CMPT-825
Natural Language Processing

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

February 27, 2008

30

Cross-Entropy and Perplexity

2/30

How good is a model

» So far we've seen the probability of a sentence: P(wyp,...,w,)

» What is the probability of a collection of sentences, that is
what is the probability of a corpus

» Let T = sp,...,5m be a text corpus with sentences sy through
Sm

» What is P(T)?
Let us assume that we trained P(-) on some training data,
and T is the test data

3/30

How good is a model

T =sy,...,Sm is the text corpus with sentences sy through s,
P(T) =1IIiZo P(si)

P(si) = P(W},...,w;)

Let W7 be the length of the text T measured in words

Then for the unigram model, P(T) = [],,c+ P(w)

A problem: we want to compare two different models P; and
Pon T
To do this we use the per word perplexity of the model:

vV v v v Vv Y

v

PPo(T) = P(T) W7 = ™ P(lT)

30

How good is a model

» The per word perplexity of the model is:

PPo(T) = P(T) W7

» Recall that PPp(T) = 2/"P(T) where Hp(T) is the
cross-entropy of P for text T.

> Therefore, Hp(T) = logyPPp(T) = —35-log, P(T)
» Above we use a unigram model P(w), but the same
derivation holds for bigram, trigram, ...

How good is a model

» Lower cross entropy values and perplexity values are better
Lower values mean that the model is better
Correlation with performance of the language model in various
applications

» Performance of a language model is its cross-entropy or
perplexity on test data (unseen data)
corresponds to the number bits required to encode that data

» On various real life datasets, typical perplexity values yielded
by n-gram models on English text range from about 50 to
almost 1000 (corresponding to cross entropies from about 6
to 10 bits/word)

6/30

Smoothing n-gram Models
Add-one Smoothing
Additive Smoothing
Good-Turing Smoothing
Backoff Smoothing
Event Space for n-gram Models

30

Bigram Models

» In practice:

P(Mork read a book) =
P(Mork | < start >) x P(read | Mork) x
P(a | read) x P(book | a) x
P(< stop > | book)

> P(w; | wi1) = 76%;1_3)

On unseen data, c(w;_1, w;) or worse c(w;_1) could be zero

Z C(W,'_l, W,') _7

Wi C(W,'_l)

Smoothing

» Smoothing deals with events that have been observed zero
times

» Smoothing algorithms also tend to improve the accuracy of
the model

c(wi-1,w;)
C(W,'_l)

» Not just unobserved events: what about events observed
once?

P(w; | wi—1)=

30

Add-one Smoothing

c(Wi—1, w;
P(Wi | W,',]_) = (C(W'_l))
» Add-one Smoothing:
1+ c(wi—1, wp)
P(W,' ’ W,,l) V+C(W,1)

» Let V be the number of words in our vocabulary
Assign count of 1 to unseen bigrams

10/30

Add-one Smoothing

P(Mindy read a book) =
P(Mindy | < start >) x P(read | Mindy) x
P(a | read) x P(book | a) x
P(< stop > | book)

» Without smoothing:

) ¢(Mindy, read
P(read | Mindy) = (C(Nhymy)) —0

» With add-one smoothing (assuming c(Mindy) = 1 but
c(Mindy, read) = 0):
1

P(read | Mindy) = Vil

11/30

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

P(Wi | Wi—l) = CM

» Add-one smoothing works horribly in practice. Seems like 1 is
too large a count for unobserved events.

» Additive Smoothing:

(5 + C(W,',l, W,')
((5 X V) -+ C(W,'_l)

P(w; | wi—1) =

» 0<6<1
Still works horribly in practice, but better than add-one
smoothing.

12/30

Good-Turing Smoothing: (Good, 1953)

C(Wi—1, Wi)

P(w; | wi—1) = i 1)

» Imagine you're sitting at a sushi bar with a conveyor belt.

