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Lecturer: Anoop Sarkar Scribe: Stephen Fagan

The EM Algorithm

The Expectation-Maximization (EM) algorithm is a general method for
deriving maximum likelihood parameter estimates from incomplete (i.e. par-
tially unobserved) data. The algorithm is a two-step iterative method that
begins with an initial guess of the model parameters, . In the first step
(the E or Expectation step), the observed data and the current estimate of
0 is used to find the distribution of the unobserved data. In the second step
(the M or Maximization step), a re-estimation of the § parameters is per-
formed under the assumption that the distribution of unobserved data from
the previous step is the true distribution. So, the idea behind each step of
the algorithm is:

Expectation: If we knew the value of 6, then we could compute the dis-
tribution of the hidden data of the model.

Maximization: If we knew the the distribution of the hidden data, then
we could compute the maximum likelihood value of 6.

It will be shown that iterating between the E-step and M-step improves the
likelihood of the estimates of 6.

The EM algorithm is a very general method with many applications. It
was first presented in its general form in 1977 by Dempster, Laird, and Rubin.
Before presenting the algorithm, several examples are presented to secure an
intuitive understanding.

6.1 Example - Three Coins

The setup of this example is as follows: There are three possibly biased coins
numbered 0, 1, and 2. A sequence of heads (H) and tails (T") from coins 1
and 2 are generated by first tossing coin 0, and if coin 0 shows H, then three

6-1



CMPT 825 Lecture 6 — Feb 18-22, 2008 Spring 2008

observations are generated by tossing coin 1 three times. If coin 0 shows
T, then three observations are generated by tossing coin 2. This process of
tossing coin 0 to determine which of coins 1 or 2 will generate the next three
observations is repeated several times. Note that the results of tossing coin
0 is not a part of the observation sequence - this is the “hidden data.” An
example of output from this setup is:

HHH,TTT, HHH,TTT, HHH.

The hidden component of the data is the results of tossing coin 0. Suppose
that the hidden data observed from the above observed sequence is

H,T,H,T, H.

There are three model parameters to be estimated in this model

0= (Avplva)

where A is the probability of coin 0 showing H (so 1 — X is the probability
of it showing T'), p; is the probability of coin 1 showing H, and p, is the
probability of coin 2 showing H.

Three Coins - The Fully Observed Case: In order to fully grasp the
impact of having hidden data, the simple case of no hidden data is first
explored. This case is simple since an estimate of # is derived from the
counts of the data:

count(coing = H) 3

count(tosses_of coing) 5

ps

. count(coing=H) 9 .
Pr= count(tosses_of coiny) 9

t(coing = H 0
by = count(coin ) _0_,

count(tosses_of coiny) 6

The hats, ", over the parameters indicate that these are estimates of
the true values based on the available data. The difficulty of the case
of hidden data comes from the fact that we don’t know which coin is
being tossed throughout the sequence of observed data.
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Three Coins - Hidden Data, but 6 is Known: In the case where the
results of tossing coin 0 are hidden, then it is uncertain which coin (1
or 2) generated each result in the observed sequence. However, if § was
known, then we could compute the distribution of the hidden data.
Let x = THT be a sequence of observed coin-toss data from a single
coin, and let y be the hidden value of the coin 0 toss that determined
the coin for those tosses (so y = H or y = T). Assume that the
parameters 6 = (X, py, pa) are known. Then given 6 and the observed
data x = THT, the probability distribution of y can be calculated as
follows:

Pr(z=THT,y=H|6
Pr<y = H|Z’ = THT7 9) = (Pr(xZTHyT|9)‘ :

Pr(z=THT,y=H|0)
Pr(z=THT,y=H|0)-Pr(x=THT,y=T|0)

_ Ap1(1—p1)?
Ap1(1—=p1)2+(1-N)p2(1—p2)?

Pr(z=THT,y=T|0
Pr<y = T’l’ = THT7 9) = g:’r(x:THyT\@)| )

Pr(z=THT,y=T|0)
Pr(x=THT,y=H|0)-Pr(x=THT,y=T|0)

_ (1=N)p2(1—p2)?

T A (1-p1)?+H(1-XN)p2(1—p2)?
where the first equality follows from the definition of conditional prob-
ability, the second equality follows from the fact that

Pr(z) = 3 Pr(z,y),

and the third equality follows from the definition of the parameter val-
ues. This example shows how the Expectation step of the EM algorithm
works: Given a 6, the probability distribution of the hidden data can
be estimated from the observed data. To start the algorithm, an initial
0 is needed, but once the algorithm is started, new values of 6 can be
calculated that increases their likelihood.
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Three Coins - How to Get a New #: Given the probability distribution
of the hidden data and the previous estimate of 6, denoted 6°, a new
estimate 6! can be constructed that has a higher likelihood. In this
case, since there are only two types of observed triples in this example,
x=HHH or x =TTT, the new value for X is easily calculated by

