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12.0.1 Definitions

Tagger Program that tags a word (wi) in a text with its part of speech
(POS) tag ti.

Named Entity Task The named entity task is to identify all named loca-
tions, named persons, named organizations, dates, times, monetary amounts,
and percentages in text.

Precision Precision is the number of correct responses out of the total
number of responses.

Recall Recall is the number of correct responses out of the number cor-
rect in the key.

Key File A key file is an annotated file containing the correct answers.

F Measure

F-Measure =
2 · Precision · Recall

(Recall + Precision)

Bayes’ Rule

Pr(Name-Classes|Word Sequence) =
Pr(Word Sequence, Name-Classes)

Pr(Word Sequence)

Word Features Features of a word that are used in characterizing the
type of entity it is (i.e. whether a word is capitalized, whether a word con-
tains digits or special punctuation, whether all letters are capitalized, etc.).
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Semantic Class Defined as a list of words each having a common se-
mantic feature.

Information Extraction Information extraction structures information
from unstructured texts.

Field Segmentation Extracting information into a field structure. For
example, possible fields to be extracted from a classified advertisement doc-
ument would be date, item, and price. Another example would be where
businesses segment resumes into name, address, position applied for, work
history, etc. fields.

Function Words Commas, periods, semicolons, etc. are considered
function words.

kNN Word Similarity Method Method for finding similar words, as
described in [5]. Determines nearest neighbors based on words with related
suffixes suffix-related words and the context of nearby words.

12.1 An Algorithm That Learns What’s in a

Name[1]

12.1.1 Overview

The named entity recognition problem is to identify all locations, organi-
zations, persons, dates, times, monetary amounts, and percentages in a text.
If one were to use handwritten rules, significant modifications are required
when moving from one text source to another. The idea proposed in this
paper uses context to determine whether a word(s) is a named entity.

Tag sequences of a document consist of a long series of consecutive NOT-
A-NAME tags followed by few (mostly single) NAME tags. This differs
from POS tagging where we are switching tags very frequently. Hence, name
recognition is a classification problem (a word is classified as either NAME
or NOT-A-NAME).

A traditional HMM model would have a small number of states within
each name-class, each having some semantic significance (e.g. three states
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in the PERSON name-class would represent a first, middle and last name)
where each of these three states would have some probability associated with
emitting any word from the vocabulary. A bigram language model was chosen
since it works well in practice.

A generative model where the HMM generates the sequence of words and
labels is used. Bayes Rule is thus:

Pr(NC|W) =
Pr(W, NC)

Pr(W)
(12.1)

where NC stands for Name-Classes, and W stands for Word Sequence. The
generation of words and name-classes is as follows:

1. Select a name-class, conditioning on the previous name-class and the
previous word.

2. Generate the first word inside that name-class, conditioning on the
current and previous name-classes.

3. Generate all subsequent words inside the current name-class, where
each subsequent word is conditioned on its immediate predecessor (as
per a standard bigram language model).

These three steps are repeated until the entire observed word sequence is
generated. Using the Viterbi algorithm, the entire space of all possible name-
class assignments is searched (maximizing the numerator Pr(W, NC)).

The ‘word-feature’ of a word is a language-dependent characterization.
For example, in Roman languages capitalization gives strong evidence of a
name. Some word-features are: whether a word is capitalized, whether a word
contains digits or special punctuation, whether all letters are capitalized, etc.
The word-features aid in distinguishing and annotating monetary amounts,
percentages, times and dates.

Let c() represent the number of times the events occurred in the training
data (the count). The probabilities are computed as:

Pr(NC|NC−1) =
c(NC,NC−1, w−1)

c(NC−1, w−1)
(12.2)

Pr(< w, f >first |NC,NC−1) =
c(< w, f >first, NC, NC−1)

c(NC,NC−1))
(12.3)

Pr(< w, f > | < w, f >−1, NC) =
c(< w, f >,< w, f >−1, NC)

c(< w, f >−1, NC)
(12.4)
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12.1.2 Handling Of Unseen Words In The Training
Corpus

All words that were not in the training data are labelled as belonging
to the class ‘unknown’ (UNK). There are three ways an unknown word can
appear in a bigram: as the current word, as the previous word, or as both.
All unknown words are treated as a single token, UNK.

