CMPT-882: Statistical Learning of Natural Language

Lecture #13

Anoop Sarkar
anoop@cs.sfu.ca
http://www.sfu.ca/~anoop
• *Structural Ambiguity and Lexical Relations*. Donald Hindle and Mats Rooth. CL 1993.

Hindle and Rooth 1993

- Basic idea: parse using a minimal commitment parser: where there is ambiguity do not commit to multiple analyses

- Resolve ambiguity using lexical information and pick only one of the multiple analyses

- Data is noisy due to imperfect parsing

- Key difference from (Collins and Brooks 1995) (from last time) is that here the model uses information from parser but is not trained on any data labelled with attachment information
The radical changes in export and customs regulations evidently are aimed at remedying an extreme shortage of consumer goods in the Soviet Union and assuaging citizens angry over the scarcity of such basic items as soap and windshield wipers.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>Noun</td>
<td>Prep</td>
<td>Attach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>changes regulations</td>
<td>in</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trace shortage goods</td>
<td>at</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the Soviet Union citizens scarcity items wipers</td>
<td>of in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collecting bigram counts: P,N and P,V

- No preposition: assign NULL – Items b, f, g, j

- Sure Verb Attach 1: verb attach preposition if noun is pronoun

- Sure Verb Attach 2: verb attach prep if verb is passive (except if prep is by) – Item c

- Sure Noun Attach: noun attach prep if verb attach is impossible (e.g. subject noun phrase) – Item a
Collecting bigram counts: P,N and P,V

- Ambiguous Attach 1: use likelihood score – Item d

- Ambiguous Attach 2: if AA1 does not assign an attachment, split counts between verb and noun attach – Item d

- Unsure Attach: assign noun attach – Items e, h, i
log likelihood ratio: LA > 0 is verb attach; < 0 is noun attach

- Moscow sent more than 100,000 soldiers into Afghanistan . . .
 verb attach: $[VP \text{ send } [NP \text{ soldier } \text{ NULL }] [PP \text{ into } . . .] . . .]$
 noun attach: $[VP \text{ send } [NP \text{ soldier } [PP \text{ into } . . .]] . . .]$

$$LA(v, n, p) = \log_2 \frac{p(a = v, p | v, n)}{p(a = n, p | v, n)}$$

$$p(a = v, \text{ into } | \text{ send, soldier}) \approx p(\text{ into } | \text{ send}) \times p(\text{ NULL } | \text{ soldier})$$

$$p(a = n, \text{ into } | \text{ send, soldier}) \approx p(\text{ into } | \text{ soldier})$$

$$p(\text{ into } | \text{ send}) = \frac{f(\text{ into, send})}{f(\text{ send})}$$

$$f(\text{ send}) = \sum_p f(p, \text{ send})$$
Smoothing

\[f(N, p) = \sum_n f(n, p); \quad f(V, p) = \sum_v f(v, p) \]

\[f(N) = \sum_n f(n); \quad f(V) = \sum_v f(v) \]

\[P(p \mid n) = \frac{f(n, p) + \frac{f(N, p)}{f(N)}}{f(n) + 1} \]

\[P(p \mid v) = \frac{f(v, p) + \frac{f(V, p)}{f(V)}}{f(v) + 1} \]
Evaluation

- Right Association (always noun attach): error rate 33%

- Minimal Attachment (always verb attach): error rate 67%

- LA score accuracy: precision 0.797% recall 0.797%

- Comparison with a hand-built dictionary COBUILD: training from text using the LA score outperformed the dictionary (partly because training data for COBUILD was not the same as the test material and partly because of lack of coverage)
Problematic Cases

1. But over time, misery has given way to mending (idiom)

2. The meeting with take place in Quantico (idiom)

3. Bush has said he would not make cuts in Social Security (light verb)

4. Sides said Francke kept a .38-caliber revolver in his car’s glove compartment (small clause)
Ratnaparkhi 1998

- Central idea: rather than use a parser to bootstrap training data, use only the unambiguous cases to provide information for the ambiguous ones

- From raw text, use a pos tagger and a chunker and use an extraction heuristic:
 - \((v, p, n2) \; p \neq \text{of}; v\) is the first verb K words to the left of \(p\); \(v \neq \text{to be}\); and no noun between \(v\) and \(p\)
 - \((n, p, n2) \; p \neq \text{of}; n\) is the first noun K words to the left of \(p\); and no verb occurs with K words to the left of \(p\)
Models

- Heuristics provides 910K attachments (Out of 970K WSJ sents). Accuracy of heuristic \(\approx 69\% \)

- \(cl(v, n, p, n2) = N \) if \(p = \circ f \)
 \[= \arg \max_a p(v, n, p, a) \] otherwise

