
CMPT-882: Statistical Learning of Natural Language

Lecture #4

Anoop Sarkar
anoop@cs.sfu.ca

http://www.sfu.ca/˜anoop

1

Mailing List

• cmpt-882-fall-2002@sfu.ca

– Subscribe using online services:
http://www.sfu.ca/onlineserv.htm

– For course web page updates

– Also a forum for questions you might have: remember to use
fraser.sfu.ca to post to the list

2

• Hidden Markov Models (HMMs)

– Distinction between Markov Chains and HMMs

– Application of HMMs to Part of Speech tagging

– Algorithms for HMMs: Viterbi decoding and the
Forward-Backward Algorithm (Baum-Welch)

3

Trigram Models

• P (w1,2,...,m) =

P (w1)× P (w2 | w1)× P (w3 | w1,2)× P (w4 | w1,3)× . . .

• P (wk | w1,k−1) = P (wk | wk−n−1,k−1)

• hence the name n-grams; n = 2: bigrams, n = 3: trigrams

• also possible to define variable length n-grams

• Best performing language model when used with smoothing

4

Trigram Models and Markov Chains

aa ab ba bb
aa a:p(a| aa) b:p(b| aa)
ab a:p(a| ab) b:p(b| ab)
ba a:p(a| ba) b:p(b| ba)
bb a:p(a| bb) b:p(b| bb)

5

Trigram Models and Smoothing

• Let vocabulary be V

• worst case size of a trigram model: | V |?; for a given corpus: | V |?

• P (wn | wn−2,n−1) =

λ1(wn−2,n−1)Pe(wn) + λ2(wn−2,n−1)Pe(wn | wn−1) +

λ3(wn−2,n−1)Pe(wn | wn−2,n−1)

• λ1(wn−2,n−1) + λ2(wn−2,n−1) + λ3(wn−2,n−1) = 1

6

Trigram Models

• Using cross-entropy as a model evaluator

• Removing the ”correct” model from the equation was possible when
the model was ergodic

• Samples (when large enough) correspond to the true probabilities in
the model

• Also, the model has to be stationary: for our purposes, it means that
the values for a given context do not vary

7

Trigram Models: A Generative Model

In_IN 1994_CD ,_, Hartnett_NNP said_VBD

THE_DT BONEYARD_NNP Northrop_NNP Grumman_NNP ’s_POS modest_JJ
flight_NN museum_NN occupies_VBZ a_DT corner_NN of_IN one_CD of_IN
its_PRP$ power-seat_NN adjusters_NNS ,_, door_NN trim_JJ now_RB
made_VBN in_IN South_NNP Korea_NNP ’s_POS antiquated_JJ coal-fired_JJ
power_NN plant_NN in_IN Canada_NNP ,_, to_TO a_DT 11.9_CD million_CD
mark_NN investment_NN in_IN Samsung_NNP ’s_POS Sachon_NNP plant_NN
in_IN Taiwan_NNP as_IN part_NN of_IN a_DT steam_NN turbine_NN ,_,
a_DT new_JJ high-yielding_JJ rice_NN plant_NN was_VBD reorganized_VBN
into_IN a_DT big_JJ expansion_NN of_IN a_DT fuel-fabrication_NN
plant_NN near_IN Nagoya_NNP in_IN Aichi_NNP Prefecture_NNP

From_IN October_NNP ,_, when_WRB they_PRP
do_VBP not_RB need_VB it_PRP

8

Part of Speech Tagging using Trigram Models

• P (w1,n) =
∑

t1,n+1
P (w1,n, t1,n+1)

• arg max
t1,n+1

P (t1,n+1 | w1,n) =
arg max
t1,n+1

P (w1,n, t1,n+1)
P (w1,n)

• arg max
t1,n+1

P (w1,n, t1,n+1)

9

Hidden Markov Models

• A set of states, each state is hidden, i.e. not visible in the training
data. The number of states is arbitrary and set in advance
(see paper by A. Stolcke and S. M. Omohundro)

• Assume each state is connected to every other state

• Numerous applications in speech, language processing,
cryptography, modelling continuous fns.

10

Hidden Markov Models

• At each time tick t, we traverse from one state to another and emit an
output symbol

• P (si w→ sj) = P (St+1 = sj, Wt = w, | St = si)

• P (si w→ sj) = P (w, sj | si) = P (w | si)P (sj | si)
— the Markov assumption

• transition probability: P (sj | si)

• output probability: P (w | si)

11

Hidden Markov Models

• P (w1,n) =
∑

s1,n+1
P (w1,n, s1,n+1)

•
∑

s1,n+1

∏n
i=1 P (wi, si+1 | si)

•
∑

s1,n+1

∏n
i=1 P (si wi→ si+1)

• Best path (Viterbi algorithm):
arg max
s1,n+1

∏n
i=1 P (si wi→ si+1)

12

Forward-Backward Algorithm: Baum-Welch

• How can we compute transition and output probabilities, when the
state sequences are ”hidden”

• Intuitively, probability of taking a transition from a state si to sj is

Pe(si w→ sj) = C(si w→sj)∑
k,w′ C(siw

′
→sk)

• So once we have a method for computing C(si w→ sj) we can
re-estimate each transition probability

• Note that number of times you take a transition also depends on the
initial setting of the transition probability

