
CMPT 825: Natural Language Processing Spring 2008

Lecture 8 — Feb 27, 2007

Lecturer: Anoop Sarkar Scribe: Winona Wu

8.1 Language Modeling

A language model is usually forumlated as a probability distribution p(s)
over string s that attempts to reflect how frequently a string s occurs as a
sentense. The most widesly use lanugae models, by far, are n-gram language
models. We notice that for a sentence s composed of words w1 · · ·wl, without
loss of generality we can express p(s) as

p(s) = p(w1)p(w2|w1)p(w3|w1w2) · · · p(wl|w1 · · ·wl−1) =
l∏

i=1

p(wi|w1 · · ·wi−1)

In bigram models, we make the approximation that the probability of a word
depends only on the immediately preceding word, giving us

p(s) =
l∏

i=1

p(wi|w1 · · ·wl−1) ≈
l∏

i=1

p(wi|wi−1) (8.1)

To estimate p(wi|wi−1), the frequency with which the word wi occurs given
that the last word is wi−1, we can simply count how often the bigram wi−1wi

occurs in some text and normalize. Let c(wi−1wi) denote the number of times
the bigram wi−1wi occurs in the given text. Then, we can take

p(wi|wi−1) =
c(wi−1wi)∑
wi
c(wi−1wi)

(8.2)

The text available for building a model is called training data. The estimate
for p(wi|wi−1) is called the maximum likelihood (ML) estimate of p(wi|wi−1)
because this assignment of probilities yields the bigram model that assigns
the highest probability to the training data of all possible bigram models.
For n-gram models, where n > 2, instead of conditioning the probability of

8-1

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

a word on just the preceding word, we condition this probability on the last
n− 1 words. Generalizing (8.1) to n > 2, we get

p(s) =
l+1∏
i=1

p(wi|wi−1
i−n+1) (8.3)

where the equation to estimate the probability of p(wi|wi
i−n+1)

p(wi|wi
i−n+1) =

c(wi
i−n+1)∑

wi
c(wi

i−n+1)
(8.4)

8.2 Performance Evaluation

The most common metric for evaluating a language model is the probability
that the model assigns to test data, or the derivative measures of cross-
entropy and perplexity. Since we can calculate the probability of a sentense
p(s) using equation (8.3), for a test set T composed of the sentences (t1, ..., tlT)
we can calculate the probability of the test set p(T) as the product of the
probabilities of all sentences in the set :

p(T) =

lT∏
i=1

p(ti)

The measure of cross-entropy can be motivated using the well-known relation
between prediction and compression. We can derive a compression algorithm
that encodes the test T using − log2 p(T)bits. The cross-entropy Hp(T) of a
model p(wi|wi−1

i−n+1) on data T is defined as

Hp(T) = − 1

WT

log2 p(T) (8.5)

where WT is the length of the text T measured in words. This value can be
interpreted as the average number of bits needed to encode each of the WT

in the test data using the compression algorithm.

The perplexity of PPp(T) of a model p is the average probability assigned
by the model to each word in the test set T

PPp(T) = P (T)
1

WT = WT

√
1

WT

8-2

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

and also related to cross entropy by

PPp(T) = 2Hp(T)

Clearly, lower cross entropy values and perplexity values are better. Lower
values means that the model is better. Typical perplexity yielded by n-gram
models on English text range from about 50 to almost 1000 (corresponding
to cross-entropies from about 6 to 10 bits/word).

8.3 Smoothing

Now, consider on unseen data in bigram model which is estimated by equation
(8.2)

p(wi|wi−1) =
c(wi−1wi)∑
wi
c(wi−1wi)

giving us c(wi−1wi) or worse
∑

wi
c(wi−1wi) = 0. Obviously, this is an under-

estimate for the probability of unseen data as there is some probability that
these data occurs. Smoothing deals with events that have been observed zero
times by adjusting low probabilities such as zero probabilities upward and
high probabilities downward to make distribution more uniform.

8.3.1 Add-one Smoothing

One simple smoothing technicque is to pretend each bigram occurs once more
than it actually does, yielding

p(wi|wi−1) =
1 + c(wi−1wi)∑
wi

1 + c(wi−1wi)
=

1 + c(wi−1wi)

|V |+
∑

wi
c(wi−1wi)

(8.6)

where V is the vocabulary, the set of all words being considered.

