CMPT-882: Statistical Learning of Natural Language

Lecture #6

Anoop Sarkar

anoop@cs.sfu.ca

http://www.sfu.ca/~anoop

 Nymble: a high-performance learning name-finder, Daniel M. Bikel and Scott Miller and Richard Schwartz and Ralph Weischedel. In Proceedings of ANLP-97, pages 194–201, 1997.

citeseer.nj.nec.com/bikel97nymble.html

 An Algorithm that Learns What's in a Name, Daniel M. Bikel and Richard L. Schwartz and Ralph M. Weischedel. *Machine Learning*, volume 34, number 1-3, pages 211–231, 1999.

citeseer.nj.nec.com/bikel99algorithm.html

The delegation, which included the commander of the U.N. troops in Bosnia, Lt. Gen. Sir Michael Rose, went to the Serb stronghold of Pale, near Sarajevo, for talks with Bosnian Serb leader Radovan Karadzic.

Este ha sido el primer comentario publico del presidente <u>Clinton</u> respecto a la crisis de <u>Oriente Medio</u> desde que el secretario de Estado, <u>Warren Christopher</u>, decidiera regresar precipitadamente a <u>Washington</u> para impedir la ruptura del proceso de paz tras la violencia desatada en el sur de <u>Libano</u>.

- 1. Locations
- Persons
- Organizations

Figure 1.1 Examples. Examples of correct labels for English text and for Spanish text.

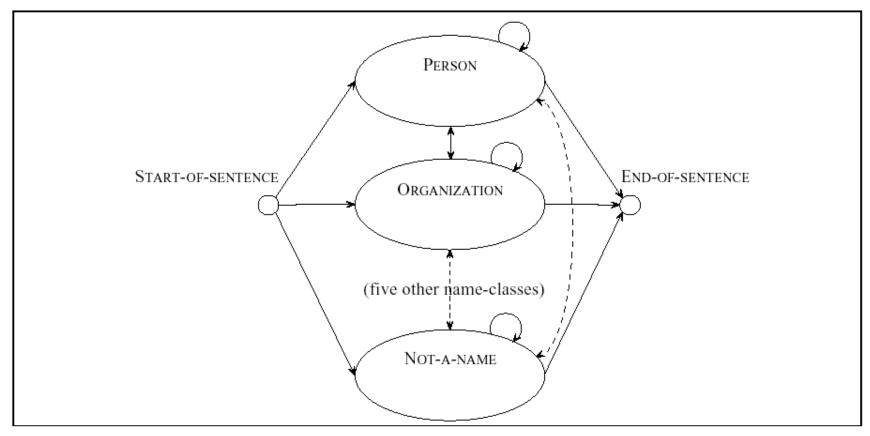


Figure 3.1 Pictorial representation of conceptual model. The subgraph of name-classes is complete, indicated here by the dashed arcs.

Mr. Jones eats.

According to rules of MUC and MET, the correct annotation for such a sentence is Mr. <ENAMEX TYPE=PERSON>Jones</ENAMEX> eats.

That is, the token Jones is in the PERSON name-class, while the other tokens are in the NOT-A-NAME name-class. The model would assign the following likelihood to this word-name-class sequence (which we would hope to be the most likely, given sufficient training):

```
Pr(Not-a-name | Start-of-sentence, "+end+") *
Pr("Mr." | Not-a-name, Start-of-sentence) *
Pr(+end+ | "Mr.", Not-a-name) *
Pr(Person | Not-a-name, "Mr.") *
Pr("Jones" | Person, Not-a-name) *
Pr(+end+ | "Jones", Person) *
Pr(Not-a-name | Person, "Jones") *
Pr("eats" | Not-a-name, Person) *
Pr("." | "eats", Not-a-name) *
Pr(+end+ | ".", Not-a-name) *
Pr(End-of-sentence | Not-a-name, ".")
```

Table 3.1 Word features, examples and intuition behind them.²

Word Feature	Example Text	Intuition	
twoDigitNum	90	Two-digit year	
fourDigitNum	1990	Four digit year	
containsDigitAndAlpha	A8956-67	Product code	
containsDigitAndDash	09-96	Date	
containsDigitAndSlash	11/9/89	Date	
containsDigitAndComma	23,000.00	Monetary amount	
containsDigitAndPeriod	1.00	Monetary amount, percentage	
otherNum	456789	Other number	
allCaps	BBN	Organization	
capPeriod	Μ.	Person name initial	
firstWord	first word of	No useful capitalization	
	sentence	information	
initCap	Sally	Capitalized word	
lowerCase	can	Uncapitalized word	
other	,	Punctuation marks, all other words	

$$\Pr(NC \mid NC_{-1}, w_{-1}) = \frac{c(NC, NC_{-1}, w_{-1})}{c(NC_{-1}, w_{-1})}$$

