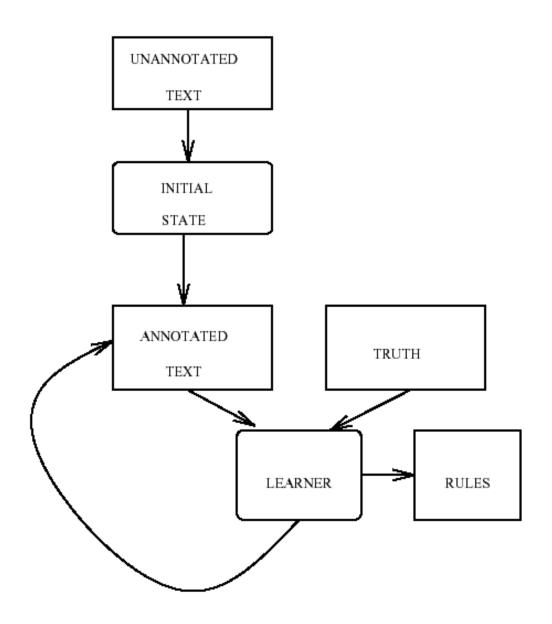
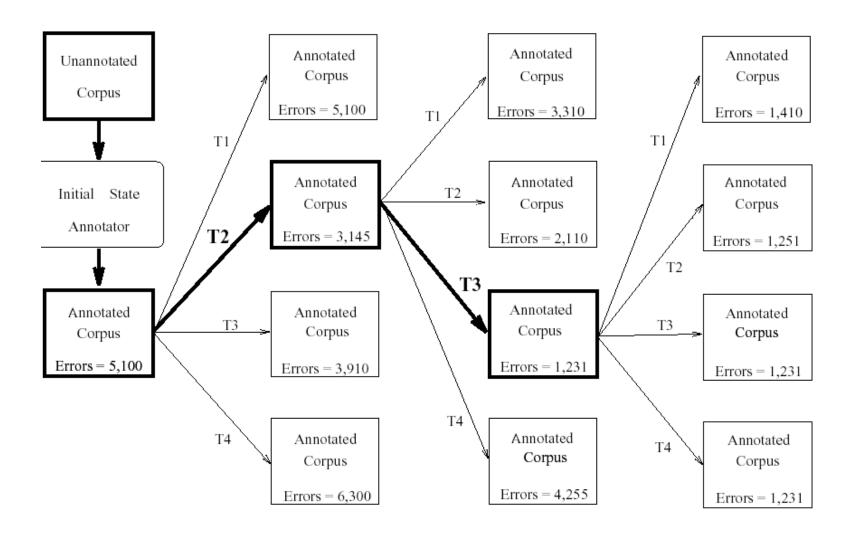
CMPT-882: Statistical Learning of Natural Language


Lecture #7


Anoop Sarkar

anoop@cs.sfu.ca

http://www.sfu.ca/~anoop

 Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging. Eric Brill.
 Computational Linguistics 1995.

- 1. apply initial state annotator to corpus
- 2. while transformations can still be found do
- 3. for from $tag = tag_1$ to tag_n
- 4. for to tag = tag_1 to tag_n
- 5. for corpus_position = 1 to corpus_size
- 6. **if** (correct_tag(corpus_position) == to_tag

&& current_tag(corpus_position) == from_tag)

- 7. num_good_transformations(tag(corpus_position -1))++
- 8. else if (correct_tag(corpus_position) == from_tag

&& current_tag(corpus_position) == from_tag)

- 9. num_bad_transformations(tag(corpus_position-1))++
- 10. find max_T (num_good_transformations(T) num_bad_transformations(T))
- 11. if this is the best scoring rule found yet then store as best rule:

Change tag from from tag to to tag if previous tag is T

- 12. apply best rule to training corpus
- 13. append best rule to ordered list of transformations

	Change Tag				
#	From	То	Condition		
1	NN	VB	Previous tag is TO		
2	VBP	VB	One of the previous three tags is MD		
3	NN	VB	One of the previous two tags is MD		
4	VB	NN	One of the previous two tags is DT		
5	VBD	VBN	One of the previous three tags is VBZ		
6	VBN	VBD	Previous tag is PRP		
7	VBN	VBD	Previous tag is NNP		
8	VBD	VBN	Previous tag is VBD		
9	VBP	VB	Previous tag is TO		
10	POS	VBZ	Previous tag is PRP		
11	VB	VBP	Previous tag is NNS		
12	VBD	VBN	One of previous three tags is VBP		
13	IN	WDT	One of next two tags is VB		
14	VBD	VBN	One of previous two tags is VB		
15	VB	VBP	Previous tag is PRP		
16	IN	WDT	Next tag is VBZ		
17	IN	DT	Next tag is NN		
18	$_{ m JJ}$	NNP	Next tag is NNP		
19	IN	WDT	Next tag is VBD		
20	$_{ m JJR}$	RBR.	Next tag is JJ		

Change tag a to tag b when:

- The preceding (following) word is w.
- 2. The word two before (after) is w.
- 3. One of the two preceding (following) words is w.
- 4. The current word is w and the preceding (following) word is x.
- 5. The current word is w and the preceding (following) word is tagged z.
- 6. The current word is w.
- 7. The preceding (following) word is w and the preceding (following) tag is t.
- 8. The current word is w, the preceding (following) word is w_2 and the preceding (following) tag is t.

	Training	# of Rules	
	Corpus	or Context.	Acc.
Method	Size (Words)	Probs.	(%)
Stochastic	$64~\mathrm{K}$	6,170	96.3
Stochastic	1 Million	10,000	96.7
Rule-Based			
With Lex. Rules	$64~\mathrm{K}$	215	96.7
Rule-Based			
With Lex. Rules	$600~\mathrm{K}$	447	97.2
Rule-Based			
w/o Lex. Rules	600 K	378	97.0