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8.1 A Second-Order Hidden Markov Model

for Part-of-Speech Tagging

This paper was written by Scott M. Thede and Mary P. Harper. In it, they
describe a new approach for using HMMs in part-of-speech tagging. Using
existing standards for contextual information, they add more detailed lexical
information and tag prediction for unknown words using suffix data. There
are three key components to their model:

1. A standard contextual trigram tagger
P (ti|ti−1, ti−2)

2. A bigram lexical tagger
P (wi|ti, ti−1)

3. An bigram unknown-word
P (si|ti, ti−1)

The notation used for the probability descriptions was somewhat confus-
ing. I believe the descriptions above say the same thing with more standard
notation. The lexical and unknown-word taggers were at first going to be
trigram taggers, but the results were unsatisfactory. Since examining the cur-
rent and previous two tags proved to be detrimental, only the current and
previous one tag were considered in the final results. The Jelinek-Mercer
method of smoothing (Jelinek and Mercer, 1980) was used to help reduce
sparseness in the data The three equations below represent the contextual,
lexical, and unknown data probability distributions.
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k2 =
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log(N3 + 1) + 2

N1 = count(ti), N2 = count(ti−1ti), N3 = count(ti−2ti−1ti)

C0 = count(), C1 = count(ti−1), C2 = count(ti−2ti−1)
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(8.2)

N2 = count(wi|ti−1), N3 = count(wi|ti−2ti−1)

C1 = count(ti−1), C2 = count(ti−2ti−1)

P̂i = f(Ni)ĉi(si) + (1 − f(Nk))P̂i(si − 1) | 1 < k ≤ 4 (8.3)

= ĉ1 | k = 1

The unknown data probability calculations are recursive, with P̂i = ĉ1

providing the base case. (The subscripts have been rewritten to improve
readability.) This method gives more weight to longer and more frequently
appearing suffixes. An alternative smoothing method was proposed that
would use word class information (see Taoukermann and Radev, 1996).

The results indicated an improvement over standard bigram/trigram tag-
gers and over HMMs using only second-order lexical probabilities. The com-
parisons to other researchers was a bit weak, since the alternatives available
for closed lexicon used different training and test data. In spite of this, the
results show a high improvement over alternative training methods.

I would be interested to see if these results hold up in languages other
than English - specifically a language which does not have a high degree
of suffixation. I would also be interested to see if any improvements would
result from a model that doesn’t discriminate based on suffixation only, but
prefixation as well.
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8.2 Tagging English Text with a

Probabilistic Model

This paper was written by Bernard Merialdo. He describes two methods for
measuring the quality of a tagging procedure:

1. At the sentence level, the percentage correctly tagged, evaluated with
Viterbi tagging

2. At the word level, the percentage correctly tagged, evaluated with Max-
imum Likelihood (ML) tagging

It’s useful to note that sentence-level performance will always be lower
than word-level, since the former is dependent on the latter. Merialdo goes
on to describe what he calls a triclass model, commonly known as a trigram
model:

p(W, T ) =

n∏
i=1

p(wi|ti) · p(ti|ti−2ti−1)

Two training methods are described. The first method is relative fre-
quency (RF) training, which uses tagged text to count observations and
generate frequencies for tag sequences and word/tag pairs (supervised).

p(W, T ) =

n∏
i=1

N(wi, ti)

N(ti)
· N(ti−2, ti−1, ti)

N(ti−2, ti−1)

Deleted interpolation (Jelinek-Mercer, 1980) is then applied to smooth
for unseen data. (|V (ti)| is the number of words with tag ti.)

p(W, T ) =

n∏
i=1

(
λ · N(wi, ti)

N(ti)
+

1 − λ

|V (ti)|
)
·
(

λ · N(ti−2, ti−1, ti)

N(ti−2, ti−1)
+

1 − λ

NT

)

The second method is maximum likelihood (ML) training, which does not
require tagged text (unsupervised). Merialdo used the Forward-Backward
algorithm to maximize the probability of the training text, using the same
training data as the relative frequency training, but without looking at the
tags. An RF-trained model was used to initialize the probabilities.
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The results indicated that RF training was quite accurate (95.4%) with
about 2000 training sentences. Using 100 times as much training data yielded
only a 1.6% improvement. ML training improved the RF-trained models
when very few (between 0 and 5000) training sentences were used for the
initial model. It showed its most significant improvements with 0 to 100
sentences used initially. After 3 iterations, it degraded all performance except
in the 0-sentence initial-model case.

Merialdo briefly mentioned the idea of constraining ML training to hinder
accuracy degradation. The tw-constraint keeps the probability of a given
word/tag pair constant if it occurs frequently (i.e. in the top 1000 words).
The t-constraint keeps the probability of a tag constant. Unfortunately,
details on the implementation of this method were not described, other than
to mention its complexity and adverse effect on the overall running time of
the algorithms.

The paper was a good comparison of RF versus ML training. The take-
away message is that there is no data like well-tagged data, so use it as much
as possible. If using ML training, test it on a data set after each iteration to
ensure you are not making your model worse.

8.3 Does Baum-Welch Re-estimation

Help Taggers?

This paper was written by David Elworthy. It yields results that are strik-
ingly consistent with those demonstrated by Bernard Merialdo (1994), who
concluded that the best way to get a high-performance model was to use
as much tagged data as possible, and only use Baum-Welch re-estimation
(using the Forward-Backward algorithm) if the amount of tagged data avail-
able is minimal. He additionally concluded that even when Baum-Welch
re-estimation improves model accuracy, the number of iterations used should
be kept minimal, since multiple iterations tend to degrade the performance
in the long run.

Elworthy had the goal in mind not of refuting Merialdo’s results, but
providing more detailed information as to why he could draw the conclusions
he did. His end results were almost identical. When using HMMs, he recom-
mends using as much tagged text as possible to train the model. If the test
data is similar to the training data, then BW re-estimation should be used
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minimally, if at all. For less robust starting conditions (i.e. limited corpora),
use as much pre-conditioned information as possible, and then use BW re-
estimation minimally. If no training data is available, use BW re-estimation,
but only up to a point where it ceases to be beneficial (i.e. iteration xi shows
no improvement over iteration xi−1). It is important to note that the effec-
tiveness of BW re-estimation even at this point is highly dependent on good
initial lexical (emission) and transition probabilities.

While the information presented by Elworthy is more detailed than that
provided by Merialdo, one has to question its necessity. Very little new
information was presented, and no new conclusions were drawn. In fact,
Elworthy concludes his paper by restating Merialdo’s conclusions. The new
information that Elworthy gives is the classification of models into one of
three categories - initial, early, and classical - based on their responsiveness
to BW re-estimation. Even so, this seems to merely be giving a name to
what Merialdo previously reported.

• Classical - rising accuracy on each iteration

• Initial maximum - highest accuracy at outset, degradation at each it-
eration

• Early maximum - rising accuracy on first few iterations, then degrada-
tion

Classical patterns can be observed with no initial training data. Models
exhibiting early maximum patterns can be observed when their initial prob-
ability distributions were obtained through a supervised learning process on
a relatively small (< 100, 000 sentences) amount of training data. Initial
maximum patterns can be seen for models attained in much the same way,
but with a larger amount of training data.
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