» You see going past you 10 plates of tuna, 3 plates of unagi,
2 plates of salmon, 1 plate of shrimp, 1 plate of octopus,
and 1 plate of yellowtail

» Chance you will observe a new kind of seafood: 1%

» How likely are you to see another plate of salmon:
should be < 1%

13/30

Good-Turing Smoothing

» How many types of seafood (words) were seen once? Use this
to predict probabilities for unseen events
Let n; be the number of events that occurred once: py = ”—,\}

» The Good-Turing estimate states that for any n-gram that
occurs r times, we should pretend that it occurs r* times

Nry1
ne

r=(r+1)

14 /30

Good-Turing Smoothing

» 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1
yellowtail

» How likely is new data? Let n; be the number of items
occurring once, which is 3 in this case. N is the total, which is

18. 3
Mm 3 _
po = N 18 0.166

15/30

Good-Turing Smoothing

» 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1

yellowtail
» How likely is octopus? Since c(octopus) = 1 The GT estimate
is 1*.
r=(r+1) fr+1
ne
o
PGT = N

» To compute 1*, we need p =3 and np =1

1*:2><1:g
3 3
1*
= — =0.037
p1 18

» What happens when n,;1 = 07 (smoothing before smoothing)

16

30

Simple Good-Turing: linear interpolation for missing n, 1

. f(ry = a+bxr
e = a = 23
= -0.17

n, = f(r)
2.14
1.97
1.80
1.63
1.46
1.29
1.12
0.95
0.78
0.61
0.44

H 2 OO ~NOOLh WN RS

= O

17 /30

Comparison between Add-one and Good-Turing

freq num with freq r NS Addl SGT

r ny Pr Pr Pr

0 0 0 0.0294 0.12

1 3 0.04 0.0588 0.03079
2 2 0.08 0.0832 0.06719
3 1 0.12 0.1176 0.1045
5 1 0.2 0.1764 0.1797
10 1 0.4 0.3235 0.3691

» N=(1%3)+(2%2)+3+5+10=25
»V=1+3+2+1+1+1=9

» Important: we added a new word type for unseen words. Let's

call it UNK, the unknown word.
» Check that: 1.0 ==, n, X p,

0.12+ (3%0.03079) + (20.06719) + 0.1045 + 0.1797 +0.3691 = 1.0

18 /30

Comparison between Add-one and Good-Turing

freq num with freq r NS Addl SGT

nr Pr Pr Pr

0 0.0294 0.12
0.04 0.0588 0.03079
0.08 0.0882 0.06719
0.12 0.1176 0.1045
0.2 0.1764 0.1797
10 1 0.4 03235 0.3691

r

» NS = No smoothing: p, = §

» Addl = Add-one smoothing: p, = \}ifv

Tl W N R O
= = N W o

1) 2r+1
» SGT = Simple Good-Turing: po = 5, pr = s

with linear interpolation for missing values where n, 1 =0
(Gale and Sampson, 1995) http://www.grsampson.net/AGtfl.html

19/30

Simple Backoff Smoothing: incorrect version

P(w; | wi1) = W

» In add-one or Good-Turing:
P(the | string) = P(Fonz | string)
> If c(wj_1,w;) =0, then use P(w;) (back off)
» Works for trigrams: back off to bigrams and then unigrams

» Works better in practice, but probabilities get mixed up
(unseen bigrams, for example will get higher probabilities than
seen bigrams)

20/30

Backoff Smoothing: Jelinek-Mercer Smoothing

c(wj—1, w;)
P -) = A= T
> Pum(wi | wi—1) = APue(wi | wi—1) + (1 — X)Pume(w;)
where, 0 <\ <1
» Notice that Py (the | string) > P y(Fonz | string) as we
wanted

> Jelinek-Mercer (1980) describe an elegant form of this
interpolation:

Pp(ngram) = APy (ngram) 4+ (1 — X)Pyp(n — lgram)

» What about PJM(W,')?