_ 3xPr(y=Hlzx=HHH,0°)+2xPr(y = Hlz =TTT,0°)
B 5

)\1

where the numerator is the expected number of heads from coin 0 in 5
trials and the denominator is the number of trials. Thus the new value
of A is calculated conditional on the old # values. The new parameter
estimates for coins 1 and 2 are similarly calculated by

,  3x3xPr(y=Hlr=HHH,0°)+0x2xPr(y=Hlz=TTT,0)
P 33 Pr(y = Hlz = HHH, ) + 3 x 2 x Pr(y = H|z = TTT, 0°)

y 3x3xPry=Tlx=HHH,0°)+0x2xPr(y=T|x =TTT,0°)
P = 33 % Pr(y = T|w = HHH, 0) + 3 x 2 x Pr(y = T|x = TTT, 6°)

These calculations are an example of the Maximization step, and with
these new parameter estimates, the Estimations step can be performed
again to yield better estimates of the probability distribution of the
hidden data. An implementation of the EM algorithm for the three
coins problem can be found in the directory:

/cs/ facl/anoop/cmpt825/demos /three_coins.py

6.2 ML Estimation

The goal of maximum likelihood (ML) parameter estimation is to find the
parameters of a model that maximize the probability (i.e. likelihood) of the
sample data. In the EM algorithm, ML estimation occurs in the Maximiza-
tion step. To set up the required notation, let xq, x5, - - , z, be the observed
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data sequence drawn from a set X', and let yy, v, - - - , ¥, be the corresponding
sequence of unobserved data drawn from a set ). In the case of the Three
Coins example, these sets are

X ={HHH HHT,HTH,HTT,THH,THT,TTH, TTT}

Yy={HT}.

For computational tractability, the data are assumed to be independently
and identically distributed. This assumption allows us to write

Pr(zy,xq, - ,x,]0) = HPr(:ciW).
i=1

As before, let # be a parameter vector taken from a parameter space €. In
the fully observed case, where the sequences of both z’s and y’s are observed,
then maximizing

L(0) = 3" log Pr(az, i)

i=1
would be the goal. Note that taking logs allows the product from above to

be written as a sum. In the case where the y’s are hidden, then all possible
y’s must be considered. Thus, the problem is to maximize

L) = il log Pr(z;]6)

n

= > log > Pr(z;,yld)

i=1 yey

So, we need to find

Onp = argmaleogZPr(xi,yW).
b = ey

If L(#) is a convex function with a single 6 such that

AL(6) _
ar
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then finding the global solution to the maximum likelihood problem is straight-
forward. However, in more complex likelihood functions, there may be many
local maxima that are less than the global maximum, and so finding the true
0y, may be tricky. There are some strategies for dealing with multiple local
maxima such as running the algorithm with different starting values or step
sizes.

6.3 Convergence of the EM Algorithm

While the EM algorithm might only find a parameter estimate that has a
locally maximum likelihood, it does have the desirable property that the like-
lihood is non-decreasing with each step of the algorithm and it is guaranteed
to converge to a local maximum of the likelihood function.

The EM algorithm produces a new estimate of § with each iteration,

0. 0% 6% ... .0 ..

and for all ¢, L(#'T') > L(#"). To prove this result, the concept of expected
values and a result known as Jensen’s inequality are used:

Expected Values: The expected value of a discrete random variables,
(also called the expectation or the mean) is the probability-weighted
average value of the random variable. It is calculated by summing each
possible realization of the random variable multiplied by the probabil-
ity of that realization. For example, let  be a random variable that
can take on values from the set {2,3,4} and let the probability of tak-
ing each of these values is 0.25, 0.25, and 0.50, respectively. Then the

expected value of x, denoted Elz]is >  x x Pr(z) = 3.25.
z€{2,3,4}

Jensen’s Inequality: This result states that the expected value of the
function is not, in general, equal to the function of the expected value.
So E[f(x)] # f(E[z]). In particular, if f is a convex function, then
E[f(z)] > f(E[z]). Note that the fact that the log function is con-
vex will be used in the following proof in conjunction with Jensen’s
Inequality.

The proof of EM convergence proceeds in three steps:
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1. Show that the log-likelihood function, L(0), has the form
L() = Q(6,0") — H(6,6")
for some functions ) and H.
2. Show that Q(A"!,0%) > Q(6",6).
3. Show that H(#¢,0%) > H(6" 6%).

Proof of Convergence - Step 1: As before, let x be the observed data,
y be the unobserved data, and # be the vector of parameter values that
we are estimating. By the definition of conditional probabilities, we
have the following equality:

At any step, t, in the EM algorithm, we have an estimate of the pa-
rameter vector #' as well as a working estimate of the distribution of
the unobserved data p(y|x,6'). Taking expectations of both sides of
the above equality at time ¢ conditional on p(y|x, 6") gives:

Egt[log Pr(y|z, 0)|p(y|z, 0")] = Eg[log Pr(z, y|0)|p(y|z, 0")]— Egt [log Pr(x|0)|p(y|z, 67))].

