
CMPT-825
Natural Language Processing

Anoop Sarkar
http://www.cs.sfu.ca/∼anoop

February 27, 2008

1 / 30

Cross-Entropy and Perplexity

Smoothing n-gram Models
Add-one Smoothing
Additive Smoothing
Good-Turing Smoothing
Backoff Smoothing
Event Space for n-gram Models

2 / 30

How good is a model

I So far we’ve seen the probability of a sentence: P(w0, . . . ,wn)

I What is the probability of a collection of sentences, that is
what is the probability of a corpus

I Let T = s0, . . . , sm be a text corpus with sentences s0 through
sm

I What is P(T)?
Let us assume that we trained P(·) on some training data,
and T is the test data

3 / 30

How good is a model

I T = s0, . . . , sm is the text corpus with sentences s0 through sm
I P(T) =

∏m
i=0 P(si)

I P(si) = P(w i
0, . . . ,w

i
n)

I Let WT be the length of the text T measured in words

I Then for the unigram model, P(T) =
∏

w∈T P(w)

I A problem: we want to compare two different models P1 and
P2 on T

I To do this we use the per word perplexity of the model:

PPP(T) = P(T)
− 1

WT = WT

√
1

P(T)

4 / 30

How good is a model

I The per word perplexity of the model is:

PPP(T) = P(T)
− 1

WT

I Recall that PPP(T) = 2HP(T) where HP(T) is the
cross-entropy of P for text T .

I Therefore, HP(T) = log2PPP(T) = − 1
WT

log2P(T)

I Above we use a unigram model P(w), but the same
derivation holds for bigram, trigram, . . .

5 / 30

How good is a model

I Lower cross entropy values and perplexity values are better
Lower values mean that the model is better
Correlation with performance of the language model in various
applications

I Performance of a language model is its cross-entropy or
perplexity on test data (unseen data)
corresponds to the number bits required to encode that data

I On various real life datasets, typical perplexity values yielded
by n-gram models on English text range from about 50 to
almost 1000 (corresponding to cross entropies from about 6
to 10 bits/word)

6 / 30

Cross-Entropy and Perplexity

Smoothing n-gram Models
Add-one Smoothing
Additive Smoothing
Good-Turing Smoothing
Backoff Smoothing
Event Space for n-gram Models

7 / 30

Bigram Models

I In practice:

P(Mork read a book) =

P(Mork | < start >)× P(read | Mork)×
P(a | read)× P(book | a)×
P(< stop > | book)

I P(wi | wi−1) =
c(wi−1,wi)
c(wi−1)

On unseen data, c(wi−1,wi) or worse c(wi−1) could be zero∑
wi

c(wi−1,wi)

c(wi−1)
=?

8 / 30

Smoothing

I Smoothing deals with events that have been observed zero
times

I Smoothing algorithms also tend to improve the accuracy of
the model

P(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I Not just unobserved events: what about events observed
once?

9 / 30

Add-one Smoothing

P(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I Add-one Smoothing:

P(wi | wi−1) =
1 + c(wi−1,wi)

V + c(wi−1)

I Let V be the number of words in our vocabulary
Assign count of 1 to unseen bigrams

10 / 30

Add-one Smoothing

P(Mindy read a book) =

P(Mindy | < start >)× P(read | Mindy)×
P(a | read)× P(book | a)×
P(< stop > | book)

I Without smoothing:

P(read | Mindy) =
c(Mindy, read)

c(Mindy)
= 0

I With add-one smoothing (assuming c(Mindy) = 1 but
c(Mindy, read) = 0):

P(read | Mindy) =
1

V + 1

11 / 30

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

P(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I Add-one smoothing works horribly in practice. Seems like 1 is
too large a count for unobserved events.

I Additive Smoothing:

P(wi | wi−1) =
δ + c(wi−1,wi)

(δ × V) + c(wi−1)

I 0 < δ ≤ 1
Still works horribly in practice, but better than add-one
smoothing.

12 / 30

Good-Turing Smoothing: (Good, 1953)

P(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I Imagine you’re sitting at a sushi bar with a conveyor belt.