For missing unigrams: P (w;) = APp(w;) + (1 — A)2

<l

21/30

Backoff Smoothing: Many alternatives

P m(ngram) = APpy(ngram) + (1 — X) Py (n — lgram)

» Different methods for finding the values for \ correspond to
variety of different smoothing methods

» Katz Backoff (include Good-Turing with Backoff Smoothing)

<) if c(xy) >0

Prres — c(x)
kat. (y | X) { oz(X)Pkatz()/) otherwise

» where «(x) is chosen to make sure that Pya.(y | x) is a
proper probability

a(x)=1-— Z CZE))?)/)

Backoff Smoothing: Many alternatives

Pjv(ngram) = APy (ngram) + (1 — X\) Py (n — lgram)

» Deleted Interpolation (Jelinek, Mercer)
compute X values to minimize cross-entropy on held-out data
which is deleted from the initial set of training data

» Improved JM smoothing, a separate A for each w;_1:
Pm(w; | wi—1) = Awi—1)Pme(w; | wi—1)+(1 — Mwi—1))Pme(w;)

where Z)\(w,-) = 1 because Z P(w; | wi—1)=1

wi

23 /30

Backoff Smoothing: Many alternatives

Pm(ngram) = APp(ngram) + (1 — X) Py (n — lgram)

» Witten-Bell smoothing
use the n — 1 gram model when the n gram model has too
few unique words in the n gram context

» Absolute discounting (Ney, Essen, Kneser)

c(xy)—D .
Pasly |)= 7 o Febo) =0
a(x)Paps(y) otherwise

compute «(x) as was done in Katz smoothing

24 /30

Backoff Smoothing: Many alternatives

Pm(ngram) = APy (ngram) + (1 — X) Py (n — 1gram)

» Kneser-Ney smoothing
P(Francisco | eggplant) > P(stew | eggplant)

>

Francisco is common, so interpolation gives
P(Francisco | eggplant) a high value

» But Francisco occurs in few contexts (only after San)
> stew is common, and occurs in many contexts
» Hence weight the interpolation based on number of contexts

for the word using discounting

25 /30

Backoff Smoothing: Many alternatives

P m(ngram) = APpy(ngram) + (1 — X) Py (n — lgram)

» Modified Kneser-Ney smoothing (Chen and Goodman)
multiple discounts for one count, two counts and three or
more counts

» Finding A: use Generalized line search (Powell search) or the
Expectation-Maximization algorithm

26

30

Trigram Models

» Revisiting the trigram model:

P(Wl, Wwo, ..., Wn) =
P(wi) x P(wa | wy) x P(ws | wi,wp) X P(wy | wa,ws) X
...P(W,' | W,'_2,W,'_1)... X P(Wn ‘ Wn_2,...,Wn_1)

» Notice that the length of the sentence n is variable

» What is the event space?

27 /30

The stop symbol

» Let ¥ = {a, b} and the language be ¥*
so L = {e,a,b,aa,bb,ab,bb...}

» Consider a unigram model: P(a) = P(b) = 0.5

» P(a) = 0.5, P(b) = 0.5, P(aa) = 0.5 = 0.25, P(bb) = 0.25
and so on.

» But P(a) + P(b) + P(aa) + P(bb) = 1.5 !!

> Pw)=1

28 /30

The stop symbol

» What went wrong?
No probability for P(e)
» Add a special stop symbol:

P(a) = P(b) = 0.25

P(stop) = 0.5

» P(stop) = 0.5,
P(a stop) = P(b stop) = 0.25 x 0.5 = 0.125,

P(aa stop) = 0.252 x 0.5 = 0.03125 (now the sum is no
longer greater than one)

29/30

The stop symbol
» With this new stop symbol we can show that > P(w) =1
Notice that the probability of any sequence of length n is

0.25" x 0.5
Also there are 27 sequences of length n

> P(w) =

[e o]
Zz” % 0.25" x 0.5
n=0

i 0.5" x 0.5 = §:0.5"+1
n=0 n=0

» 057=1

n=1

30/30

	Cross-Entropy and Perplexity
	Smoothing n-gram Models
	Add-one Smoothing
	Additive Smoothing
	Good-Turing Smoothing
	Backoff Smoothing
	Event Space for n-gram Models

