OVERVIEW

- Introduction
- Statistical Parsing Models
- 1. History-Based Models
- 2. Head-Driven Models
- Results
- Future Work
- Conclusions

PARSING AS A MACHINE LEARNING PROBLEM

- Training data (the Penn WSJ Treebank (Marcus et al 93))
- Learn a model from training data
- Evaluate the model's accuracy on test data
- A standard evaluation:

Train on 40,000 sentences from Wall Street Journal

Test on 2,300 sentences

A KEY PROBLEM: EXAMPLES OF AMBIGUITY

- Prepositional phrase attachment
- I (saw the man) with the telescope I saw (the man with the telescope)
- Part-of-speech ambiguity

V ⇒ saw N ⇒ saw (used to cut wood...)

Coordination

a program to promote safety in ((trucks) and minivans)

a program to promote ((safety in trucks) and minivans) ((a program to promote safety in trucks) and minivans)

STILL MORE PARSES...

a program to promote safety in trucks and minivans

Need a rule NP → NP NP

Suddenly Reagan the actor became Reagan the president

a program to promote is an NP

safety in trucks and minivans has two readings as an NP

TWO QUESTIONS

1. What objects to count?

 $Count(NP \rightarrow NP NP)$, Count(program is a noun),

Count(promote=transitive), Count(trucks, vans coordinated)

2. How to combine the counts to give a Score for each parse?

a program to promote safety ... ⇒

PROBABILISTIC PARSING

- S = a sentence.
- T = a parse tree for the sentence.
- A statistical model defines $P(T \mid S)$.
- The best parse is then

$$T_{best} = \arg\max_{T} P(T \mid S)$$

$$= \arg\max_{T} \frac{P(T,S)}{P(S)}$$

$$= \mathop{\mathsf{arg}}
olimits_T \mathsf{max}\, P(T,S)$$

TWO PROBLEMS

- 1. How to define the function which maps $(T, S) \rightarrow [0, 1]$.
- What to count?
- How to combine the counts?
- 2. Given a sentence S, how to find the tree T_{best} which maximizes P(T,S)?

MOTIVATION FOR LEXICALIZATION

PCFGs give information 72% accuracy: Poor use of lexical

Brill and Resnik 94, Collins and Brooks 95) Prepositional Phrase Attachment (Hindle and Rooth 91, Ratnaparkhi et al 94,

Binary Classification:

"saw, man, with, telescope" ⇒ Noun or Verb-attach

84.1%	$P(Noun ext{-}attach\mid saw,man,with,telescope)$
59%	Always noun attachment
Accuracy	Method

A GENERAL APPROACH: HISTORY-BASED MODELS (BLACK ET. AL 92)

- 1) Representation Choose non-terminal labels, parts-ofspeech etc.
- 2) Decomposition Define a one-to-one mapping between parse trees (T,S) and decision sequences $\langle d_1,d_2,...,d_n \rangle$

$$P(T,S) = \prod_{i=1...n} P(d_i|d_1...d_{i-1})$$

3) Independence Assumptions Define a function \(\phi \)

$$P(T,S) = \prod_{i=1...n} P(d_i | \phi(d_1...d_{i-1}))$$

A HEAD-DRIVEN APPROACH: REPRESENTATION

Lexicalized trees

A HEAD-DRIVEN APPROACH

Decomposition: A head-centered, top-down derivation

Independence Assumptions:

- Each parameter is conditioned on a lexical item
- Each word has an associated sub-derivation, and an associated set of probabilities:
- Head-projection
- Subcategorization
- Placement of complements/adjuncts
- Lexical dependencies

THE FIRST STEP OF THE DERIVATION

START

 \Downarrow

S(told)

P(S(told)|START)

THE SUB-DERIVATION ASSOCIATED WITH told

SUB-DERIVATIONS FOR THE OTHER WORDS


```
NP\text{-}C(they) \Rightarrow NP\text{-}C(they) \ | \ PRP(they) \ | \ NP\text{-}C(Lotus) \Rightarrow NP\text{-}C(Lotus) \ | \ NNP(Lotus) \ | \ Lotus
```

