
CMPT 825: Natural Language Processing Spring 2008

Lecture 10 — March 28 - April 7, 2008

Lecturer: Anoop Sarkar Scribe: Louisa Harutyunyan

10.1 An Introduction to Conditional Random

Fields

This section is based [1].
Up until now in the course we have looked at log-linear models. We were

interested in finding the probability given by

P (y|x) =
exp

{

∑k
k=1 λkfk(x, y)

}

∑

y’ exp
{

∑k
k=1 λkfk(x, y′)

} . (10.1)

Now, we would like to know what happens when y itself is a sequence?
(i.e want P (y|x)). Traditionally, graphical models were used to represent
the joint probability P (y, x). This however, can lead to difficulties. In the
presence of rich local features in the relational data the distribution P (x)
needs to be modelled, which can include complex dependencies. A solution
to this is to directly model the conditional distribution P (y|x). This is the
approach taken by conditional random fields (CRF). A CRF is a conditional
distribution P (y|x) with an associated graphical structure.

10.1.1 Graphical Models

Consider a probability distribution over the two sets of random variables X

and Y . X is the set of input variables and Y is the set of output variables
that we wish to predict. Every variable from these sets takes outcomes from
their respective sets in a discrete manner. An assignment to X is denoted
by x (i.e. X = x) and an assignment for a set A ⊂ X is denoted by xA.
The same is done for the set Y . For the assignments X1 = x1, X2 = x2, the
respective subset A and xa are given by A = {X1, X2} and xA = 〈x1, x2〉.
We define an indicator function of x by δ(x, x′). δ(x, x′) takes the following
values:

10-1



CMPT 825 Lecture 10 — March 28 - April 7, 2008 Spring 2008

δ(x, x′) =

{

1 if x = x′

0 otherwise.

Undirected Graphical Model

A graphical model is a family of probability distributions that factorize ac-
cording to an underlying graph. For a collection of the defined subsets A, an
undirected graphical model is defined as the set of all distributions that can
be written as

P (x, y) =
1

Z

∏

A

ΨA(xA, yA). (10.2)

(x, y) variables are decomposed according to a grouping that is local. To
represent the distribution over a large number of variables, the product of
these local decompositions are used.

yA

yB

xC

Figure 10.1. xC is the observed data. Everything in yA is independent of yB given xC

.

Recall that until now we have been looking at directed models such as
HMMs. With undirected graphical models we can model things similar to
what is shown in Figure 10.1. It can be seen in Figure 10.1 that yA ⊥ yB|xC

(i.e. yA is connected to yB through xC). yA ⊥ yB|xC is easily defined in an
undirected graphical model. However, it is much more difficult to do so in a
directed model. Note that undirected graphical models are not conditional
while HMMs (i.e. directed models) are.

A model is a family of distributions (i.e. any distribution that can be
written as Equation 10.2). A particular single member of this family is
referred to as a random field. Let V = X ∪ Y . Equation 10.2 is defined for
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any choice of factors F = {Ψ}, where ΨA : V n → R
+. Factors are used to

make the structures simpler.

(a) (b)

x

yy

x

Figure 10.2. (a) Naive Bayes classifier as a directed model; (b) factor graph.

The constant Z from Equation 10.2 is a normalization factor defined as

Z =
∑

x, y

∏

A

ΨA(xA, yA). (10.3)

It ensures that the distribution sums to one. Z is a function of the set F

of factors. Graphically, the factorization of Equation 10.2 is represented
by a factor graph. A variable node vs ∈ V is connected to a factor node
ΨA ∈ F if vs is an argument to ΨA. An example of a factor graph is given
in Figure 10.2(b). The circles represent variable nodes and boxes represent
factor nodes.

To see the relationship between the above mentioned model and the log-
linear model, assume that each local function ΨA(xA, yA) has the following
form

ΨA(xA, yA) = exp

{

∑

k

θAkfAk(xA, yA)

}

, (10.4)

for some real-valued parameter vector θA and for some set of feature functions
{fAk} defined over xA, yA. Taking the log on the left of Equation 10.4 will
yield a log-linear model on the right.