12.1.3 Back-Off Model

To compute the back-off weight λ for

Pr(PERSON|NOT-A-NAME, ‘Mr.’)

where c(NOT-A-NAME, ‘Mr.’) ≈ c(NOT-A-NAME), the estimate of

Pr(PERSON|NOT-A-NAME)

should be removed from the smoothing of the estimate of

Pr(PERSON|NOT-A-NAME, ‘Mr.’)

since the two have equal training, but the latter is a superior model since it
conditions on more context.

For example, if the bigram ‘come hither’ was observed once in training and
‘come here’ was observed three times, while the word ‘come’ was not observed
in the NOT-A-NAME class, then when computing Pr(‘hither’|‘come’, NOT-A-NAME),
the algorithm would back off to the unigram probability Pr(‘hither’|NOT-A-NAME)
with weight 1

3
since the number of unique outcomes for the word-state for

‘come’ would be two, and the total number of times ‘come’ had been the
preceding word in a bigram would be four (the bigram probability weight of
1/(1 + 2

4
) = 2

3
), and the back-off model weight of 1− 2

3
= 1

3
).

12.1.4 Examples

Example 1

Suppose we have the sentence ‘Mr. Jones eats.’
The correct annotation for this sentence is: ‘Mr. <ENAMEX TYPE

=PERSON> Jones < /ENAMEX> eats.’ Here ‘Mr.’ is a good indicator of
the next word beginning the PERSON name-class.
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‘Jones’ is in the PERSON name-class and the other tokens are in the
NOT-A-NAME class. The following likelihood is assigned to the sentence
above:
Pr(NOT-A-NAME | START-OF-SENTENCE, +end+)
· Pr(‘Mr.’ | NOT-A-NAME, START-OF-SENTENCE)
· Pr(+end+ | ‘Mr.’, NOT-A-NAME)
· Pr(PERSON | NOT-A-NAME, ‘Mr.’)
· Pr(‘Jones’ | PERSON, NOT-A-NAME)
· Pr(+end+ | ‘Jones’, PERSON)
· Pr(NOT-A-NAME | PERSON, ‘Jones’)
· Pr(‘eats’ | NOT-A-NAME, PERSON)
· Pr(‘.’ | ‘eats’, NOT-A-NAME)
· Pr(+end+ | ‘.’, NOT-A-NAME)
· Pr(END-OF-SENTENCE | NOT-A-NAME, ‘.’)

Example 2

Let our annotated example sentence be: ‘The Turkish company, <ENAMEX
TYPE=‘LOCATION’> Birgen Air < /ENAMEX>, was using the plane to
fill a charter commitment to a German company, ...’

Birgen Air has been labeled a LOCATION, when it is actually an ORGA-
NIZATION (and is so marked in the key file). According to the tokenization
rules, punctuation marks such as commas are treated as separate tokens,
meaning that the ‘word’ directly preceding Birgen is ‘,’ and the same ‘word’
directly follows ‘Air’. The paper’s IdentiFinder program is incapable of using
the slightly wider context of a trigram that would include the word ‘company’
when predicting the beginning of this ORGANIZATION. Since ‘Birgen’ is an
unknown word and the capitalized word ‘Air’ happens to have a very high
unigram probability for appearing within a LOCATION (due to many train-
ing examples of ‘Edwards Air Force Base’). For the same reason, ‘UNK Air’
is a very likely bigram in a LOCATION in the unknown word model. By
using more context in the model, this error could have been prevented. But
the downside of using more context, such as trigrams, is that in practice
exponentially more training data is required.

It is actually detrimental to remove tokens such as commas out of the data
stream and then reinsert them after name-finding is complete. Punctuation
tokens, commas in particular, give great evidence of names, especially for
LOCATIONs having the form ‘City, State’. For example, in ‘Los Angeles,
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California’, the comma helps signal the end of the first LOCATION ‘Los
Angeles’ and the beginning of the next LOCATION ‘California’.