HEAD-PROJECTION PARAMETERS

$$P(VP | S, told) \times P(VBD | VP, told)$$

SUBCATEGORIZATION PARAMETERS

 $P(\{\}|\mathsf{VP,VBD,told,LEFT}) \times P(\{\mathsf{NP-C,SBAR-C}\}|\mathsf{VP,VBD,told,RIGHT})$

PLACEMENT OF COMPLEMENTS AND ADJUNCTS

PLACEMENT OF COMPLEMENTS AND ADJUNCTS

 $\Downarrow P(\mathsf{NP-C}|\mathsf{VP},\mathsf{VBD}, \{\mathsf{NP-C},\mathsf{SBAR-C}\}, \mathsf{told}, \mathsf{RIGHT})$

 $\Downarrow P(\mathsf{NP}|\mathsf{VP},\mathsf{VBD},\{\mathsf{SBAR-C}\},\mathsf{told},\mathsf{RIGHT})$

$\Downarrow P(\mathsf{SBAR-C}|\mathsf{VP},\mathsf{VBD}, \{\mathsf{SBAR-C}\}, \mathsf{told}, \mathsf{RIGHT})$

$\Downarrow P(\mathsf{STOP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{RIGHT})$

DEPENDENCY PARAMETERS

₩

 $P(\mathsf{IBM}|\mathsf{told},\mathsf{S},\mathsf{VP},\mathsf{NP-C},\mathsf{left}) \times P(\mathsf{him}|\mathsf{told},\mathsf{VP},\mathsf{VBD},\mathsf{NP-C},\mathsf{right}) \times P(\mathsf{NP-C},\mathsf{right}) \times P(\mathsf{NP-C},\mathsf$

 $P(\mathsf{yesterday}|\mathsf{told},\mathsf{VP},\mathsf{VBD},\mathsf{NP},\mathsf{right}) \times P(\mathsf{that}|\mathsf{told},\mathsf{VP},\mathsf{VBD},\mathsf{SBAR-C},\mathsf{right})$

ESTIMATION

Maximum-Likelihood estimates:

$$P(\{\mathsf{NP\text{-}C},\mathsf{SBAR\text{-}C}\}|\mathsf{VP},\mathsf{VBD},\mathsf{told},\mathsf{RIGHT}) =$$

Smoothing:

$$P(\{NP-C,SBAR-C\}|VP,VBD,told,RIGHT) =$$

$$\lambda \times \frac{\text{Count}(\{\text{NP-C,SBAR-C}\}, \text{VP,VBD,told,RIGHT})}{\text{Count}(\text{VP,VBD,told,RIGHT})} +$$

$$(1 - \lambda) \times \frac{\text{Count}(\{\text{NP-C,SBAR-C}\}, \text{VP,VBD,RIGHT})}{\text{Count}(\text{VP,VBD,RIGHT})}$$

$P(\mathsf{him}|\mathsf{told},\mathsf{VP},\mathsf{VBD},\mathsf{NP-C/PRP}) =$

$$\lambda_1 \times \frac{\text{Count(him, told,VP,VBD,NP-C/PRP,RIGHT)}}{\text{Count(told,VP,VBD,NP-C/PRP,RIGHT)}} +$$

$$\lambda_2 \times \frac{\text{Count(him, VP,VBD,NP-C/PRP,RIGHT)}}{\text{Count(VP,VBD,NP-C/PRP,RIGHT)}} +$$

$$\lambda_3 \times \frac{\text{Count(him, PRP)}}{\text{Count(PRP)}}$$

CLOSE-ATTACHMENT PREFERENCES: ADJACENCY

CLOSE-ATTACHMENT PREFERENCES: VERB-CROSSING

PLACEMENT OF COMPLEMENTS AND ADJUNCTS: ADJACENCY

 $P(PP|NP, N, \{\}, dog, adjacency=TRUE)$

 $P(PP|NP, N, \{\}, dog,adjacency=FALSE)$

Close-attachment means

$$P(\mathsf{PP}|\mathsf{NP},\mathsf{N},\{\},\mathsf{dog},\mathsf{adjacency=TRUE}) > P(\mathsf{PP}|\mathsf{NP},\mathsf{N},\{\},\mathsf{dog},\mathsf{adjacency=FALSE})$$

PLACEMENT OF COMPLEMENTS AND ADJUNCTS: VERB-CROSSING

IBM told him that they bought Lotus yesterday

 $P(\mathsf{STOP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{verb\text{-}crossing\text{-}TRUE})$

