
CMPT-882: Statistical Learning of Natural Language

Lecture #8

Anoop Sarkar
anoop@cs.sfu.ca

http://www.sfu.ca/˜anoop

1

• A simple introduction to maximum entropy models for NLP. Adwait
Ratnaparkhi.

• A maximum entropy model for part-of-speech tagging. Adwait
Ratnaparkhi.

2

Probability Models

• p(a, b): a = input, b = labels

• Pick best prob distribution p(a, b) to fit the data

• Max likelihood of the data according to the prob model
equivalent to minimizing entropy

3

Probability Models

• Max likelihood of the data according to the prob model

• Equivalent to picking best parameter values θ such that the data gets
highest likelihood:
maxθp(θ | data) = maxθp(θ)× p(data| θ)

4

What happened to good, old fashioned AI?

• No stinkin’ probabilities: real AI is done with heuristic scores

• Assign scores (+ score or − score) – sum it all up – and then use it
to weight alternatives

• So are probability models any better than this approach?

• Worse: are they the same?

5

Aren’t log probabilities just scores

• n-grams: . . . + log p(w8 | w6, w7) + . . .

• HMM: . . . + log p(t5 | t3, t4) + log p(w5 | t5) + . . .

• Naive Bayes:
. . .+ log p(class)+ log p(feature1 | class)+ log p(feature2 | class)+ . . .

6

Advantages of probability models

• parameters can be estimated automatically, while scores have to
twiddled by hand

• parameters can be estimated from supervised or unsupervised data

• probabilities can be used to quantify confidence in a particular state
and used to compare against other probabilities in a strictly
comparable setting

• modularity: p(semantics)× p(syntax | semantics)×
p(morphology | syntax)× p(phonology | morphology)×
p(sounds | phonology)

7

Remember the humble Naive Bayes Classifier

• P (ck | x) = P (ck)×P (x|ck)
P (x)

• P (x | ck) =
∏d

j=1 P (xj | ck)

• P (ck | x) = P (ck)×
∏d

j=1 P (xj | ck)

8

Using Naive Bayes for Document Classification

• Spam text: Learn how to make $38.99 into a money

making machine that pays ... $7,000 / month !

• Distinguish spam text from regular email text

• Find useful features to make this distinction

9

Using Naive Bayes

• Useful features

1. contains turn $AMOUNT into

2. contains $AMOUNT

3. contains Learn how to

4. contains exclamation mark at end of sentence

10

Using Naive Bayes

• how many times do these features occur?

1. contains turn $AMOUNT into

in spam text: 0.5

in normal email: 0.02

i.e. 25x more likely in spam

2. contains $AMOUNT

in spam text: 0.9

in normal email: 0.1

i.e. 9x more likely in spam

11

Using Naive Bayes

• How likely is it for both features to occur at the same time

1. contains turn $AMOUNT into

2. contains $AMOUNT

• The model predicts that the event that both features occur
simultaneously has probability 0.45

i.e. 25x9 = 225x more likely in spam than in normal email.

• What went wrong?

12

Using Naive Bayes

• How likely is it for both features to occur at the same time

1. contains turn $AMOUNT into
in spam: 0.5 log prob = −1
in normal email: 0.02 log prob = −5.64

2. contains $AMOUNT
in spam: 0.9 log prob = −0.15
in normal email: 0.1 log prob = −3.3

• tweak it by hand
in spam: 0.85 log prob = −2.3
But what is the basic problem

13

Using Naive Bayes

• Naive Bayes needs overlapping but independent features

• How can we use all of the features we want?

1. contains turn $AMOUNT into

2. contains $AMOUNT

3. contains Learn how to

4. contains exclamation mark at end of sentence

• how about giving each feature a score equal to its log probability

14

Using Naive Bayes

• each feature gets a score equal to its log probability

• Assign scores to features:

1. λ1 = +1 contains turn $AMOUNT into

2. λ2 = +5 contains $AMOUNT

3. λ3 = +0.2 contains Learn how to

4. λ4 = −2 contains exclamation mark at end of sentence

15

Using Naive Bayes

• so add the scores and treat it like a log probability

• log p(feats | spam) = 4.2

• but then, p(feats | spam) = exp(4.2) = 66.68

• how do we compute keep arbitrary scores and still get probabilities?

16

Log linear model

• Renormalize!

• p(x | spam) = 1
Z(λ)exp

∑
i λifi(x)

– x is the email message

– λi is the weight of feature i

– fi(x) ∈ {0,1} tells us whether x has feature i

– 1
Z(λ) is a normalizing factor making

∑
x p(x | spam) = 1

• called log-linear: why?

17

Log linear model

• Now we can get the weights from data

• Choose λi such that the log prob of the training data is maximized:
log

∏
j p(cj)× p(xj | cj)

• log linear models are convex functions – easy to maximize why?

18

Log linear model

• Instead of having separate models
p(spam) ∗ p(x | spam) vs. p(normal) ∗ p(x | normal)

• Have one model p(x, c)

• Equivalent to changing features into:
message is spam and contains turn $AMOUNT into

19

Maximum Entropy

• The maximum entropy principle: related to Occam’s razor and other
similar justifications for scientific inquiry

• Make the minimum possible assumptions about unseen data

• Also: Laplace’s Principle of Insufficient Reason: when one has no
information to distinguish between the probability of two events, the
best strategy is to consider them equally likely

20

Maximum Entropy

• Amazing theorem:

p(x | spam) =
1

Z(λ)
exp

∑
j

αjfj(x, spam)

• Doesn’t it look familiar?

p∗(x | h) = π
k∏

j=1

λ
fj(x,h)
j ,0 < λj <∞

where
∑
j

λjfj(x, h) = log(
k∏

j=1

α
fj(x,h)
j);π =

1

Z(λ)

21

Learning the weights: λj: Generalized Iterative Scaling

p∗(x | h) = π
k∏

j=1

λ
fj(x,h)
j ,0 < λj <∞

π =
∑
x

k∏
j=1

λ
fj(x,h)
j

22

Learning the weights: λj: Generalized Iterative Scaling

f# = maxx,h
∑k

j=1 fj(x, h)

For each iteration
expected[1 .. # of features]← 0
For t = 1 to | training data|

For each feature fj

expected[j] += fj(x, ht)× P (x | ht)

For each feature fj

observed[j] = fj(x, h)× c(x,h)
|training data|

For each feature fj

λi ← λi × f#
√

observed[j]
expected[j]

cf. Goodman, NIPS ’01

23

Logistic Regression

• models effects of explanatory variables on binary valued variable

• observations x = {x1, . . . , xj} with success given by q(x):

q(x) =
eg(x)

1 + eg(x)

and

g(x) = β0 +
k∑

j=1

βjxj

24

Logistic Regression

• probability that observations lead to success, or p(a = 1 | b):

p(a = 1 | b) =
eg(b)

1 + eg(b)

where

g(b) = β0f0(1, b) +
k∑

j=1

βjfj(1, b)

• βj = logαj, f0(1, b) = 1 and fj(1, b) = xj

25

