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5.1 Estimating Hidden Markov Model Topolo-

gies [2]

Hidden Markov Models need a large set of parameters which are induced from
a text-corpus. The parameters should be optimal in the sense that resulting
models assign high probabilities to seen training data. There are several
methods to estimate model parameters. The first one is to use each word
as a state and estimate the probabilities using the relative frequencies. The
second method is a variation of the first method. In this model, words are
automatically grouped by similarity of distribution in the corpus. Each group
is represented by a state in the model. The second method has the advantage
of drastically reducing the number of model parameters and thereby reducing
the sparse data problem.

The third method uses manually defined categories. An important differ-
ence to the second method with automatically derived categories is that with
manual definition a word can belong to more than one category. The fourth
method is a variation of the third method and is also used for part of speech
tagging. This method does not need a pre-annotated corpus for parameter
estimation. The parameters are estimated using the Baum-Welch algorithm.

This paper proposes a fifth method for estimating natural language mod-
els combining the advantages of the methods mentioned above.

5.1.1 Part of Speech Tagging

The task of PoS tagging is the unique annotation of a word with a syntactic
category, called part-of-speech or tag. Given W = w1...wk ∈ Σ∗ the sequence
of observed words, we are looking for a sequence of tags T = t1...tk ∈ τ ∗ that
maximized the conditional probability P (T |W ), hence we are looking for :

argmaxT p(T |W ) = argmaxT
p(T )p(W |T )

p(W )
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5.1.2 Model Merging

This technique not only induces transitions and output probabilities from
the corpus, but also the model topology. In n-gram approaches, the states
are fixed and mostly linguistically motivated. The model merging approach
groups words together by their statistical distributions and estimates transi-
tion and output probabilities for a HMM at the same time. This approach
adapts to the amount of data available. There is a limiting factor for Model
Merging approach that the process of merging is very time consuming.

Merging starts with an initial model. To do this we can choose a trivial
HMM that exactly matches the corpus. there is exactly one path for each
expression in the corpus. Each path gets the probablity of 1/u, with u the
number of expressions in the corpus. Figure 5.1 shows the trivial HMM for
a corpus with words a, b, c and expressions ab, ac, abac

Figure 5.1. The trivial HMM for a single corpus cosisting of expressions ab,ac,abac

States are merged successively, except for the start and end state. The
transitions from and to the old states are redirected to the new merged state,
the probabilities are adjusted to maximize the likelihood of the corpus; also
the outputs are joined. Of all possible merges we take the merge that results
in the minimal change of the probability. The probability never increases
because the trivial model is the maximum likelihood model which maximizes
the probability of the corpus given the HMM. Model merging stops when a
predefined threshold for corpus probability is reached.

5.1.3 Model Merging and Natural Language Models

Model merging has three important features: 1- It can classify words into cat-
egories, 2- One word may belong to several categories, 3- Model merging can
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categorization of
words

multiple cate-
gories for words

sequence recog-
nition

n-grams, manual X X ×
n-grams, automatic X × ×

HMMs, model merging X X X

Table 5.1. Features of Categorizations for Language Models

recognize static sequences of words or parts-of-speech. Table 5.1 compares
the features included in different estimation approaches.

Introducing Constraints

The Model Merging algorithm is really time consuming (generally O(l4),
where l is the length of the corpus -this complexity seems to be incorrect, it
should be either l3 or l5 as discussed in the class-).

In the merging steps of the algorithm, mainly, states that output words
of the same syntactic category are merged. This behavior can be exploited
by introducing constraints on the merging process. At the beginning we
consider only states with the same output. After a while, this constraint is
relaxed and states that output words of the same syntactic category. Again,
after a while, this constraint is relaxed and all states can merge.

Model Merging and Part-of-Speech Tagging

This paper extend the Markov model in such a way that the output no longer
consists of a single word but of a word with its annotated part-of-speech. The
task of part-of-speech tagging in this case would be to determine the sequence
of tags T = t1...tk with the highest probability from all sequences of states
Q = q1...qk that can output a given sequence of words W = w1...wk. For a
given sequence of words W we have to find

argmaxT

∑
Q P (Q) · P (W, T |Q)

Since most of the time, the will be one main path, it suffices to find the
Viterbi approximation

argmaxT maxQ P (Q) · P (W, T |Q)
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The last formula shows that it is useless to merge two states that output
the same words but with two different categories. Because if we do that, the
resulting model will always favor the part-of-speech with higher probability.

Using the derived models for part-of-speech tagging, we may encounter
two problems. A lot of sequences can not be recognized, because there are
unknown words in them, or even all words are known, there is no match-
ing path in the HMM. The problem of unknown words can be solved by a
mapping from unknown words to known words and using the states emitting
known words for unknown words. The problem of non-existing paths can be
solved by ”smoothing” the transition probabilities between states.