12.1.5 Results

The F-measure score was used to compute the quality of analysis. A
response is considered half correct if both type and attribute are correct
but only one boundary is correct. Also, a response is half-correct if both
boundaries are correct along with the type are correct but not the attribute.

The formalisms or techniques presented in this paper are not new, but
applying an HMM to this task (and the model itself) are novel. By using a
fairly simple probabilistic model, finding names and other numerical entities
can be performed with ‘near-human performance’ (an F-measure of 95 or
above). The system in this paper performs as good, if not better, than
state-of-the-art systems.

12.2 Unsupervised Learning of Field Segmen-

tation Models for Information Extrac-

tion [2]

12.2.1 Overview

Information extraction systems are not generalized tools and hence re-
quire retraining for each different application. This paper looks at unsu-
pervised learning of field segmentation models. The domains of interest are
bibliographic citations and classified advertisements for apartment rentals.

General unconstrained HMMs (using EM) fail to detect useful field struc-
ture in either of the two domains of interest. But with small amounts of prior
knowledge, the learning model can be significantly improved.

The general approach is:

• An HMM is fit to have the same number of hidden states as ‘GOLD
LABELS’????? using EM.

• Hidden state expectations are computed using the Forward-Backward
algorithm.
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• Emission models are initialized to near-uniform probability distribu-
tions with a small amount of added noise to break initial symmetry.

Smoothing techniques were not extensively investigated in this paper.

12.2.2 Diagonal Transition Model

For learning larger-scale patterns, the parametric form of the transition
model is constrained, becoming:

P(st|st1) =

{
σ + 1−σ

|S| if st = st−1
1−σ
|S| otherwise

(12.5)

where |S| is the number of states, and σ is a global free parameter specifying
the probability of a state transitioning to itself. This constraint improves
performance: with 400 unannotated training documents the accuracy jumps
from 48.8% to 70.0% for advertisements and from 49.7% to 66.3% for cita-
tions.

12.2.3 Hierarchical Mixture Emission Model

Each state also emits punctuation and English function words in addition
to content words. When labeling decisions are made on the basis of the
function words rather than the content words, this can become problematic.

A way of making certain words unavailable to the model is to emit those
words from all states with equal probability. This can be accomplished with
the following hierarchical mixture emission model

Ph(w|s) = αPc(w) + (1− α)P(w|s) (12.6)

where Pc is the common word distribution, and α is a new global free pa-
rameter. Before a state emits a token it flips a coin, and with probability α
it allows the common word distribution to generate the token, and the token
is generated with probability (1− α) from its state-specific emission model.

The emission model of Pc was initialized to a list of stopwords without
any reestimation. This improved average accuracy from 70.0% to 70.9%.
The system learned the emission model of Pc using EM reestimation.
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12.2.4 Boundary Model

Another source of error concerns field boundaries. Fields are more or less
correct, but the boundaries are off by a few tokens even when punctuation
or syntax make it clear to a human reader where the exact boundary should
be. The paper models the fact that data fields often end with one of the few
boundary tokens (eg. punctuation and new lines) which are shared across
states.

The transition function for non-final states becomes:

P(s|s−) =


(1− µ)(λ + 1−λ

|S−|), if s = s−

µ(λ + 1−λ
|S−|), if s = s+

1−λ
|S−| , if s ∈ S− \ s−

0, otherwise

(12.7)

where s− ∈ S− is a non-final state, s+ ∈ S+ is a final state, λ is the proba-
bility of staying within the field, and µ is the probability of transitioning to
the final state given we are staying in the field.

The transition function for final states becomes:

P(s|s+) =


σ + 1−σ

|S| if s = s−

1−σ
|S| if s ∈ S− \ s−

0 otherwise

(12.8)

A test using both methods (supplying the boundary token distributions
and learning them with reestimation during EM) was performed on both do-
mains. With the advertisements data, learning the boundary emission model
gives an increase from 70.0% to 70.4%, while specifying the list of allowed
boundary tokens gives an increase to 71.9%. When combined with the given
hierarchical emission model, accuracy rises to 72.7%. This is the best unsu-
pervised result on the advertisements data with 400 training examples. With
the citations data it was found that learning boundary emission model hurts
accuracy, but being given the set of boundary tokens it improves accuracy
from 66.3% to 68.2%.

