
2/15/06 1

MACM 300

Formal Languages and Automata

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

2/15/06 2

Applications of Finite-State

Machines/Regular Languages

• There are many applications in computer science

for finite-state machines

• We will focus here on a few canonical examples

from:

– Compilers

– Natural language processing

– Program verification

– Connections with other areas of mathematics: like logic

2/15/06 3

Compilers

• A compiler takes program text and converts
it into machine code which runs on
hardware

• The first step in this conversion is to find the
basic units of the program

• E.g. for the program text fragment
int counter = 20;

– We want to know that a variable counter has
type integer and value 20

2/15/06 4

Compilers

• How can we use finite-state machines for this
task?

• Let ! = { a,…,z,A,…,Z,0,…,9}
– Define regular expressions:

ALPHA = a " … " z " A " … " Z

NUM = 0 " … " 9

VARIABLE = ALPHA (ALPHA " NUM)*

TYPE = (int) " (boolean) " (real)

INTEGER_CONSTANT = NUM (NUM)*

EQ = ‘=‘

END_STATEMENT = ‘;’

WHITESPACE = (‘ ‘" ‘\n’)*



2/15/06 5

Compilers

• First we convert these regular expressions to
finite-state automata

• Each one recognizes a token in the program text

• We ask for the longest match for each FSA

• We remove the matched text from the input and
continue until we have no more tokens

• The longest match requirement is important
because we don’t want to match i, then n, then t
(as three variables); rather we want to match int as
a type.

2/15/06 6

Compilers

• So for input text: int counter=20;

• When we ask for the longest match for each FSA, and
continue until we have no more tokens, we get the
following output:

TYPE ‘int’

WHITESPACE ‘ ‘

VARIABLE ‘counter’

EQ ‘=‘

INTEGER_CONSTANT 20

END_STATEMENT ‘;’

• This is the first step in the conversion to machine code

2/15/06 7

Compilers

• The same techniques are used in a wide variety of
other applications like text editors, search engines,
etc.

• The key point is that using regular expressions we
can separate the specification of a task from the
implementation

• Regexp = specification

• FSA = implementation

• Automatic conversion between the two levels of
representation

2/15/06 8

Natural Language Processing

• Finite-state machines are useful for NLP:

– Speech recognition

– Text to speech
 http://www.naturalvoices.att.com/

– Machine transliteration (simple translations

from one language to another)

See handout for more information

– Morphological analysis: walked = walk + PAST

http://www.fsmbook.com



2/15/06 9

Program Verification

• Program verification is the checking of existing
programs

• We want to show correctness of the program: that
it will work correctly for any input

• We do this by representing all the states that the
program can be in at any time as the states in a
finite-state machine

• The inputs to the program are similarly taken to be
the symbols of the alphabet for the FSA

2/15/06 10

Program Verification

• However, there is a problem: programs can run
forever

• Also, programs can run forever correctly,
producing the right answer for every input

• But also programs can run forever incorrectly: by
going into an infinite loop

• We can model this in a finite-state machine by
allowing it to accept infinite strings!

2/15/06 11

Program Verification

0 0

1

1 01

Consider the infinite string: 100101010101…

Similarly consider: 10010100100000000…

Acceptance is defined as reaching a final state infinitely often

These finite-state automata over infinite strings are called

Buchi automata

For more see: http://www.cs.rice.edu/~vardi/papers/ijcai03.ps.gz

2/15/06 12

Connections with Logic

• This idea of automata that recognize infinite

strings is also useful to prove results in

logic

• Buchi automata have been used to show

decidability for the logical theory of n

successor functions

• For more see:
http://www.cs.sfu.ca/~anoop/papers/pdf/wpe2.pdf