I You see going past you 10 plates of tuna, 3 plates of unagi,
2 plates of salmon, 1 plate of shrimp, 1 plate of octopus,
and 1 plate of yellowtail

I Chance you will observe a new kind of seafood: 3
18

I How likely are you to see another plate of salmon:
should be < 2

18

13 / 30

Good-Turing Smoothing

I How many types of seafood (words) were seen once? Use this
to predict probabilities for unseen events
Let n1 be the number of events that occurred once: p0 = n1

N

I The Good-Turing estimate states that for any n-gram that
occurs r times, we should pretend that it occurs r∗ times

r∗ = (r + 1)
nr+1

nr

14 / 30

Good-Turing Smoothing

I 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1
yellowtail

I How likely is new data? Let n1 be the number of items
occurring once, which is 3 in this case. N is the total, which is
18.

p0 =
n1

N
=

3

18
= 0.166

15 / 30

Good-Turing Smoothing

I 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1
yellowtail

I How likely is octopus? Since c(octopus) = 1 The GT estimate
is 1∗.

r∗ = (r + 1)
nr+1

nr

pGT =
r∗

N

I To compute 1∗, we need n1 = 3 and n2 = 1

1∗ = 2× 1

3
=

2

3

p1 =
1∗

18
= 0.037

I What happens when nr+1 = 0? (smoothing before smoothing)

16 / 30

Simple Good-Turing: linear interpolation for missing nr+1

f (r) = a + b ∗ r

a = 2.3

b = −0.17

r nr = f (r)
1 2.14
2 1.97
3 1.80
4 1.63
5 1.46
6 1.29
7 1.12
8 0.95
9 0.78
10 0.61
11 0.44

17 / 30

Comparison between Add-one and Good-Turing

freq num with freq r NS Add1 SGT
r nr pr pr pr

0 0 0 0.0294 0.12
1 3 0.04 0.0588 0.03079
2 2 0.08 0.0882 0.06719
3 1 0.12 0.1176 0.1045
5 1 0.2 0.1764 0.1797
10 1 0.4 0.3235 0.3691

I N = (1 ∗ 3) + (2 ∗ 2) + 3 + 5 + 10 = 25

I V = 1 + 3 + 2 + 1 + 1 + 1 = 9

I Important: we added a new word type for unseen words. Let’s
call it UNK, the unknown word.

I Check that: 1.0 ==
∑

r nr × pr

0.12 + (3∗0.03079) + (2∗0.06719) + 0.1045 + 0.1797 + 0.3691 = 1.0

18 / 30

Comparison between Add-one and Good-Turing

freq num with freq r NS Add1 SGT
r nr pr pr pr

0 0 0 0.0294 0.12
1 3 0.04 0.0588 0.03079
2 2 0.08 0.0882 0.06719
3 1 0.12 0.1176 0.1045
5 1 0.2 0.1764 0.1797
10 1 0.4 0.3235 0.3691

I NS = No smoothing: pr = r
N

I Add1 = Add-one smoothing: pr = 1+r
V+N

I SGT = Simple Good-Turing: p0 = n1
N , pr =

(r+1)
nr+1
nr

N
with linear interpolation for missing values where nr+1 = 0
(Gale and Sampson, 1995) http://www.grsampson.net/AGtf1.html

19 / 30

Simple Backoff Smoothing: incorrect version

P(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I In add-one or Good-Turing:
P(the | string) = P(Fonz | string)

I If c(wi−1,wi) = 0, then use P(wi) (back off)

I Works for trigrams: back off to bigrams and then unigrams

I Works better in practice, but probabilities get mixed up
(unseen bigrams, for example will get higher probabilities than
seen bigrams)

20 / 30

Backoff Smoothing: Jelinek-Mercer Smoothing

PML(wi | wi−1) =
c(wi−1,wi)

c(wi−1)