12.2.5 Results

The bibliographic citations task should intuitively have greater success
than the apartment rental classified ad task, but the results in this paper
show otherwise.
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Baselines Used For Comparison

One baseline is the most-frequent-field accuracy model, which labels all
tokens with the same single label and is then mapped to the most frequent
eld. This gives an accuracy of 46.4% on the advertisements data and 27.9%
on the citations data.

Another baseline method is to presegment the unlabeled data using a
heuristic based on punctuation, and then cluster the resulting segments using
a Naive Bayes mixture model with the EM algorithm. This approach achieves
an accuracy of 62.4% on the advertisements data and 46.5% on the citations
data.

The last baseline trains a supervised first-order HMM from the anno-
tated training data using maximum likelihood estimation. With 100 training
examples, supervised models achieve an accuracy of 74.4% on the advertise-
ments data, and 72.5% on the citations data. With 300 examples, supervised
methods achieve accuracies of 80.4% on the citations data.

In the unconstrained approach, with 400 unannotated training docu-
ments, the accuracy is just 48.8% for the advertisements and 49.7% for the
citations. This is better than the single state baseline but nowhere near as
good as the supervised baseline.

With a semi-supervised approach, adding 5 annotated citations yields
no improvement in performance, but adding 20 annotated citations to 300
unannotated citations boosts performance from 65.2% to 71.3%.

In the two different domains of classified advertisements and bibliographic
citations, constraining the model class allows to restrict the search space of
EM to models of interest. Unsupervised learning methods with 400 docu-
ments yields field segmentation models of a similar quality to those learned
using supervised learning with 50 documents.

12.3 Part-of-Speech Tagging in Context[3]

12.3.1 Overview

The method proposed in this paper tags a word using an HMM tagger
that looks at context on both sides of a word, and is evaluated using both
supervised and unsupervised methods. This paper provides the first compre-
hensive comparison of unsupervised POS tagging methods.
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Ads Citations
Baseline 46.4 27.9

Segment and cluster 62.4 46.5
Supervised 74.4 72.5

Unsupervised (learned trans) 48.8 49.7
Unsupervised (diagonal trans) 70.0 66.3

+ Hierarchical (learned) 70.1 39.1
+ Hierarchical (given) 70.9 62.1
+ Boundary (learned) 70.4 64.3
+ Boundary (given) 71.9 68.2

+ Boundary + Hierarchical (learned) 71.0 -
+ Boundary + Hierarchical (given) 72.7 -

Table 12.1. Summary of results

Common POS taggers are formulated using HMMs, where the states cor-
respond to POS tags (ti) and words (wi) are emitted when a state is visited.
The training of HMM-based taggers involves estimating lexical probabilities,
P(wi|ti), and tag sequence probabilities, P(ti|ti−1, ..., ti−n). Merialdo’s tagger
accounts for the previous two tags, i.e. P(ti|ti−1, ti−2). This paper uses un-
supervised transformation-based learning (UTBL), which looks at both left
and right word contexts, not just the left context as previous HMM taggers
do.

A traditional HMM tagger looks at the previous two tags with the word
probability conditioned on the current tag. This ignores dependencies that
may exist between a word and the POS tags of the words which precede and
follow it. For example, verbs which associate with a particular POS but can
also be tagged as nouns or pronouns (e.g. ‘thinking that’) may benefit from
modeling dependencies on future tags.

The state transition probabilities model was stabilized via:

• contextual probabilities were initialized using trigrams where all words
contained unambiguous tag sequences (all three words of the trigram
contained at most one POS tag)

• transition model probabilities were trained while lexical probabilities
were kept constant and uniform

The corpus used, the Penn Treebank, was split into sections for training,
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Unfiltered Lexicon Optimized Lexicon
Merialdo HMM 71.9 93.9

Contextualized HMM 76.9 94.0
Kupiec HMM 77.1 95.9

UTBL 77.2 95.9
Contextualized HMM with Classes 77.2 95.9

Table 12.2. Unsupervised POS Taggers

Test Accuracy
Baseline 92.19

Standard HMM 95.87
Contextualized HMM 96.59

Table 12.3. Supervised POS Taggers

development, and testing (sections 00 - 18 for training, 19-21 for develop-
ment, and 22-24 for testing). To avoid the problem of unknown words, a
lexicon constructed from tagged versions of the full Treebank was provided.
Estimates of the likelihoods of tags for words were not provided, but only
the knowledge of what tags are possible for each word in the lexicon (i.e.
something that could be obtained from a manually-constructed dictionary).