Directed Graphical Models

A directed graphical model is based on a directed graph G = (V,E). It is
sometimes called Bayesian network. A directed model is a family of distri-
butions that can be written as:
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P (y|x) =
∏

v∈V

P (v|π(v)), (10.5)

where π(v) are the parents of v in G. An example of Bayesian network can
be seen in Figure 10.2(a), where each of the nodes of x is a condition on its
parent y. Graphical models where outputs topologically precede the inputs
(i.e. no x ∈ X can be a parent of an output y ∈ Y ) are referred to generative

models.
It can be seen that the directed graphical model is similar to the naive

Bayes model. Naive Bayes model is based on the joint probability that takes
the following form:

P (y|x) = p(y)
K
∏

k=1

p(xk|y). (10.6)

This model can be written as a factor graph by defining a factor Ψ(y) = p(y)
and a factor ΨA(y, xk) for each feature xk. Both the directed model and the
factor graph are shown in Figure 10.2.

By looking at Equation 10.6 in a slightly different way yields another
graphical model known as logistic regression. This model is motivated by
the assumption that the log probability, log(y|x), of each class is a linear
function of x. This model is given by the following conditional distribution

P (y|x) =
1

Z(x)
exp

{

λy +
k

∑

j=1

λy,jxj

}

, (10.7)

where Z(x) =
∑

y exp{λy +
∑k

j=1 λy,jxj} is a normalizing constant and λy is
a bias weight that acts like log p(y) in Naive Bayes. Equation 10.7 uses one
vector per class. To have a single set of weights shared among all classes a
set of feature functions are defined the following way:

fy′,j(y, x) = δ(y, y′)xj for the feature weights
fy′(y, x) = δ(y, y′) for the bias weights

where δ(x, x′) is given by

δ(x, x′) =

{

1 if y = y′

0 otherwise.
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Now, instead of fy′,j we can write fk to index each feature function fy′,j.
Similarly, we can use λk to index its corresponding weight λy′,j. The logistic
regression now becomes

P (y|x) =
1

Z(x)
exp

{

K
∑

k=1

λkfk(y, x)

}

. (10.8)

From Equation 10.7 we see that

λy → log p(y)
λy,j → log p(xj|y).

The notation switches from 2-dimensions into 1-dimension.
It is noteworthy to mention that there is an important difference between

naive Bayes model and logistic regression. Naive Bayes model is generative
(i.e. based on the model of joint distribution P (y, x)). Logistic regression is
discriminative (i.e. based on a model of the conditional distribution P (y|x)).
We can define P (y, x) in a similar fashion as we did in obtaining Equation
10.8. The result is

P (y, x) =
exp

{

∑K
k=1 λkfk(x, y)

}

∑

x,y exp
{

∑K
k=1 λkfk(x, y)

} . (10.9)

From the generative interpretation of Equation 10.9 Naive Bayes model de-
fines the same family of distributions as the logistic regression model. Naive
Bayes model and logistic regression are called a generative-discriminative

pair. The argmax(y) in 10.8 will give the same answer as the argmax(y, x).
We can take a generative model and convert it to a discriminative model.

Suppose we have a generative model P with parameters θ. Using Bayes
rule it is in the following form

P (y, x; θ) = P (x; θ)P (y|x; θ), (10.10)

where P (x; θ) =
∑

y P (y, x; θ) and P (y|x; θ) = P (y,x;θ)
P (x;θ)

. Now, compare this
generative model with a discriminative model over the same family of joint
distributions. To do this, we need to define a prior, which could have arisen
from P with some parameter setting θ′ and combine it with the conditional
distribution that could have also arisen from P . This will result in the
following distribution
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P (y, x, θ) = P (x; θ′)P (y|x; θ). (10.11)

When we compare Equation 10.10 and Equation 10.11 we can see that the
discriminative model has more freedom since it does not require that θ′ =
θ. The reason for this is the parameters θ in Equation 10.10 are used for
the input distribution and the conditional, a good set of parameters must
represent both well. The Equations 10.10 and 10.11 are the same, however,
the assumptions for each are different.

10.1.2 From HMMs to CRFs

In the previous section the relationship between naive Bayes model and lo-
gistic regression was discussed. This relationship is similar to that of HMMs
and CRFs. Consider the conditional distribution P (y|x) that follows from
the joint distribution P (y, x) of an HMM given in Equation 10.12

P (y, x) =
T

∏

t=1

P (yt|yt−1)P (xt|yt). (10.12)

We rewrite Equation 10.12 as

P (y, x) =
1

Z
exp

{

∑

t

∑

i, j

λijδ(yt = i)δ(yt−1 = j) +
∑

t

∑

i

∑

o

µoiδ(yt = i)δ(xt = o)

}

,

(10.13)
where θ = {λij, µoi} are the parameters of the distribution. Every HMM
can be written in this form by setting λij = logP (yt = i|yt−1 = j) and
µoi = logP (xt = o|yt = i).