Experiments

They perform a supervised learning using labeled data to train their model.
They show some improvements in accuracy, but the problem is that, they
don’t show the significance of their improvement in accuracy; whether just
two errors have been fixed or 1000 errors have been fixed.

5.2 Structure Learning in conditional prob-

ability models via an entropic prior and

parameter extinction [1]

This paper introduces an entropic prior for multinomial parameter estimation
problems and solve for its maximum a posteriori (MAP) estimator. The
prior is bias for maximally structured and minimally ambiguous models.
Iterative maximum a posteriori (MAP) estimation using this prior tends
to drive weakly supported parameters toward extinction, sculpting a lower-
dimensional model whose structure comes to reflect that of the data. To
accelerate this process, they establish when weakly supported parameters
can be trimmed from the model.

5.2.1 A maximum structure entropic prior

In entropic estimation, we assert that parameters that do not reduce uncer-
tainty are improbable. For example, in a multinomial distribution over K
mutually exclusive kinds of events, a parameter at chance Θi = 1

k
adds no
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information to the model, and is thus a wasted degree of freedom. In this
view, learning is a process which increase the specificity of the model, or
equivalently, minimizing the entropy. This intuition is well captured by the
expression:

Pe(Θ) ∝ e−h(Θ) = exp
∑

i

Θi log Θi = ΠiΘ
Θi
i = ΘΘ

Pe(.) is non-informative to the degree that it does not favor one parameter
set over another provided they specify equal uncertain models. Combining
the prior with the multinomial yields the entropic posterior:

Pe(Θ|ω) ∝ P (ω|Θ)Pe(Θ) ∝ ΠN
i ΘΘi+ωi

i

where non-negative ωi is evidence(observation) for event type i.
As an example, consider the case in which we are tossing a coin. Our

model has two parameters Θh and Θt which correspond to the probabilities
for head and tail. Considering the following observations of evidence, we will
have:

D =< h, h, h, t, t, h, h >

Θ = {Θh, Θt} Θh + Θt = 1

ω = {ωh, ωt} N = ωh + ωt

P (D|Θ) = Θ5
h · Θ2

t P (Θ) = ΘΘh
h · ΘΘt

t

P (Θ|D) ∝ ΘΘh+5
h · ΘΘt+2

t

As figure 5.2 shows, with ample evidence this distribution becomes sharply
peaked around the maximum likelihood estimate, but with scant evidence it
flattens and skews to stronger odds. Note that this is the opposite behav-
ior that one obtains from a Dirichlet prior, often used in learning Bayes net
parameters from data.
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Figure 5.2. entropic p.d.f.s over a binomial parameter Θh

5.2.2 Interpretation

The entropic MAP estimator strikes a balance which favors fair (ML) parame-
ter values when data is extensive, and biases toward low-entropy parameters
when data is scarce. The less the entropy the more sure you are about the
probabilities. It leads to more sharp models rather than defused models. The
entropic MAP estimator may be understood to select the strongest hypoth-
esis compatible with the data, rather than fairest, or best unbiased model.
Formally, some manipulation of the posterior allows us to understand the
MAP estimate in terms of entropies:

−maxΘlog Pe(Θ|ω) = minΘ−log ΠN
1 ΘΘi+ωi

i = ... = minΘH(Θ)+D(ω||Θ)+H(ω)

The first term minΘH(Θ) measures the ambiguity in the model and
shows the uncertainty you have about the model. As H(Θ) declines, the
model becomes increasingly structured and near-deterministic. The second
term D(ω||Θ) id the relative entropy and measures divergence between the
parametrer Θ and the data’s descriptive statistics ω. H(ω) is a lower bound
on the expected number of bits needed to specify which of the variations al-
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lowed by the model is instantiated by the data. As H(ω) declines, the model
comes to agree with the underlying structure of the data.

5.2.3 Training

The entropic posterior defines a distribution over all possible model struc-
tures and parameterizations within a class; small, accurate models having
minimal ambiguity in their joint distribution are the most probable. To find
these models, we simply replace the M-step of EM with the entropic MAP
estimator, with the following effect: First, the E-step distributes probability
mass unevenly through the model, because the model is not in perfect ac-
cordance with the intrinsic structure of the training data. In the MAPstep,
the estimator exaggerates the dynamic range of multinomials in improba-
ble parts of the model. This drives weakly supported parameters toward
zero and concentrates evidence on surviving parameters, causing their es-
timates to approach the ML estimate. Structurally irrelevant parts of the
model gradually expire, leaving a skeletal model whose surviving parameters
become increasingly well-supported and accurate.