A certain number of frequently occurring words (e.g. a, to, of) are some-
times labeled with infrequently occurring tags (e.g. SYM, RB). For the
HMM taggers, which begin with uniform estimates of both the state tran-
sition probabilities and the lexical probabilities, the learner finds it difficult
to distinguish between more and less probable tag assignments. Mistagging
during Treebank construction also impacted tagging accuracy. The elimina-
tion of these noisy POS assignments raised accuracy back into the realm of
previously published results.

12.3.2 Results

10,000 unique unambiguous tag sequences were extracted from the train-
ing data for initializing the state transition probabilities. One baseline tagger
used for comparison chooses a word’s most frequent tag. A standard HMM
trigram tagger (which was trained) was implemented as another baseline for
comparison.
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12.4 Building Domain-Specific Taggers with-

out Annotated Domain Data [4]

12.4.1 Overview

When a tagger is developed and trained in one domain (eg. Wall Street
Journal articles) and then used in another domain (eg. medical domain)
without being retrained, performance tends to degrade considerably. This
degradation can be overcome by developing an annotated corpus for the new
domain. But the problem with developing an annotated corpora is that it
can be a very costly endeavor.

A primary cause of degraded performance when porting a tagger is that
vocabulary is specific to the new domain, and hence unseen in the origi-
nal domain. This paper focuses on handling domain-specific vocabulary by
looking at suffix patterns.

Most taggers that use just suffix information require contextual informa-
tion (tags of nearby words) in making their prediction. This requires a word
dictionary for the domain being ported to. The paper’s hypothesis is that
words with similar suffix distribution will have similar POS tag assignments
regardless of the domain. Looking at suffix patterns for predicting POS tags
has been done before, but this paper is the first to apply it to the problem
of domain adaptation. The kNN method [5] to associate words with possi-
ble POS tags in the new domain was used. Prefix information (apart from
hyphenated words) were not incorporated in the study.

The tag assigned depends on context of use, which is computed using a
first-order HMM. Transitional probabilities are computed by using smoothed
WSJ-based probabilities which are adjusted to the new domain by using a
domain-specific text in conjunction with Expectation Maximization (EM)
training. Existence of annotated data is not assumed for the new domain.

The HMM is based on bigram modeling. The transitional probabilities
correspond to P (ti|ti−1) where ti and ti−1 are POS tags. Smoothed initial
bigram probabilities are computed as

P (ti|ti−1) = λPWSJ(ti|ti−1) + (1− λ)PWSJ(ti) (12.9)

where λ = 0.9.
The forward-backward EM algorithm was modified by dampening the

change in transitional and emit probabilities for each iteration. The transi-
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tional probability is computed by

P (ti|ti−1) = λPNEW (ti|ti−1) + (1− λ)POLD(ti|ti−1) (12.10)

where POLD is the transitional probability of previous iteration and PNEW is
the transitional probability of the forward-backward algorithm.

Previous methods achieved better accuracy by restricting the possible
tags associated with words. Eliminating possibilities that rarely appear with
a word reduces the chance that unsupervised training would spiral along an
unlikely path. This paper’s approach considerably reduces the number of
tags to what is appropriate for each word. Further, any tag associated with
low probability is removed by the kNN method (these tags are usually just
noise introduced by some inappropriate exemplar).

The kNN method [5] was applied for handling words unseen in the train-
ing data. The estimated probabilities were used during the tagging process.
Instead of just applying the method for unknown words (words not present
in the training data) the approach of this paper is to create the entire lexicon
in the new domain. But instead of using a supervised tagging model as in
[5], this paper employs unsupervised learning with EM training. Suffix infor-
mation was used to provide initial values, with the EM algorithm adjusting
these initial probabilities to the new domain.