Equation 10.13 can be written more compactly by introducing the concept
of feature functions. Recall that this same trick was used to obtain Equation
10.8. The feature functions are given by

fk(yt, yt−1, xt) =

{

fij(y, y′, x) = δ(y = i)δ(y′ = j) for each transition (i, j)
fio(y, y′, x) = δ(y = i)δ(x = o) for each state-observation pair (i, o).

Equation 10.13 can now be written as
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P (y, x) =
1

Z
exp

{

K
∑

k=1

λkfk(yt, yt−1, xt)

}

, (10.14)

where Z sums over x, y. Equation 10.14 defines the same family of distri-
butions as that given in Equation 10.13 and therefore, as the original HMM
given in Equation 10.12. Equation 10.14 makes sense only if we have an
underlying graph. The underlying graph is similar to that of shown in Fig-
ure 10.3(b). The graph is decomposed into simple parts that the feature
functions in Equation 10.14 go through.

y

xx

y

(a) (b)

xt

yt-1 yt

Figure 10.3. (a) Representation of an HMM; (b) representation of a CRF.

The conditional distribution P (y|x) that results from Equation 10.14 is

P (y|x) =
1

Z(x)
exp

{

K
∑

k=1

λkfk(yt, yt−1, xt)

}

, (10.15)

where Z(x) =
∑

y exp
{

∑K
k=1 λkfk(yt, yt−1, xt)

}

(i.e. Z(x) sums over all pos-

sible y for a given x). Equation 10.15 is a CRF, the discriminative equivalent
to an HMM. Instead of representing xt as one symbol we can represent it as
a vector: xt = 〈x

(1)
t , x

(2)
t , . . . , x

(n)
t 〉. The size of xt is the number of features

that we have.
The graphical representation and relationship of all the models discussed

thus far are shown in Figure 10.4.

10.1.3 Parameter Estimation

This section discusses how to estimate the parameters λ of a CRF. Parameter
estimation is performed by penalized maximum likelihood. For a conditional
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General  CRFs

y

x

Figure 10.4. Diagraph of the relationship between naive Bayes, logistic regression,
HMMs, CRFs, generative models and general CRFs

.

distribution and training data consisting of x, a sequence of inputs, and y, a
sequence of desired predictions, the following log likelihood is used

L(λ) =
M

∑

i=1

logP (y|x). (10.16)

After substituting the CRF model into the likelihood, we obtain the following
expression

L(λ) =
M

∑

i=1

λ f(yt, yt−1, xt) −
M

∑

i=1

logz − f(λ). (10.17)

Over large number of parameters to avoid overfitting, regularization is used
to assign penalty on weight vectors whose norm is too large. Regularization
in Equation 10.17 is given by the last term f(λ).
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10.1.4 Data Classification

This section discusses how to classify given datasets. Given two separate
sets of input x1 and x2, as shown in Figure 10.5, we would like to find a
discriminative boundary between the datasets. In Figure 10.5, the wanted
discriminative boundary separating one class from the other is given by the
line f .

x

x

x

x

x

x

x

x

x1

x2
f

b i

w

mean

mean

Figure 10.5. Classification of
datasets. f is the boundary be-
tween the two sets.

x

x

x

x

x

x

x

x

x1

x2
f

ji

Figure 10.6. Classification of
datasets with maximized mini-
mum error measure γi.

We define f as f : x ⊆ R
n → R

n. Assume that f is linear ⇒

f(x) = w x + b =
d

∑

i=1

wixi + b.

We need to find f and use it to make a decision on the discriminative bound-
ary between the datasets. How to use f to make a decision is defined by

h(x) = sign(f(x)).

We define an error measure for the best fitting line. This error measure is
given by

γi = yi(w xi + b), (10.18)

where yi ∈ {1,−1}. We would like γi > 0 ∀i. For a positive value of γ

determines how right the line classifies the data. However, if we are confident
in the choice of f and make a mistake, the penalty in such cases is much
higher. We can get many lines such that γi > 0. Out of all these lines we

10-9



CMPT 825 Lecture 10 — March 28 - April 7, 2008 Spring 2008

find a line such the minimum γ line is maximized (i.e. the minimum value of
γ is the maximum it can be. Refer to Figure 10.6). Based on this maximized
margin we can give a bound on the classification of unseen data. The larger
the margin, better it does on unseen data.

