and adjunction also has the implicit opera-
tion of lexical insertion (represented as the dia-
mond mark in Fig. 11). Under this view, the

and heavy NP shift.
11A comparision of this paper's approach with the

derivational machinery in CCG and the devices of 3-D
coordination is done in (Sarkar and Joshi, 1996).



LTAG trees are taken to be templates. For ex-
ample, the tree in Fig. 11 is now represented as
h�(eat); f1; 2:1; 2:2gi.

eats

α (eats)
S

VPNP

V NP
◆

Figure 11: Lexicalization in a LTAG.

If we extend the notion of contraction in the
conjoin operation together with the operation of
lexical insertion we have the following observa-
tions: The two trees to be used by the conjoin op-
eration are no longer strictly lexicalized as the la-
bel associated with the diamond mark is a preter-
minal. Previous uses of conjoin applied to two dis-
tinct trees. If the lexicalization operation is to ap-
ply simultaneously, the same anchor projects two
elementary trees from the lexicon. The process of
contraction ensures that the anchor is placed into
a pair of LTAG tree templates with a single lexical
insertion.

Gapping. Using this extension to conjoin, we
can handle sentences that have the \gapping" con-
struction like sentence (5).

(5) John ate bananas and Bill strawberries.

The conjoin operation applies to copies of the
same elementary tree when the lexical anchor is
in the contraction set. For example, let �(eats)
be the tree selected by eats. The coordination of
�(eats)f2:1g with a copy of itself and the subse-
quent derivation tree is depicted in Fig. 1212.
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Figure 12: Handling the gapping construction us-
ing contractions.

An extension of the approach here will be to
permit the conjoin operation to create contrac-
tions on all the nodes in contraction sets that it

12In English, following Ross (1970), the anchor goes
to the left conjunct.

dominates during a derivation, allowing us to rec-
ognize cases of gapping such as: John wants Penn
to win and Bill, Princeton. and John wants to try
to see Mary and Bill, Susan.

Coordinating Ditransitive verbs. In sentence (6)
if we take the position that the string Mary a book
is not a constituent (i.e. give has a structure as in
Fig. 13), then we can use the notion of contraction
over the anchor of a tree to derive the sentence
in (6). The structure we derive is shown in Fig. 14.

(6) John gave Mary a book and Susan a
ower.
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Figure 13: Tree for a ditransitive verb in LTAG.
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Figure 14: Derived tree for John gave Mary a book
and Susan a ower.

Interactions. Permitting contractions on mul-
tiple substitution and adjunction sites along with
contractions on the anchor allow the derivation of
sluicing structures such as (7) (where the conjunct
Bill too can be interpreted as [John loves] Bill too
or as Bill [loves Mary] too13.

(7) John loves Mary and Bill too.

6 Parsing Issues

This section discusses parsing issues that arise
in the modi�ed TAG formalism that we have
presented. We do not discuss general issues
in parsing TAGs, rather we give the appropri-
ate modi�cations that are needed to the existing
Earley-type parsing algorithm for TAGs due to
Schabes and Joshi (1988).
The algorithm relies on a tree traversal that

scans the input string from left to right while rec-
ognizing the application of the conjoin operation.
The nodes in the elementary trees are visited in a
top-down left to right manner (Fig. 15). Each dot
in Fig. 15 divides the tree into a left context and a

13Whether this should be derived syntactically is
controversial, for example, see (Steedman, 1990).



right context, enabling the algorithm to scan the
elementary tree while trying to recognize possible
applications of the conjoin operation.
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Figure 15: Example of a tree traversal

The derived structure corresponding to a coor-
dination is a composite structure built by apply-
ing the conjoin operation to two elementary trees
and an instantiation of the coordination schema.
The algorithm never builds derived structures. It
builds the derivation by visiting the appropriate
nodes during its tree traversal in the following or-
der (see Fig. 16).

1 2 � � �3 4 � � �5 6 � � �20 70 � � �30 40 � � �50 60 � � �7 8

The algorithm must also compute the correct
span of the string for the nodes that have been
identi�ed via a contraction. Fig. 16 gives the
possible scenarios for the position of nodes that
have been linked by a contraction. When foot
nodes undergo contraction, the algorithm has to
ensure that both the foot nodes share the sub-
tree pushed under them, e.g. 9 � � �10 and 90 � � �100

in Fig. 16(a). Similarly, when substitution nodes
undergo contraction, the algorithm has to ensure
that the tree recognized due by predicting a sub-
stitution is shared by the nodes, e.g. 11 � � �12 and
110 � � �120 in Figs. 16(b) and 16(c). The traversals
9 � � �10 should span the same length of the input
as 90 � � �100, similarly for 11 � � �12 and 110 � � �120.
Various positions for such traversals is shown in
Fig. 16. A derivation is valid if the input string
is accepted and each node in a contraction spans
a valid substring in the input. The complete
and formal description of the parsing algorithm
is given in (Sarkar and Joshi, 1996).

7 Conclusion

We have shown that an account for coordination
can be given in a LTAG while maintaining the no-
tion of a derivation structure which is central to
the LTAG approach. We showed that �xed con-
stituency can be maintained at the level of the
elementary tree while accounting for cases of non-
constituent coordination and gapping. We dis-
cussed the construction of a practical parser for
LTAG that can handle these cases of coordina-
tion.
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References

Jorgensen, H. and A. Abeill�e. 1992. Coordination of
\Unlike" Categories in TAG. In Proceedings of the
2nd TAG Workshop, Philadelphia, PA.

Joshi, Aravind and Yves Schabes. 1991. Fixed and
exible phrase structure: Coordination in Tree Ad-
joining Grammar. Presented at the DARPA Work-
shop on Spoken Language Systems. Asilomar, CA.

Kroch, A. and A. K. Joshi. 1986. Analyzing extrapo-
sition in a tree adjoining grammar. In G. Huck and
A. Ojeda, editors, Syntax and Semantics: Discon-
tinuous Constituents. Academic Press, New York.

McCawley, James. 1982. Parentheticals and discon-
tinuous constituent structure. Linguistic Inquiry,
13(1):91{106.

Ross, John. 1970. Gapping and the order of con-
stituents. In M. Bierwisch and K. Heidolph, edi-
tors, Progress in Linguistics. Mouton, The Hague.

Sarkar, Anoop and Aravind Joshi. 1996. Handling
Coordination in a Tree Adjoining Grammar. Tech-
nical report, Dept. of Computer and Info. Sc., Univ.
of Pennsylvania, Philadelphia, PA.

Schabes, Yves and Aravind K. Joshi. 1988. An
Earley-type parsing algorithm for tree adjoining
grammars. In 26th Meeting of the Association for

Computational Linguistics, Bu�alo, NY.

Steedman, Mark. 1990. Gapping as constituent coor-
dination. Linguistics and Philosophy, 13:207{264.

Steedman, Mark. 1997. Surface Structure and Inter-
pretation: Unbounded and Bounded Dependency in

Combinatory Grammar. Linguistic Inquiry mono-
graph (to appear). MIT Press.

XTAG Research Group. 1995. A Lexicalized Tree
Adjoining Grammar for English. Technical report,
IRCS Tech Rpt. 95-03, University of Pennsylvania,
Philadelphia, PA.