Close-attachment means

$$P(\mathsf{STOP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{verb\text{-}crossing\text{-}TRUE}) > P(\mathsf{NP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{verb\text{-}crossing\text{-}TRUE})$$

WH-MOVEMENT: A GPSG-STYLE TREATMENT

RESULTS

- Results on the Penn WSJ treebank
- Contribution of subcategorization, adjacency, verb-crossing
- Accuracy on different types of dependencies

RESULTS ON SECTION 23 OF THE PENN WSJ TREEBANK

88.3%	88.1%	Head-Driven Models 88.1% 88.3%
87.5%	86.3% 87.5%	Ratnaparkhi 97
86.6%	86.7%	Charniak 97
85.7%	85.3% 85.7%	Collins 96
85.3%	84.8% 85.3%	Goodman 97
84.3%	84.0% 84.3%	Magerman 95
LP	LR	MODEL

Also: Eisner 96 gives same dependency accuracy as Collins 96

LR = Labeled Recall
LP = Labeled Precision

CONTRIBUTION OF DIFFERENT FEATURES

-	0.0	00:	- 6	· / djacolloy	
+1 1	%0 P8	%2 88	+ Verh	Subcat + Adiacency + Verb 88 7% 89 0% +1 1	Suhcat
+1.8	87.7% 87.8% +1.8	%7.78		Subcat + Adjacency	Subcat
+10.2	85.1% 86.8% +10.2	%1.28			Subcat
	75.0% 76.5%	%0.27			None
	LP	LR			

+0.9	89.0%	88.7%	+ Subcat	+ Verb	Adjacency + Verb + Subcat 88.7% 89.0% +0.9
+1.4	87.8% 88.2% +1.4	87.8%		+ Verb	Adjacency + Verb
+10.9	86.6% 86.7% +10.9	86.6%			Adjacency
	75.0% 76.5%	75.0%			None
	LP	LR			

(Section 0 of the Penn WSJ Treebank)

SUBCATEGORIZATION AND ADJACENCY OVERLAP

Subcategorization and adjacency both fix this problem

EVALUATION OF DEPENDENCIES

A sentence with n words has n dependencies

Head	Modifier	label	direction	description
told	Mal	S VP NP-C	Left	Subject
told	him	VP TAG NP-C	Right	Object
told	yesterday VP	VP TAG NP	Right	Adjunct
told	that	VP TAG SBAR-C Right	Right	SBAR complement

Overall: 88.3% accuracy on section 0 (91% ignoring labels)

		-	,		
Туре	Sub-type	Description	Count	Recall	Precision
Complement to a verb	S VP NP-C L	Subject	3248	95.75	95.11
	VP TAG NP-C R	Object	2095	92.41	92.15
6495 = 16.3% of all cases	VP TAG SBAR-C R		558	94.27	93.93
	Ī.				
	TOTAL		6495	93.76	92.96
Other complements	PP TAG NP-C R		4335	94.72	94.04
	VP TAG VP-C R		1941	97.42	97.98
7473 = 18.8% of all cases	SBAR TAG S-C R		477	94.55	92.04
	:				
	TOTAL		7473	94.47	94.12
Mod'n within BaseNPs	NPB TAG TAG L		11786	94.60	93.46
	NPB TAG NPB L		358	97.49	92.82
12742 = 29.6% of all cases	NPB TAG TAG R		189	74.07	75.68
	Ī.				
	TOTAL		12742	93.20	92.59
Sentential head	TOP TOP S R		1757	96.36	96.85
	TOP TOP SINV R		89	96.63	94.51
1917 = 4.8% of all cases	TOP TOP NP R		32	78.12	60.98
	TOP TOP SG R		15	40.00	33.33
	•••				
	TOTAL		1917	94.99	94.99