I PJM(wi | wi−1) = λPML(wi | wi−1) + (1− λ)PML(wi)
where, 0 ≤ λ ≤ 1

I Notice that PJM(the | string) > PJM(Fonz | string) as we
wanted

I Jelinek-Mercer (1980) describe an elegant form of this
interpolation:

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I What about PJM(wi)?
For missing unigrams: PJM(wi) = λPML(wi) + (1− λ) δV

21 / 30

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I Different methods for finding the values for λ correspond to
variety of different smoothing methods

I Katz Backoff (include Good-Turing with Backoff Smoothing)

Pkatz(y | x) =

{
c∗(xy)
c(x) if c(xy) > 0

α(x)Pkatz(y) otherwise

I where α(x) is chosen to make sure that Pkatz(y | x) is a
proper probability

α(x) = 1−
∑
y

c∗(xy)

c(x)

22 / 30

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I Deleted Interpolation (Jelinek, Mercer)
compute λ values to minimize cross-entropy on held-out data
which is deleted from the initial set of training data

I Improved JM smoothing, a separate λ for each wi−1:

PJM(wi | wi−1) = λ(wi−1)PML(wi | wi−1)+(1− λ(wi−1))PML(wi)

where
∑

i

λ(wi) = 1 because
∑
wi

P(wi | wi−1) = 1

23 / 30

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I Witten-Bell smoothing
use the n − 1 gram model when the n gram model has too
few unique words in the n gram context

I Absolute discounting (Ney, Essen, Kneser)

Pabs(y | x) =

{
c(xy)−D

c(x) if c(xy) > 0

α(x)Pabs(y) otherwise

compute α(x) as was done in Katz smoothing

24 / 30

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I Kneser-Ney smoothing
P(Francisco | eggplant) > P(stew | eggplant)

I Francisco is common, so interpolation gives
P(Francisco | eggplant) a high value

I But Francisco occurs in few contexts (only after San)
I stew is common, and occurs in many contexts
I Hence weight the interpolation based on number of contexts

for the word using discounting

25 / 30

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n − 1gram)

I Modified Kneser-Ney smoothing (Chen and Goodman)
multiple discounts for one count, two counts and three or
more counts

I Finding λ: use Generalized line search (Powell search) or the
Expectation-Maximization algorithm

26 / 30

Trigram Models

I Revisiting the trigram model:
P(w1,w2, . . . ,wn) =
P(w1)× P(w2 | w1)× P(w3 | w1,w2)× P(w4 | w2,w3)×
. . .P(wi | wi−2,wi−1) . . .× P(wn | wn−2, . . . ,wn−1)

I Notice that the length of the sentence n is variable

I What is the event space?

27 / 30

The stop symbol

I Let Σ = {a, b} and the language be Σ∗

so L = {ε, a, b, aa, bb, ab, bb . . .}
I Consider a unigram model: P(a) = P(b) = 0.5

I P(a) = 0.5, P(b) = 0.5, P(aa) = 0.52 = 0.25, P(bb) = 0.25
and so on.

I But P(a) + P(b) + P(aa) + P(bb) = 1.5 !!∑
w

P(w) = 1

28 / 30

The stop symbol

I What went wrong?
No probability for P(ε)

I Add a special stop symbol:

P(a) = P(b) = 0.25

P(stop) = 0.5

I P(stop) = 0.5,
P(a stop) = P(b stop) = 0.25× 0.5 = 0.125,
P(aa stop) = 0.252 × 0.5 = 0.03125 (now the sum is no
longer greater than one)

29 / 30

The stop symbol

I With this new stop symbol we can show that
∑

w P(w) = 1
Notice that the probability of any sequence of length n is
0.25n × 0.5
Also there are 2n sequences of length n

∑
w

P(w) =

∞∑
n=0

2n × 0.25n × 0.5

∞∑
n=0

0.5n × 0.5 =
∞∑

n=0

0.5n+1

∞∑
n=1

0.5n = 1

30 / 30

	Cross-Entropy and Perplexity
	Smoothing n-gram Models
	Add-one Smoothing
	Additive Smoothing
	Good-Turing Smoothing
	Backoff Smoothing
	Event Space for n-gram Models