12.4.2 Developing The Lexicon And Assigning Initial
Probabilities

A domain text, Text-Lex, was used to develop the initial lexical proba-
bilities for the HMM. Let a word w appear a sufficient number of times in
Text-Lex (at least 5 times). Text-Lex was searched for related words in order
to assign a feature vector to this word. The features are written as −x + y,
where x and y represent either a suffix or the empty string (empty string
represented as ).

The feature −x + y represents the word formed by replacing some suffix
x in word w by another suffix y (i.e. x is ‘subtracted’, and y is ‘added’ to
the word w’s stem). In the word ‘creation’, ‘-ion+’ corresponds to the stem
word ‘create’ with suffix ‘ion’ removed, and ‘-ion+ion’ corresponds to the
word ‘creation’ itself (‘ion’ is removed and then added back). The feature
‘-ion+ed’ captures information about the word ‘created’, whereas the feature
‘-+s’ corresponds to the word ‘creations’. With a word like ‘history’, it might
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have non-zero values for ‘-y+ic’ (historic) or ‘-+s’ (histories), but it is likely
to set a zero value for ‘-ory+’ (unless ‘hist’ or ‘histe’ is found in Text-Lex).
This zero value represents the fact that although ‘history’ has ‘ory’ as a suffix,
it has no stem. Whether or not there is a stem bears much information for
suffixes like ‘ate’ and ‘ory’.

Suffix classes rather than actual suffixes are used since this provides a
more appropriate level of abstraction. Given a word w with suffix x it is
observed whether removing x from w leads to another word by using a few
basic variations of English morphology. For a word with no suffix from
our list of suffixes, x is taken to be ‘ ’ i.e., empty string. For the suffix
‘ed’, replacing ‘ied’ with ‘y’ relates ‘purified’ with ‘purify’ and recognizes
the spelling alternation of i/y. Thus for the word ‘purify’ the feature ‘-+ed’
represents the presence of ‘purified’ since ‘+ed’ represents the suffix class
rather than the actual suffix. Similarly, removing a suffix is considered and,
if necessary, adding an ‘e’ to see if such a word exists. This allows ‘creation’
to be related with ‘create’, or ‘activate’ with ‘active’. Doubling of a few
consonants is attempted to relate ‘occurrence’ and ‘occur’. When a word
could have two suffixes, the word is considered to always have the longer
functional suffix. Hence, ‘government’ has the ‘ment’ suffix rather than the
‘ent’ suffix.

Two different types of vectors are used for any word: Bin (binary count)
and RFreq (relative frequency). In the Bin vector associated with ‘creation’,
all the four features from the above paragraph will get a value of one (assum-
ing that the four corresponding words are found in Text-Lex). On the other
hand, assuming ‘creatory’ is not found in Text-Lex, ‘-ion+ory’ would get a
zero value. For RFreq vector, instead of ones and zeros, the frequency of
occurrences of each word is normalized so that the sum of all feature values
is one. Thus a word with 4 features having non-zero frequencies of 10, 20,
30 and 40 will have the respective values set to 0.1, 0.2, 0.3 and 0.4. A word
with four features having non-zero frequency, which are 1, 2, 3 and 4, will
also have the same 4 relative frequency values. The intuition is that the Bin
vector helps in determining the set of tags that associate with a word, and
that the RFreq vector supplements this information with the likelihood of
these tags. For example, a value of 1 for the ‘-ing+’ feature in a Bin vector
(thus disqualifying a word like ‘during’) may be sufficient to predict VBG,
JJ and NN tags. However, this may not suffice to provide the ordering of
likelihood among these tags for this word. On the other hand, it seems to
be the case that when the ‘ing’ form appears far more often than the ‘ed’
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form, then the NN tag is most likely. But if the ‘ed’ form is more frequent,
then VBG is most likely. Examples in the WSJ corpus include ‘smoking’,
‘marketing’, ‘indexing’, and ‘restructuring’ for the first kind, and ‘calling’,
‘counting’, ‘advising’, and ‘noting’ for the second kind.