8.3.2 Additive Smoothing

Additive smoothing is a generalization of the Add-one smothing method.
Instead of pretending each n-gram occurs once more than it does, we pretend
it occurs δ times more than it does, where typically 0 < δ < 1,

p(wi|wi−1) ==
δ + c(wi−1wi)

δ|V |+
∑

wi
c(wi−1wi)

(8.7)

This method generally performs poorly, but better than add-one smoothing.

8-3

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

8.3.3 Good- Turing Smoothing

The Good-Turing smoothing is central to many smoothing techniques. The
Good-Turing estimate states that for any n-gram that occurs r times, we
pretend that it occurs r∗ times where

r∗ = (r + 1)
nr + 1

nr

(8.8)

where nr is the number of n-grams that occur exactly t times in the training
data. To convert this count to a probability, we just normalize: for an n-gram
α with r counts, we take

pGT (α) =
r∗

N
(8.9)

where N =
∑∞

r=0 nrr
∗. Notice that

N =
∞∑

r=0

nrr
∗ =

∞∑
r=0

(r + 1)nr+1 =
∞∑

r=0

rnr

The Good-Turning estimate cannot be used when nr = 0, it is generally
necessary to ”smooth” the nr before the smoothing estimation. We can use
linear interpolation to adjust the nr so that they are all above zero.

In practise, the Good-Turing estimate is not used by itself for n-gram smooth-
ing, because it does not include the combination of higher-order models with
lower-order models necessary for good performance.

8.3.4 Jelinek-Mercer Smoothing

Consider the case of constructing a bigram model on training data where
c(STRING THE)= 0 and c(STRING FONZ) = 0, both additive smothing
and the Good-Turning estimate will give us

p(THE|STRING) = p(FONZ|STRING)

However, intuitively we should have

p(THE|STRING) = p(FONZ|STRING)

because the word THE is much more common than the word FONZ. To
capture this behavior, we can interpolate the bigram model with a unigram

8-4

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

model. We can linearly interpolate a bigram model and unigram model as
follows:

pinterp(wi|wi−1) = λpML(wi|wi−1) + (1− λ)pML(wi)

where 0 ≤ λ ≤ 1. Because p(THE|STRING) = p(FONZ|STRING) = 0,
while presumable pML(THE) > pML(FONZ), we will have that

pinterp(THE|STRING) > p(FONZ|STRING)

Jelinet and Mercer gives an elegant way to describe this interpolation is
given by, the nth-order smoothed model is defined recursively as a linear
interpolation between the nth-order maximum likeliood model and the (n−
1)th-order smoothed model.

pinterp(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi−1

i−n+1)) + (1− λwi−1
i−n+1

)pinterp(wi|wi−1
i−n+2)

(8.10)
Different methods for finding the values of λ correspond to variety of different
smoothing methods. To yield meaningful results, the data used to estimate
λ need to be different from the data used to calculate the pMP . In the
held-out interpolation, one reservers a section of data of the training data
for this purpose, where this held-outdata is not used in calculating the pML.
Alternatively a different technique known as deleted interpolation or deleted
estimation where different parts of the training data rotate in training either
the pML or the λ; the results are then averaged.

8.3.5 Katz Backoff Smoothing

Katz smoothing extends the intuitions of the Good-Turing estimate by in-
cluding the Backoff Smoothing. We describe Katz smoothing for bigram
models with count r = c(wii− 1). We calculate its corrected count using the
equation

ckatz(wii− 1) =


drr if r > 0 and r < k for dr = r∗

r

r if r ≥ k

α(wi−1)pML(wi) if r = 0

(8.11)

All bigrams with a nonzero count r are discounted according to a discount
ratio dr predicted by the Good-Turning estimate. The counts subtracted
from the nonzero counts are then distributed among the zero-count bigrams

8-5

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

according to the next lower-order distribution. The value of α(wi−1) is chosen
so that the total number of counts in the distribution of

∑
wi
ckatz(wii− 1)

is unchanged. The appropriate value of α(wi−1) is

α(wi−1) =
1−

∑
wi:c(wi

i−1)>0 pkatz(wi|wi−1)