The second term on the right-hand side is not dependant on y and is
not a random variable, and so the expectation operator can be removed
giving:

Ege[log Pr(y|x, 0)|p(y|z, 0")] = Eg[log Pr(z,y|0)|p(y|z, 0")]—log Pr(z|0).

This second term is now expressed as the log-likelihood of a parameter
vector @ as described in the previous section. Thus,

Eg:[log Pr(y|z, )[p(y|z, 0")] = Eg[log Pr(, y|6)|p(yla, 6%)] — L(6).
Rearranging this equality gives

L(0) = Eg:[log Pr(y|z, 0)|ply|z, 0")] — Eg[log Pr(, y|0)|p(y|z, 0")]
which is of the desired form,

L(0) = Q(0,0") — H(0,0").
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Proof of Convergence - Step 2: In the E-step of the EM algorithm, we
compute an estimate p(y|z,#") which is then used in the M-step. In
this step, we are actually calculating the arg max of Q(6,6"). That is,

'l = argmaxQ(6,6")
eq

= argmaxFy[log Pr(z,y|0)|p(y|z, 6")].
2

So by the definition of argmax, Q(#*1,0%) > Q(6?, ") as required.

Proof of Convergence - Step 3: The proof of this step uses the defini-
tion of expected values and conditional probability, the properties of
logs, and Jensen’s Inequality.

H(@t, Qt) _ H(0t+1, Qt)
= EgllogPr(ylz, 0")[p(ylz, 0")] — Eg[log Pr(ylz, 0" 1) [p(y|z, 0")]

= Y logPr(y|z,0")p(y|x, 0") — ZlogPr(ylw 0" )p(y|z, 0")
Yy

= Llog ARl ) — S los HEA Dol 0)

r(z,y|0") x|t 1
= S log gl ) + S log S Bl #)

Pr(z|0%) Pr(z|6*t1)
2 log Pr(z|ot+1) + 10 Pr(z|0t)

= 0

So, give these three steps, we see that the likelihood is non-decreasing,
and the convergence of the EM algorithm is proven. B

6.4 Baum-Welch as an Instance of the EM
Algorithm

The Baum-Welch algorithm (also called the forward-backward algorithm) is a
special case of the EM algorithm. As we saw earlier in the course, the Baum-
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Welch algorithm is used to find the unknown parameters of a hidden Markov
model (HMM). To see Baum-Welch as an instance of EM, we need to identify
the hidden data and state what happens in the E and M-steps. The hidden
data are the unobserved state transitions. So in the E-step, given a parameter
estimate, we compute the expected values of (i) the number of transitions
from each state 7 in the observed data, and (ii), for each state pair (i, j), the
number of transitions from state i to state j. The parameters of the model are
(1) the initial state probabilities, (2) the state transition probabilities, and
(3) the symbol emission probabilities. The M-step computes a new estimate
of these parameters given the expected values (i) and (ii).

6.5 Variants of the EM Algorithm

Dempster, Laird, and Rubin (DLR) (1977) first presented the EM algorithm
in its general form. Wu (1983) extended the results of DLR, including a
proof that L(6'*') > L(6") provided that #* is not a stationary point (i.e.
%(:t #0). Wu’s result is a more useful result than DLR’s since it says that
EM is gautenteed to strictly improve the likelihood as long as you’re not at
a local maximum.

DLR also presented a Generalized EM algorithm (GEM), which is like the
EM algorithm except that one picks ™! such that Q01 6) > Q(6%,0").
Note that we need only choose a 0! that improves @ rather than one that
maximizes it. This variant of EM helps when finding the true maximum is
very expensive. The convergence results still apply to GEM.

Neal and Hinton (1998) give an alternative proof of convergence and allow
other generalizations. They define a function F(p,#) which enables a new
definition of EM. They define the maximum likelihood estimate of 8 as

Orrr, = arg max[maxF(p, 0)].
0 P

This implies that the likelihood function is defined to be

L(0) = mng(ﬁ, g).

We can find the probability of the hidden data in the following manner:

p(yle,0) = argmaxF(p,0).
2
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So the new definition of EM is:
E-Step: p' = argmaxF(p, 0 1)
13

M-Step: 0" = argmaxF(p',0)
0

This is a rephrasing of EM in which we’re maximizing one variable at a time.
The convergence properties of EM still apply and the proof is more compact
than earlier versions (but it’s also harder to understand). The useful aspect
of Neal and Hinton’s F' function is that it can be modified to prove that
many variants EM also converge. For example, they can show that on-line
processing, various sampling procedures, and learning only some parameters
in each iteration are all variants of EM for which the convergence results also

apply.
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