10.2 Maximum Entropy Model for Part-of-

Speech Tagging

This section is based on [2].
The paper introduces a statistical model, which trains a corpus annotated

with POS tags. The tags are assigned to previously unseen text. The POS
tags are predicted by simultaneously using many contextual features. This
model can be classified as a Maximum Entropy model. The given model as
opposed to the CRF model is given as follows

P (yt|x) =
exp {

∑

k λkfk(〈x, yt−2, yt−1〉)}
∑

y
t

exp {
∑

k λkfk(x, yt)}
=

1

Z
λo

∏

k

αkfk(h, yk) (10.19)

where h = history = 〈x, yt−2, yt−1〉. So for a sequence of words and tags as
training data, hi is the history available to predict each tag i. The features
used for this model are given in Table 10.1.

The features generated for tagging unknown words rely on the distribution
that rare words in the training set are similar to unknown words in the test
data, in terms of how their spellings help predict their tags. Words are
considered to be rare if they occur less than 5 times in the training set. The
rare word features in Table 10.1, which look at word spellings, apply to rare

words, as well as unknown words in the test data. Each of the features of
Table 10.1 is connected to a tag.

Experiments use 40K sentences in the training data set with no unknown
words. About 5.5K sentences were used for the Test data set with about
3.5K unknown words. The model performs at 96.43% on the Development
Set. The current best known accuracy is 97.3%. This is an improvement
because the model used is exactly the same except the next and previous
tags are included.
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Condition Features

wi is not rare wi = X

wi is rare X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4
wi contains number
wi contains uppercase character
wi contains hyphen

∀wi ti−1 = X

ti−2ti−1 = XY

wi−1 = X

wi−2 = X

wi+1 = X

wi+2 = X

Table 10.1. Features on the current history hi.

10.3 Maximum Entropy Markov Models

This section is based on [3].
This paper presents a new Markovian sequence model. The model allows

observations to be represented as arbitrary overlapping features, such as word
capitalization, formatting, part-of-speech. It defines the conditional proba-
bility of state sequences given observation sequences. To do this a maximum
entropy framework is used to fit a set of exponential models that represent
the probability of a state given an observation and the previous state.

Previous models have two problems. Frist, they do not have a richer
representation of observations in terms of overlapping features. Second, the
HMM parameters are set to maximize the likelihood of the observation se-
quence. However, in most cases we would like to predict the state sequence
given the observation sequence. The traditional approach uses a generative
joint model to solve a conditional problem where the observations are given.

The introduced Markovian sequence model, called maximum entropy Markov

model (MEMM) replaces the transition and observations functions with a sin-
gle function to provide the probability of current state given a pervious state
and a current observation, denoted by P (yt|yt−1, xt). For M states in the
model, construct a probability Pyt−1

(yt|xt) for each state given the current
input. This gives rise to the following expression
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Pyt−1
(yt = i|xt = o) =

1

Z(yt)
exp

{

∑

k

λkfk(yt, xt)

}

. (10.20)

Experiments are done on extracting the question-answer pairs in lists
of frequently asked question (FAQs). Collection of 38 files are used. All
documents in the collection have the same structure. Each contain a header,
question/answer pairs, and a tail. Header may include things such as table
of contents and tails are generally includes items such as copyright notices
and acknowledgments. For this experiment, 24 Boolean features of lines are
defined shown in Table 10.2.

begins-with-number contains-question-mark
begins-with-ordinal contains-question-word
begins-with-punctuation ends-with-question-mark
begins-with-question-word first-alpha-is-capitalized
begins-with-subject indented
blank indented-1-to-4
contains-alphanum indented-5-to-10
contains-bracketed-number more-than-one-third-space
contains-http only-punctuation
contains-non-space prev-is-blank
contains-number prev-begins-with-ordinal
contains-pipe shorter-than-30

Table 10.2. Line-based features used in experiments.

The statistical dependencies between features was not controlled in these
experiments. There are some features that are mutually disjoint. Note that
the usefulness of particular feature, such as indented, depends on the for-
matting of a particular FAQ. Each group of documents that belong to the
same FAQ are treated as a separate dataset. In a given group, the model
is trained on one document and tested on the remaining documents in the
group.

By the training the model on one document and testing it on the remain-
ing documents in the group gives rise to the label bias problem. Take the
example in Figure 10.7 where all paths go through yt−1. The route taken
will go through the state IN since it has the highest probability based on
the trained data for the word that. However, this in many cases may not be
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yt-1

DT

IN

that

that
0.98

0.0001

0.7

Figure 10.7. Model MEMM inaccuracy for the word that.

accurate, since in many cases the probability that the word that would be
tagged with DT is higher. This model makes a choice for a transition based
on the expense of the accuracy of a given sentence. It is defined by state and
forces the model to be very confident when it shouldn’t be.