H		7	-	J =	7
Туре	Sub-type	Description	Count	Kecall	Precision
PP modification	NP NPB PP R		2112	84.99	84.35
	VP TAG PP R		1801	83.62	81.14
4473 = 11.2% of all cases	S VP PP L		287	90.24	81.96
	:				
	TOTAL		4473	82.29	81.51
Adjunct to a verb	VP TAG ADVP R		367	74.93	78.57
	VP TAG TAG R		349	90.54	93.49
2242 = 5.6% of all cases	VP TAG ADJP R		259	83.78	80.37
	•				
	TOTAL		2242	75.11	78.44
Mod'n to NPs	NP NPB NP R	Appositive	495	74.34	75.72
	NP NPB SBAR R	Relative clause	476	79.20	79.54
1418 = 3.6% of all cases	NP NPB VP R	Reduced relative	205	77.56	72.60
	:				
	TOTAL		1418	73.20	75.49
Coordination	NP NP NP R		289	55.71	53.31
	VP VP VP R		174	74.14	72.47
763 = 1.9% of all cases	S S S R		129	72.09	69.92
	•••				
	TOTAL		763	61.47	62.20

SOME THOUGHTS ABOUT RELATED WORK

- SPATTER: the importance of the choice of decomposition
- Charniak 97: the importance of breaking down rules

SPATTER (MAGERMAN 95, JELINEK ET. AL 94)

Representation Context-free trees with head-words

Decomposition d_i is the i'th decision in a left-to-right, bottom-up parse of the tree

$$P(T|S) = \prod_{i=1...n} P(d_i|d_1...d_{i-1}, S)$$

Independence Assumptions $\phi(d_1...d_{i-1})$ is found automatically using decision trees

PROBLEMS WITH SPATTER

✓B	✓B	VB
ADVP	ס	Z
P	Z	J
Z P	ס	Z P
	Z	

Z P

PROBLEMS WITH SPATTER

John Z	
--------	--

$$\underset{\mathrm{and}}{\mathrm{cc}}$$

A CONTRAST WITH CHARNIAK 97

Generation of a rule is broken down into smaller steps

that have not been seen in training The model can generalize to produce rules in test data

Charniak 97: entire rule is expanded in one step

THE PENN TREEBANK HAS MANY RULES

17.1% of sentences in test data have a rule not seen in training

Chomsky Adjunction Penn Treebank

 $VP \rightarrow VP PP$ $VP \rightarrow V NP-C$

 $VP \rightarrow V NP-C$ $VP \rightarrow V NP-C PP$ $VP \rightarrow V NP-C PP$ $VP \rightarrow V NP-C PP PP$ $VP \rightarrow V NP-C PP PP ...$

With good motivation: VP → NP-C NP SBAR-C

THE IMPACT OF COVERAGE ON ACCURACY

MODEL	LR	LP	CBs	0 CBs	≤ 2 CBs
Full model	8.88	88.8 89.0 0.94	0.94	65.9	85.6
Full model (restricted) 87.9 87.0	87.9	87.0	1.19	62.5	82.4

FUTURE WORK: IMPROVING ACCURACY

- Improving accuracy:
- Increased Context/Improved Estimation
- Unsupervised Learning
- Deeper Analysis:
- Non-constituent etc etc phrases other than NPs, PRO-control, tough raising coordination, wh-movement
- Mapping to theta roles
- General information extraction from parse trees

FUTURE WORK: OTHER LANGUAGES

- Old/Middle English
- Czech. 1998 Johns Hopkins Summer Workshop:
- -82% dependency accuracy
- Major problem is inflection. Need parameters

P(modifier tag|head tag)

P(word form|word stem, tag)

SUMMARY

- What to count? **Lexically conditioned parameters**:
- Head-projection
- Subcategorization
- Placement of complements/adjuncts
- Dependencies
- Close-attachment/Wh-movement
- How to combine the counts? History-based Approach:
- Representation = Lexicalized trees
- Decomposition = head-centered, top-down derivation

Results:

- Over 88% constituent accuracy
- Over 90% accuracy on dependencies

A FINAL POINT

Prior knowledge is unavoidable:

- History-based models generalize practically all parsing models
- The choice of decomposition is crucial, implies a substantial bias
- Prior linguistic decomposition knowledge is embedded in the choice of
- Decomposition should be motivated by concerns about locality

The learning component shouldn't be underestimated:

- dependency types), over 9,000,000 dependency counts Volume of information: 780,000 dependency events (390,000 distinct
- Blends many different knowledge sources into a consistent model (subcategorization, dependencies, close-attachment etc.)
- Balances fine-grained lexical statistics against coarser statistics (backed-off estimation)