The Bin and RFreq vectors are created for the word w based on the
distribution of words in Text-Lex. Following the same method, the Bin and
RFreq vectors for a word v in the WSJ corpus are created by using the
distributions in the WSJ corpus. BinDist(w,v) can then be computed as the
number of features in which the two Bin vectors differ. RFDist is similarly
defined as a weighted sum of two distances: the first distance is the L1-norm
distance based on feature values for which both words have non-zero values,
and the second distance is based on values of features for which one word
has a zero value and the other does not.

For example, if the two words’ RFreq vectors are < w1, ..., wn > and
< v1, ..., vn > then:

RFsame(w, v) =
∑

wi 6=0∩vi 6=0

|wi − vi| (12.11)

RFdiff(w, v) =
∑

wi=0∩vi 6=0

|wi − vi|+
∑

wi 6=0∩vi=0

|wi − vi| (12.12)

RFDist(w, v) = RFsame(w, v) + δ · RFdiff(w, v) (12.13)

For RFDist(), δ = 2 was used. Given a word w, the 5 nearest neighbors from
the WSJ corpus were found and their average lexical probabilities were used
to obtain the lexical probabilities for w.

Square Root Smoothing

Let w be a word that has suggested tags t1, ..., tn in order of likelihood (t1
is most probable). Let Sqrt-score(ti) =

√
n + 1− i. Now assign probabilities

based on this score (after normalizing) so that the probabilities for the n tags
sum to 1. For example, if a word w has three possible tags, no matter what
the original lexical probabilities were determined to be, if t1 is determined
to be most probable, then P (t1|w) will be 0.418 (

√
n+1−1P3

i=1

√
n+1−i

, where n = 3),

the second most probable tag will be assigned 0.341, etc. The intuition
behind this square root smoothing method is that it may be appropriate for
low frequency words, where empirical probabilities based purely on a kNN
basis may not be entirely appropriate if the new domain is very different.
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The drawback is that when there is sufficient information, it is lost by such
flattening. Also lost is when a tag is significantly more probable for a word.
For example, the word ‘high’ is mostly annotated as JJ in WSJ corpus,
but RB and NN are also possible. Square root smoothing will flatten this
distribution considerably.

12.4.3 Examples

Consider the word ‘broaden’. If it was known that the following words
were also in our lexicon, ‘broadened’, ‘broadening’, ‘broadens’ and ‘broad’,
this would provide support in treating ‘broaden’ as a verb. The presence of
a suffix morpheme suggests a POS tag (or a small set of POS tags) for the
word. Most taggers use this info to predict tags for unknown words during
the tagging process. The presence of the suffix can also indicate possible tags
for the words it attaches to. For example, the morpheme ‘ment’ indicates
‘government’ is likely to be an NN and also ‘govern’ is likely to be a verb.

This information is specific to a language rather than a domain, so an
annotated corpus in another domain is used to provide exemplars. For ex-
ample, ‘phosphorylate’ (in the Biology domain) and ‘create’ (in the WSJ
corpus) are similar in the sense both take on ‘tion’, ‘ed’, and ‘ing’ suffixes
but not ‘ly’. Since the WSJ corpus would provide POS tag information for
‘create’, it is used to support the treatment of ‘phosphorylate’.

12.4.4 Results

Evaluating Construction Of The Lexicon

The paper’s kNN method identifies 96.3% of the word/type pairs from
the GENIA corpus. The paper’s word/token lexicon construction was correct
in 99.0% of the tags.

Evaluation Of The HMM Tagger

The more labelled data one has for training the better. It is a much better
option than having to worry about unsupervised learning.

A 5-fold cross-validation is used on 2000 Medline abstracts (i.e. 5 parti-
tions are formed and experiments conducted 5 times and results averaged).
For each test partition, the remainder partitions are used for ‘training’ (this
is unsupervised since EM is used and POS tag information associated with
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POS Tagger % Accuracy
Paper’s HMM (5-fold) 95.77

MedPost 94.1
PennBioIE 95.1

GENIA supervised 98.26

Table 12.4. POS Taggers

the words is disregarded). The accuracy of the HMM (based on 5-fold cross-
validation experiments) was 95.77%, obtained for the case where the lexical
probabilities were taken directly from kNN using only RFDist and all tags
assigned with probability less than 0.02 were discarded.
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