10.4 Perceptron Algorithms

This section is based on [4].
This section discusses parameter estimation algorithms, alternatives to

CRFs. These algorithms are based on the Perceptron algorithm. The Per-
ceptron algorithm is an online algorithm looking for a classifier which essen-
tially learns a line. The line is given by f(x) = w x + b where w ∈ R

d. Each
input example is split into these d features. The Perceptron algorithm is
given in Algorithm 1 where η is the learning rate.

Theorem 10.1. (Novikoff) Z is a separable non-trivial training set. Suppose
there exists wopt such that ‖wopt‖ = 1 and yi(wopt xi +bopt) ≥ γ for 1 ≤ i ≤ l.

Then the number of mistakes made by Algorithm 1 is
(

2R
γ

)2

.

Recall γ from Data Classification. The bigger γ is, the larger is the margin
that separates the data. For a large γ the number of mistakes decreases.
Mistakes are dependent on the distance between the vectors as seen in Figure
10.6. A strong assumption made in Theorem 10.1 is yi(wopt xi + bopt) ≥ γ

(i.e. the number of mistakes is related to the distance of the margin) and

‖wopt‖ = 1 helps show that
(

2R
γ

)2

is true.
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Algorithm 1 Perceptron Algorithm

Initialize: wo; bo; k = 0
Initialize: R = max1≤i≤l‖xi‖
while no mistakes do

for all i = 1 . . . l do

if yi(wk xi + bk) ≤ 0 then

wk+1 = wk + η yi xi

bk+1 = bk + η yi R2

k = k + 1
end if

end for

end while

We could have a case where the given data is not clean (i.e. not separable).
In such a case, for example, when the data is not separable in 2-dimensions,
we map it to a higher dimension. The reason for doing this is that the data
may become separable in a higher dimension.

The approach taken here is different. In the case of inseparable data we
define the notion of Slack Variables given in Algorithm 2. The same proof
that Novikoff gave for perceptron can be extended to that of slack variables.
For the inseparable case we have the following theorem

Theorem 10.2. (Freund & Schapice) Define D =
√

∑

l

i=1 ξ2
i . Then the

amount by which the training data fails to meet the margin γ is at most
(

2(R+D)
γ

)2

.

Recall for the separable case from Theorem 10.1 this upper bound was
(

2R
γ

)2

.

As mentioned above Perceptron algorithm learns a line given by F (x) =
sign(w x+ b). This is known as the primal learning of w directly. We obtain
the dual of this by substituting into F (x) w =

∑l
i=1 αiyixi. αi are the local

weights for each example and are called the Dual variables. The examples
of importance are those with αi > 0. We would like to extend this so the
output is a sequence. So F (x) becomes

F (x) = argmaxy∈GEN(x)Φ(x, y)w. (10.21)
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Algorithm 2 Slack Variables
margin γ > 0
margin slack ξ

for do

each example (xi, yi)
if ξi > γ xi then

xi is misclassified by (w, b)
end if

ξ ((xi, yi), (w, b), γ) = max(0, γ − yi(w xi + b))
end for

Φ(x, y) represents a feature over combination of input and output. GEN (x)
takes x and gives a set of candidate y’s. A variation of Viterbi could be used
for this. Here, we do not limit to local features but expand to global features.
Global features are defined as the sum of local features. Functions of local
representation are given by

Φs(w, t) =
n

∑

i=1

Φs(hi, ti), (10.22)

where hi = 〈ti−1, ti−2, w, i〉. The training algorithm for the training data
(x, y) . . . (xm, ym) is given by Algorithm 3.

Algorithm 3 Training Algorithm

for t = 1 . . . T do

for i = 1 . . . m do

y′
i = F (xi)

if yi 6= y′
i then

w = w + Φ(xi, yi) − Φ(xi, y′
i)

end if

end for

end for

Taking the perceptron algorithm given in Algorithm 1 and replacing the
inner loop with

if yi(wk xi + bk) > 0 then

ck+ = 1
else
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ck+1 = 1
will keep all of the weight vectors as well as how good the weight vectors
are. This modification to the perceptron algorithm is known as the Voted
Perceptron. The original perceptron algorithm only kept the last weight
vector. So, instead of making a prediction like F (x), it makes one like
∑k

i=1 ci((wi x) + bi). However, this has a drawback. It is expensive to
implement in terms of memory. In practice, the average perceptron is
used instead.
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