5.2.4 Trimming

In this section, we explore some conditions under which we can drive irrele-
vant parameters to zero. One may trim a parameter Θi whenever the loss in
the likelihood is balanced by a gain in the prior

Pe(Θ\Θi|X) > P (Θ|X)

P (X|Θ\Θi)Pe(Θ\Θi) > P (X|Θ)Pe(Θ)

Comparing the trimming approach with simple model merging approach
we see that in the model merging approach, we have sequenced comparisons,
but in trimming, we check the state for the first inequality. If the inequality
holds, then we throw out the state and continue with the remaining states.

Trimming accelerates training by removing parameters that would oth-
erwise decay asymptotically to zero. Although the mathematics makes no
recommendation when to trim, as a matter of practice we wait until the
model is at or near convergence. Note that if a model is to be used for life-
long learningperiodic or gradual retraining on samples from a slowly evolving
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non-stationary processthen trimming is not advised, since nearly extinct pa-
rameters may be revived to model new structures that arise as the process
evolves.

In sum, a parameter can be trimmed when varying it increases the entropy
faster than the log-likelihood.

Θi > exp[−∂log P (X|Θ)

∂Θi

]

Conveniently, the gradient of the log-likelihood ∂log P (X|Θ)
∂Θi

will have al-
ready been calculated for re-estimation in most learning algorithms.

5.2.5 Continuous-output HMMs

A hidden Markov model is a dynamically evolving mixture model, where
mixing probabilities in each time-step are conditioned on those of the previous
time-step via a matrix of transition probabilities.

Authors of the paper compared entropically and conventionally estimated
continuous-output HMMs on sign-language gesture data provided by a com-
puter vision lab. Entropic estimation consistently yielded HMMs with sim-
pler transition matrices having many parameters at or near zero (e.g., figure
5.3)lower-entropy dynamical models. When tested on held-out sequences
from the same source, entropically trained HMMs were found to over-fit less
in that they yielded higher log-likelihoods on held-out test data than con-
ventionally trained HMMs. This translated into improved classification: The
entropically estimated HMMs also yielded superior generalization in a binary
gesture classification task

Most interestingly, the dynamic range of surviving transition parameters
was far greater than that obtained from conventional training. This remedies
a common complaint about continuous-output HMMs that model selectivity
is determined mainly by model structure, secondly by output distributions,
and only lastly by transition probabilities, because they have the smallest
dynamic range.

Transition Trimming

Following is a trimming criterion for HMM transition parameters:
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Figure 5.3. Initial, Baum-Welch, and entropically re-estimated transition matrices. Each
row depicts transition probabilities from a single state; white is zero. The first two matrices
are fully upper-diagonal; the rightmost is sparse.

Θi|j 6 exp[
∂log P (X|Θ)

∂Θi|j
]

= exp[−
∑T−1

t=1 αj(t)p(xt+1|si)βi(t + 1)∑N
k αk(T )

]

This test licenses a deletion when the transition is relatively improbable
and the source state is seldom visited. In continuous-output HMMs, entropic
training can produce two kinds of states: data-modeling, having output dis-
tributions tuned to subsets of the data; and gating, having near-zero dura-
tions (Θi|i ≈ 0) and often having highly non-selective output probabilities.

State trimming

One of the more interesting properties of entropic training is that it tends to
reduce the occupancy rate of states that do little to direct the flow of prob-
ability mass, whether by vice of broad output distributions or non-selective
exit transitions. As a result their incoming transitions become so attenuated
that such states are virtually pinched off from the transition graph. As with
transitions, one may detect a trimmable state si by balancing the prior prob-
ability of all of its incoming and exit transitions against the probability mass
that flows through it:

P (X|Θ\si)

P (X|Θ)
> Θ

Θi|i
i|i ΠN

j 6=iΘ
Θj|i
j|i Θ

Θi|j
i|j
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However, this is speculative computation, which they try to avoid. They
propose a non-speculative heuristic that we found equally effective: They bias
transition-trimming to zero self-transitions first. Continued entropic training
then drives an affected states output probabilities to extremely small values,
often dropping the states occupancy low enough to lead to its being pinched
off.

5.2.6 Discrete-output HMMs

Discrete-output HMMs are composed entirely of cascaded multinomials. We’l
review one of the experiments they carried out to estimate both transition
and output probabilities. They entropically and conventionally trained 100-
state, 30-symbol discrete-output HMMs on the abstract and introduction of
the original version of the article. Entropic training pinched off 4 states and
trimmed 94% of the transition parameters and 91% of the output parameters,
leaving states that output an average of 2.72 symbols. Some states within
the HMM formed near-deterministic chains, e.g., figure 9 shows a subgraph
that can output the word fragments rate, that, rotation, tradition, etc. When
used to predict the next character given random text fragments taken from
the body of the paper, the entropic HMM scored 27while the conventional
HMM scored 12%. The subgraph in figure 5.4 probably accounts for the
entropic HMMs correct prediction given the word fragment expectat. Figure
10 shows that the entropic model correctly predicts i and a range of less
likely but plausible continuations. The conventionally-trained model makes
less specific predictions and errs in favor of typical first-order effects, e.g., h
often follows t. In predicting i over , h and e, the entropic model is using
context going back at least three symbols, since expectation, demonstrate,
motivated, automaton, and patterns all occurred in the training sequence.