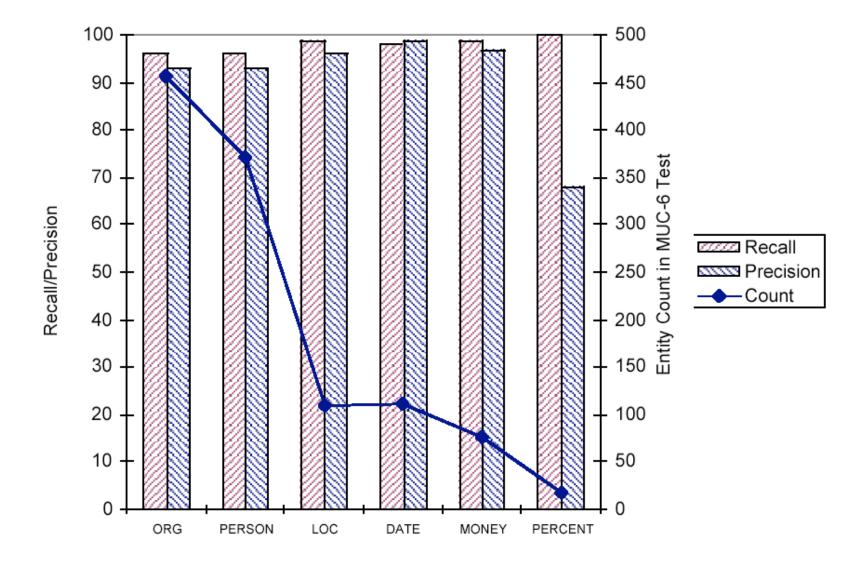
$$\Pr(\langle w, f \rangle_{first} \mid NC, NC_{-1}) = \frac{c(\langle w, f \rangle_{first}, NC, NC_{-1})}{c(NC, NC_{-1})}$$

$$\Pr(\langle w, f \rangle | \langle w, f \rangle_{-1}, NC) = \frac{c(\langle w, f \rangle, \langle w, f \rangle_{-1}, NC)}{c(\langle w, f \rangle_{-1}, NC)}$$

Table 3.2 Back-off strategy.

Name-class Bigrams	First-word Bigrams	Non–first-word Bigrams
$\Pr(NC \mid NC_{-1}, w_{-1})$	$\Pr(\langle w, f \rangle_{first} \mid NC, NC_{-1})$	$\Pr(\langle w, f \rangle \langle w, f \rangle_{-1}, NC)$
:	:	:
$Pr(NC \mid NC_{-1})$	$\Pr(\langle w, f \rangle \langle +begin+, other \rangle, NC)$	$\Pr(\langle w, f \rangle \mid NC)$
; P (NC)	:	:
Pr(<i>NC</i>) :	$\Pr(\langle w, f \rangle NC)$	$Pr(w \mid NC) \cdot Pr(f \mid NC)$
. 1	:	. :
number of name - classes	$Pr(w \mid NC) \cdot Pr(f \mid NC)$	$\frac{1}{ V }$ number of word features
	:	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	V number of word features	

Table 5.1 F-measure Scores. This table illustrates IdentiFinder's performance as compared to the best reported scores for each category.


	Language	Best Rules	IdentiFinder
Mixed Case	English (WSJ)	96.4	94.9
Upper Case	English (WSJ)	89	93.6
Speech Form	English (WSJ)	74	90.7
Mixed Case	Spanish	93	90

Mixed Case: The British company, whose interests include the Cunard cruise lines and the Ritz hotel of London, said Simon Keswick, the head of Hong Kong Land Holdings Ltd. will take over as chairman May 26. The current acting chairman, Alan, will become a deputy chairman of the group.

Upper Case: THE BRITISH COMPANY, WHOSE INTERESTS INCLUDE THE CUNARD CRUISE LINES AND THE RITZ HOTEL OF LONDON, SAID SIMON KESWICK, THE HEAD OF HONGKONG LAND HOLDINGS LTD. WILL TAKE OVER AS CHAIRMAN MAY 26. THE CURRENT ACTING CHAIRMAN, ALAN CLEMENTS, WILL BECOME A DEPUTY CHAIRMAN OF THE GROUP.

SNOR: THE BRITISH COMPANY WHOSE INTERESTS INCLUDE THE CUNARD CRUISE LINES AND THE RITZ HOTEL OF LONDON SAID SIMON KESWICK THE HEAD OF HONGKONG LAND HOLDINGS LIMITED WILL TAKE OVER AS CHAIRMAN MAY TWENTY SIX THE CURRENT ACTING CHAIRMAN ALAN CLEMENTS WILL BECOME A DEPUTY CHAIRMAN OF THE GROUP

Figure 5.2 Three Modalities. The task becomes increasingly difficult as one moves from mixed case to upper case, to SNOR format.