13

Forward-Backward Algorithm

• Hence, the probability of a transition is the number of times it was
used in a path (state sequence) times the probability of that path (for
all paths)

• C(si w→ sj) =
∑

s1,n+1
P (s1,n+1 | w1,n) · η(si w→ sj, s1,n+1, w1,n)

• η counts number of times si w→ sj appears in the path s1,n+1 when
the output is w1,n

14

Forward-Backward Algorithm

C(si w→ sj) =
∑

s1,n+1

P (s1,n+1 | w1,n) · η(si w→ sj, s1,n+1, w1,n)

C(si w→ sj) =
1

P (w1,n)
×

n∑
t=1

∑
s1,n+1

P (s1,n+1, w1,n, St = si, St+1 = sj, Wt = w)

P (w1,n) =
∑

s1,n+1

P (s1,n+1, w1,n)

15

Forward-Backward Algorithm

C(si w→ sj) =
1

P (w1,n)
×

n∑
t=1

P (w1,n, St = si, St+1 = sj, Wt = w)

=
1

P (w1,n)
×

n∑
t=1

P (w1,t−1, St = si, St+1 = sj, Wt = w, wt+1,n)

=
1

P (w1,n)
×

n∑
t=1

P (w1,t−1, St = si) ·

P (St+1 = sj, Wt = w | w1,t−1, St = si) ·
P (wt+1,n | w1,t, St = si, St+1 = sj)

16

Forward-Backward Algorithm

C(si w→ sj) =
1

P (w1,n)
×

n∑
t=1

P (w1,t−1, St = si) ·

P (St+1 = sj, Wt = w | w1,t−1, St = si) ·
P (wt+1,n | w1,t, St = si, St+1 = sj)

=
1

P (w1,n)
×

n∑
t=1

P (w1,t−1, St = si) ·

P (St+1 = sj, Wt = w | St = si) ·
P (wt+1,n | St+1 = sj)

=
1

P (w1,n)
×

n∑
t=1

αi(t) · P (si w→ sj) · βj(t + 1)

17

Forward-Backward Algorithm

αi(t) = P (w1,t−1, St = si)

αs1(1) = 1.0

αj(t + 1) = P (w1,t, St+1 = sj)

=
∑
i

P (w1,t, St = si, St+1 = sj)

=
∑
i

P (w1,t−1, St = si) ·

P (Wt = w, St+1 = sj | w1,t−1, St = si)

=
∑
i

αi(t) · P (si w→ sj)

18

Forward-Backward Algorithm

βi(t) = P (wt,n | St = si)

βi(n + 1) = P (ε | Sn+1 = si) = 1.0

βi(t − 1) = P (wt−1,n | St−1 = si)

=
∑
j

P (Wt−1 = w, St = sj | St−1 = si) ·

P (wt,n | Wt−1 = w, St = sj, St−1 = si)

=
∑
j

P (Wt−1 = w, St = sj | St−1 = si) ·

P (wt,n | St = sj)

=
∑
j

P (si w→ sj) · βj(t)

19

s k

s i
w

P(

)

a k(t-1)

time tick t

s
j

s
m

w

P(

)

βm(t+2)

s
i

s
jw

P() β (t+1)jα (t)i

C(s
i

s
jw

) =
t=1

nΣ1
P(w)1,n

s
i

s
jw

P() β (t+1)jα (t)i

α (t)i
k=1

|Q|Σ a k(t-1) s
k

s iw
P()= β (t+1)j

m=1

|Q|Σ s
j

smw
P()= βm(t+2)

20

q

r

q r
a

b

b

q

r

a
b

a

b

a

a

t-1

t t+1

t+2

αq(t) = αq(t − 1)P (a, q | q) + αq(t − 1)P (b, q | q) +

αr(t − 1)P (a, q | r) + αr(t − 1)P (b, q | r)

βr(t + 1) = P (a, q | r)βq(t + 2) + P (b, q | r)βq(t + 2) +

P (a, r | r)βr(t + 2) + P (b, r | r)βr(t + 2)

C(q
a→ r) =

1

P (w1,n)

n∑
t=1

αq(t)P (a, r | q)βr(t + 1)

21

Forward-Backward Algorithm

• Set initial transition probabilities to appropriate values (usually
random)

• Compute C(si w→ sj) for each state i and then

Pe(si w→ sj) = C(si w→sj)∑
k,w′ C(siw

′
→sk)

• Compute likelihood P (w1,n) = βs1(1); iterate until likelihood is
maximized (or entropy is minimized)

• Here we considered the case for one training sentence w1,n. For a
whole corpus,

∏
k P (wk

1,n) is the likelihood of the entire corpus with k
sentences

22

Forward-Backward Algorithm

• Likelihood is guaranteed to be non-decreasing due to the theorem by
Baum (generalized by Dempster, Laird and Rubin)
Maximum-likelihood from incomplete data via the EM algorithm. A. P. Dempster, N.

M. Laird and D. B. Rubin. Journal of the Royal Statistics Society, 1977, 39:1, pp.

1–38

• Forward-Backward Algorithm is an example of purely unsupervised
learning

• Applications of the Forward-Backward Algorithm

23

Next Time

• Using the Forward-Backward Algorithm to decrease human
supervision

• Does Baum-Welch Re-estimation help taggers? (1994). David
Elworthy. Proceedings of 4th ACL Conf on ANLP, Stuttgart. pp.
53-58.

24