Figure 5.4. High-probability states and subgraphs of interest from a 35-state chorale
HMM. Tones output by each state are listed in order of probability. Extraneous arcs are
removed for clarity
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5.3 Jointly Labeling Multiple Sequences: A

Factorial HMM Approach [3]

This paper presents new statistical models for jointly labeling multiple se-
quences and apply them to the combined task of part-of-speech tagging and
noun phrase chunking. They propose a solution by representing multiple
sequences in a single Factorial Hidden Markov Model (FHMM).

A Factorial Hidden Markov Model (FHMM) is a hidden Markov model
with a distributed state representation. Let x1:T be a length T sequence of
observed random variables (e.g. words) and y1:T and z1:T be the correspond-
ing sequences of hidden state variables (e.g. tags, chunks). Then we define
the FHMM as the probabilistic model:

p(x1:T , t1:T , z1:T ) = π0Π
T
t=2p(xt|yt, zt)p(yt|yt−1, zt)p(zt|zt−1) (5.1)

where π0 = p(x0|y0, z0)p(y0|z0)p(z0). Viewed as a generative process, we
can say that the chunk model p(zt|zt−1) generates chunks depending on the
previous chunk label, the tag model p(yt|yt−1, zt) generates tags based on the
previous tag and current chunk, and the word model p(xt|yt, zt) generates
words using the tag and chunk at the same time-step.

FHMM parameters can be calculated via maximum likelihood (ML) es-
timation if the values of the hidden states are available in the training data.
Otherwise, parameters must be learned using approximate inference algo-
rithms, since exact Expectation- Maximization (EM) algorithm is computa-
tionally intractable.

5.3.1 Adding Cross-Sequence Dependencies

Statistical modeling often involves the iterative process of finding the best set
of dependencies that characterizes the data effectively. As shown in Figures
5.5(a), 5.5(b), and 5.5(c), dependencies can be added between the yt and
zt−1, between zt and yt−1, or both. The model in Fig. 5.5(a) corresponds
to changing the tag model in Equation 5.1 to p(yt|yt−1, zt, zt−1); Fig. 5.5(b)
corresponds to changing the chunk model to p(zt|zt−1, yt−1); Fig. 5.5(c), cor-
responds to changing both tag and chunk models, leading to the probability
model:
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ΠT
t=1p(xt|yt, zt)p(yt|yt−1, zt, zt−1)p(zt|zt−1, yt−1) (5.2)

Figure 5.5. FHMMs with additional cross-sequence dependencies. The models will be
referred to as (a) FHMM-T, (b) FHMM-C, and (c) FHMM-CT.

Switching Factorial HMM

A reasonable question to ask is, How exactly does the chunk sequence inter-
act with the tag sequence? The approach of adding dependencies in Section
2.2 acknowledges the existence of cross-sequence interactions but does not
explicitly specify the type of interaction.

To answer the question, we consider how the chunk sequence affects the
generative process for tags: First, we can expect that the unigram distrib-
ution of tags changes depending on whether the chunk is a noun phrase or
verb phrase. Similarly, a bigram distribution p(yt|yt−1) describing tag tran-
sition probabilities differs depending on the bigrams location in the chunk
sequence, such as whether it is within a noun phrase, verb phrase, or at a
phrase boundary. In other words, the chunk sequence interacts with tags by
switching the particular generative process for tags. We model this interac-
tion explicitly using a Switching FHMM:

p(x1:T , t1:T , z1:T ) = π0Π
T
t=2p(xt|yt, zt)pα(yt|yt−1)pβ(zt|zt−1) (5.3)

In this new model, the chunk and tag are now generated by bigram dis-
tributions parameterized by α and β. For different values of α (or β), we
have different distributions for p(yt|yt−1) (or p(zt|zt−1)). The crucial aspect
of the model lies in a function α = f(z1:t), which summarizes information in
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z1:t that is relevant for the generation of y, and a function β = g(y1:t), which
captures information in y1:t that is relevant to the generation of z.

p(yt|yt−1, z1:t) =
∑

α α=1 or α=2

p(yt = α|yt−1, z1:t) =

p(yt|yt−1, α = 1)p(α = 1) + p(yt|yt−1, α = 2)p(α = 2)

An idea related to the Switching FHMM is the Bayesian Multinet which
allows the dynamic switching of conditional variables. It can be used to
implement switching from a higher-order model to a lowerorder model, a
form of backoff smoothing for dealing with data sparsity. The Switching
FHMMdiffers in that it switches among models of the same order, but these
models represent different generative processes.
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