1−
∑

wi:c(wi
i−1)>0 pML(wi)

To calculate pkatz(wi|wi−1) from the corrected count, we just normalize:

pkatz(wi|wi−1) =
ckatz(wi

i−1)∑
wi
ckatz(wi

i−1)
(8.12)

This calculation is reliable for large counts, therefore they are not discounted.
In particular, Katz omits the discount for all c(wi−1wi) ≥ k ,where Katz
suggests k = 5. The discount ratios for the lower counts c(wi−1wi) < k are
chosen to be proportional to the discounts predicted by the Good-Turning
estimate, so that the total number of counts discounted in the global bigram
distribution is equal to the total number of counts that should be assigned
to bigrams with zero counts.

8.3.6 Witten-Bell Smoothing

The nth-order smoothed model is defined recursively as a linear interpolation
between the nth-order maximum likelihood model and the (n − 1)th-order
smoothed model as in

pWB(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi|wi−1

i−n+1) + (1− λwi−1
i−n+1

)pWB(wi|wi−1
i−n+2)

(8.13)
To compute λwi−1

i−n+1
for Witten-Bell smoothing, we will need to use the num-

ber of unique words that follow the histroy of wi|wi−1
i−n+1. We will write this

value as N1+(wi−1
i−n+1•), formally defined as

N1+(wi−1
i−n+1•) = |wi : c(wi−1

i−n+1wi) > 0| (8.14)

The notation N1+ is meant to evoke the number of words that have one or
more counts, and the • is meant to evoke a free variable that summed over.
This definition is often called as diversity. We can then assign the parameters
λwi−1

i−n+1
for Witten-Bell smoothing such that

1− λwi−1
i−n+1

=
N1+(wi−1

i−n+1•)
N1+(wi−1

i−n+1•) +
∑

wi
c(wi

i−n+1)
(8.15)

8-6

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

It is reasonable that we should use the higher-order model is the correspond-
ing n-gram occurs in the training data (the value of λwi−1

i−n+1
is higher than (1−

λwi−1
i−n+1

)), and back off to the lower order model otherwise. Consider the case

of constructing a bigram model on training data of pWB(BROWSER|THE)
and pWB(BROWSER|WEB).

(1−λwi−1
i−n+1

) of pWB(BROWSER|THE) =
N1+(THE•)

N1+(THE•) +
∑

wi
c(THE,w)

(1−λwi−1
i−n+1

) of pWB(BROWSER|WEB) =
N1+(WEB•)

N1+(WED•) +
∑

wi
c(WEB,w)

The number of unique words following THE is higher than the number of
unique words following WEB. Therefore I am more certain to know the word
that follows WEB than the word follows THE.

8.3.7 Absolute Discounting

Absolute discounting involves the interpolation of higher and lower order
models. However, instead of multiplying the higher-order maximum-likelihood
distribution by a factorλwi−1

i−n+1
), the higher-order distribution is created by

subtracting a fixed discount D ≤ 1 from each nonzero count. Instead of
equation (8.10)

pinterp(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi−1

i−n+1)) + (1− λwi−1
i−n+1

)pinterp(wi|wi−1
i−n+2)

we have

pabs(wi|wi−1
i−n+1) =

max
{
c(wi

i−n+1)−D, 0
}∑

wi
c(wi

i−n+1)
+ (1− λwi−1

i−n+1
)pabs(wi|wi−1

i−n+2)

(8.16)
To make this distribution sum to 1, we take

1− λwi−1
i−n+1

=
D∑

wi
c(wi

i−n+1)
N1+(wi−1

i−n+1•) (8.17)

where N1+(wi−1
i−n+1•) is defined as in equation (8.14) and where we assume

0 ≤ D ≤ 1. Ney, Essen and Kneser(1994) suggest setting D through deleted
estimation on the training data. They arrive at the estimate

D =
n1

n1 + 2n2

(8.18)

8-7

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

8.3.8 Kneser-Ney Smoothing

Consider building a bigram model on data where there exists a word that is
very common, say FRANCISCO, that occurs only after a single word, say
SAN. Since c(FRANCISCO)is high, the unigram probability p(FRANCISCO)
will be high and algorithm such as absolute discounting will assign a rela-
tively high probability to the word FRANCISO occuring after novel bigram
histroy.