- \(p(v, n, p, a) = p(v) \times p(n) \times p(a \mid v, n) \times p(p \mid a, v, n) \)

- \(p(a = N \mid v, n) = \frac{p(\text{true} \mid n)}{Z(v, n)} \) (similarly for \(a = V \))
Models

- $Z(v, n) = p(\text{true} \mid n) + p(\text{true} \mid v)$

- $p(p \mid a = N, v, n) \approx p(p \mid \text{true}, n)$ (similarly for $a = V$)

- cl_{bigram} using bigram counts:

 \begin{align*}
 p(p \mid \text{true}, n) &= \frac{c(n,p,\text{true})}{c(n,\text{true})} \text{ if } c(n, \text{true}) > 0 \\
 p(p \mid \text{true}, n) &= \frac{1}{|\mathcal{P}|} \text{ otherwise}
 \end{align*}

- cl_{interp} using interpolation smoothing same as Hindle and Rooth 1993.
Evaluation

- No iteration: just sample from raw text and apply on test data

- English: 81.91% \(cl_{bigram} \); 70.39% baseline

- Spanish: 94.5% \(cl_{bigram} \); 90.1% baseline
find all ambiguous data points: \(c(v, p, n2) + = \frac{1}{k} \) and \(c(n, p, n2) + = \frac{1}{k} \) for \(k \) attachment sites

also find all unambiguous data points (as in Ratnaparkhi 1998)

\[
\text{vscore}(v, p, n2) = \ln(p(p)) + \ln(p(v, p, n2)) + \ln(p(v \mid p)) + \ln(p(p \mid n2))
\]
\[
\text{nscore}(n, p, n2) = \ln(p(p)) + \ln(p(n, p, n2)) + \ln(p(n \mid p)) + \ln(p(p \mid n2))
\]
• Collocation database:
 eat → cook, drink, consume, feed, taste, like, serve, bake, sleep, pick, fry, freeze, . . .
salad → soup, sandwich, sauce, pasta, dish, vegetable, cheese, dessert, entree, bread, meat, chicken, . . .

• Collocation database gives a list of similar words to a particular word under consideration

• A cohort of a word in a particular context is a list of words that appeared in the position of that word in the context
e.g. in the context of eat salad the cohorts of the word salad might be soup, sandwich, pasta, cheese, . . .
• use the intersection of similar words and cohorts to create an unsupervised alternative to the use of Wordnet in (Stetina and Nagao 1998) find contextually similar words:
 eat with fork → spoon, knife, fingers, . . .
 salad with fork → ∅ item use contextually similar words to deal with sparse data: smooth vscore and nscore with counts from this set

• For vscore: given input \((v, n, p, n2)\);
 \(CS_v\) is the set of contextually similar words for \(v\) in context \(v:\ obj : n\) and
 \(CS_{n2,v}\) is the set of csw for \(n2\) in context \(v : p : n\) noun
• define \(vscore \) of a set of csw to be the average score for each element in the set

\[
vscore'(v, p, n2) = \max(vscore(CS_v), vscore(CS_{n2,v}))
\]

• similarly: \(nscore'(n, p, n2) = \max(vscore(CS_n), vscore(CS_{n,n2})) \)
Attachment Algorithm: Pantel and Lin 2000

- **Input**: \((v, n, p, n_2)\)

- \(\text{avg}_n = \text{nscore}'(n, p, n_2)\) and \(\text{avg}_v = \text{vscore}'(v, p, n_2)\)

- \(a_n = \text{nscore}(n, p, n_2)\) and \(a_v = \text{vscore}(v, p, n_2)\)

- \(S(n) = \lambda_1 a_n \times \lambda_2 \text{avg}_n\)
 \(S(v) = \lambda_1 a_v \times \lambda_2 \text{avg}_v\)

- **Output**: \(n\) if \(S(n) > S(v)\) or if \(p = \text{of}\); \(v\) otherwise
Summary of Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>Data</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td>70.39</td>
</tr>
<tr>
<td>Maxent</td>
<td>Supervised</td>
<td>81.6</td>
</tr>
<tr>
<td>Tbl</td>
<td>Supervised</td>
<td>81.9</td>
</tr>
<tr>
<td>Katz (cb)</td>
<td>Supervised</td>
<td>84.5</td>
</tr>
<tr>
<td>Wordnet (sn)</td>
<td>Supervised</td>
<td>88.1</td>
</tr>
<tr>
<td>Parser (hr)</td>
<td>Unsupervised</td>
<td>75.8</td>
</tr>
<tr>
<td>Unamb (r)</td>
<td>Unsupervised</td>
<td>81.91</td>
</tr>
<tr>
<td>Pantel & Lin</td>
<td>Unsupervised</td>
<td>84.31</td>
</tr>
</tbody>
</table>