p(FRANCISCO|EGGPLANT) > p(STEW |EGGPLANT)

However, intuitively this probability should not be high since the training
data the word FRANCISCO follows only a single history. However, STEW
is common word and also occurs in many contexts. Extending this line of
reasoning, the unigram probability used should not be proportional to the
number of occurrences of a word, but instead to the number of different words
that it follows. ∑

wi−1

pKN(wi−1wi) =
c(wi)∑
wi
c(wi)

(8.19)

The left-hand side of this equation is the unigram marginal for wi of the
smoothed bigram distribution pKN , and the right-hand side if the unigram
frequency of wi found in the trainning data. The resulting distribution pre-
sented by Kneser and Ney(1995) is:

pKN(wi|wi−1
i−n+1) =

max
{
c(wi

i−n+1)−D, 0
}∑

wi
c(wi

i−n+1)
+

D∑
wi
c(wi

i−n+1)
N1+(wi−1

i−n+1•)pKN(wi|wi−1
i−n+2)

(8.20)
We aim to find a unigram distribution pKN(wi), such that the constraints
given by equation (8.19) are satisfied. Expanding equation (8.19), we get

c(wi)∑
wi
c(wi)

=
∑
wi−1

pKN(wi|wi−1)p(wi−1)

For p(wi−1), we simply take the distribution found in training data

p(wi−1) =
c(wi−1)∑
wi
c(wi−1)

Substituing and simplying, we have

c(wi) =
∑
wi−1

c(wi−1)pKN(wi|wi−1)

8-8

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

Substituing into equation (8.20), we have

c(wi) = c(wi)−N1+(•wi)D +DpKN(wi)N1+(••)

where N1+(•wi) is the number of different words wi−1 that precede wi in
the training data and where N1+(••) is the number of all distinct bigram.
Solving for pKN(wi), we get

pKN(wi) =
N1+(•wi)

N1+(••)

Applying this to our example,

pKN(FRANSICO|EGGPLANT) =
1

number of distinct bigrams

pKN(STEW |EGGPLANT) =
some number larger than 1

number of distinct bigrams

This boosts up the P (STEW |EGGPLANT), so that it is greater than
P (FRANSICO|EGGPLANT).

8.4 Algorithm Summary

Most existing smoothing algorithms can be described with the following equa-
tion

psmooth(wi|wi−1
i−n+1) =

{
α(wi|wi−1

i−n+1) if c(wi
i−n+1) > 0)

γ(wi−1
i−n+1)psmooth(wi|wi−1

i−n+2 if c(wi
i−n+1) = 0)

(8.21)
That is, if an n-gram has a nonzero count then we use the distribution
α(wi|wi−1

i−n+1). Otherwise, we backoff to the lower-order distribution psmooth(wi|wi−1
i−n+2,

where the scaling factor γ(wi−1
i−n+1) is chosen to make the conditional distri-

bution sum to one. Algorithms that fall directly in this framework as backoff
models. Serveral smoothing algorithms are experessed as the linear interpo-
lation of higher- and lower- order n-gram models as in equation (8.10)

psmooth(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi−1

i−n+1)) + (1− λwi−1
i−n+1

)psmooth(wi|wi−1
i−n+2)

We refer to models of this form as interpolated models. The key difference
between backoff and interpolated models is that in determining the proba-
bility of n-grams with nonzero counts, interpolated models use information

8-9

CMPT 825 Lecture 8 — Feb 27, 2007 Spring 2008

from lower-order distributions while backoff models do not. In both backoff
and interpolated models, lower-order distributions are used in determining
the probability of n-grams with zero counts.

This table shows the summary of smoothing algorithms using notation from
equation (8.21); the token ”...” represents the term γ(wi−1

i−n+1)psmooth(wi|wi−1
i−n+2

corresponding to interpolation with a lower order distribution.

8-10

Bibliography

[1] Stanley Chen and Joshua Goodman, An Empirical Study of Smoothing
Techniques for Language Modeling. Technical Report TR-10-98, Harvard
University, Aug 1998.

[2] Kevin Knight, Sections 1-14 from Statistical machine translation work-
book. Manuscript.

11

