
CMPT 825: Natural Language Processing Spring 2008

Lecture 1 — Jan 23, 2008

Lecturer: Anoop Sarkar Scribe: Ajeet Grewal

1.1 Markov Processes

Consider a set of states S1, S2, . . . SN . A discrete Markov process is one in
which the system is in a particular state at any given time. The state can
be changed only at discrete intervals of time. We denote the time instants
associated with state changes with as t = 1, 2, . . . and we denote the actual
state at time t as qt. The current state in an n-order Markov process is
assumed to depend on the previous n states. In particular, in a first order
Markov process

P (qt = Sj|qt−1 = Si, qt−2 = Sk, . . .) = P (qt = Sj|qt−1 = Si)

This is called the Markov Assumption. In addition, we also make the
Stationary Distribution Assumption. This means that the transition proba-
bilities don’t change over time.

P (Xt = Sj|Xt−1 = Si) = P (Xt+l = Sj|Xt+l−1 = Si)

1.2 Hidden Markov Models

Usually, we have a sequence of observations O = (O1, O2, . . . OT ) and we want
to build a model that best describes this sequence. In this case, we don’t
know what the states are at each time instant. These are called Hidden
Markov Models (HMMs) because the states are hidden.

An HMM is defined by the following,

1. The number of states N

2. The number of observation symbols per state M .
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3. The state transition probability distribution A = aij where

aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N

4. The observation probability distribution at state j B = bj(k) where

bj(k) = P (vk at t |qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M

5. The initial state probability distribution π = πi where

πi = P (q1 = Si), 1 ≤ i ≤ N

Thus an HMM can be defined by the triplet λ = (A, B, π).
An example that was discussed in class was the urn and ball model shown

in figure 1.1. Each urn corresponds to a state in the HMM. In addition an
urn can contain any of M different coloured balls (the observation alpha-
bet). Based on some random initial distribution, we pick the initial urn.
After selecting a ball and replacing it, we choose the next urn based on the
distribution associated with the current urn. Thus we get a finite observation
sequence of colours, which can be modelled as that of an HMM.

We can understand more about HMMs by assuming that the above pro-
cess generated the observation sequence, and we want to build an HMM to
model it. Note that we don’t know the number of urns, or the transition and
emission probabilities. These will be learned from the observation sequence.
Suppose that each urn contains exactly the same number of balls of differ-
ent colours, i.e. bi(1) = bi(2) = . . . = bi(M). It is clear that at any point
in the observation sequence, we are unable to determine which state we are
in. In fact, we can model this sequence by an HMM that contains only one
state with equal emission probabilities for all observation symbols. Thus we
note that there can be more than one correct model for a given observation
sequence. In fact, the above case is very similar to parameter tying which
will be discussed in sections 1.4 and 1.5.3.

1.3 Basic Problems in HMMs

1.3.1 HMM as Language Model

Problem Statement : Given an observation sequence O = O1, O2, . . . , OT and
a model λ = (A, B, π) compute P (O|λ).
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Figure 1.1. An N-state urn and ball model which illustrates the working of an HMM

The solution to this problem is a special case of the solution to the third
problem (using the Forward-Backward algorithm) which is covered in Sub-
section 1.3.3. Here we don’t need the backward step and just compute the
forward α terms and we get

P (O|λ) =
N∑

i=1

αT (i)

1.3.2 HMM as a parser

Problem Statement : Given an observation sequence O = O1, O2, . . . , OT and
a model λ = (A, B, π), compute the “best” sequence of states that explains
O.

The solution to this problem is the Viterbi algorithm. It is useful to
think of a trellis structure as shown in the figure 1.2. Each column of states
represents a particular time step. In the figure, an HMM is shown which has
two states q and r. The idea of the Viterbi algorithm is to store the best
path upto each state. Call this best path δt(i) (the best path cost at time
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Figure 1.2. Trellis

step t and ending in state Si). We can define this recursively as follows

δt+1(i) = [max
i

δt(i)aij] · bj(Ot+1)

Thus we can efficiently compute the best path upto each state. To get
the actual sequence of states we backtrack along the best path to get the
sequence of states that were chosen.

1.3.3 HMM as a learner

Problem Statement : Given an observation sequence O = O1, O2, . . . , OT ,
optimize the model λ = (A, B, π) to maximize P (O|λ).

This is the hardest problem among the three. There is no known way to
analytically solve for the model such that P (O|λ) is maximized. We do not
have a simple way of estimating the model parameters λ = (A, B, π). We can
however, arrive at a local maximum of P (O|λ) given the model parameters.
To do this, we use the Forward-Backward algorithm named because of the
use of the forward and backward variables (These can be viewed as using a
different semi-ring than that in the Viterbi algorithm).

• The forward variable αt(i) stores the probability of the partial observa-
tion sequence upto time t and the state Si at time t, given the model i.e.
P (O1, O2, . . . , Ot, qt = Si|λ). The initial values can be obtained from
the initial distribution probabilities π. α can be defined recursively as,

αt+1(j) = [
N∑

i=1

αt(i)aij]bj(Ot+1)
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Figure 1.3. Forward-Backward algorithm

• The backward variable βt(i) is defined analogously as the probability
of the partial observation sequence after time t, given that the state at
time t was Si and given the model. βT (i) is assumed to be 1. It can
again be defined recursively as,

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j)

The reestimation procedure considers the probability of the link shown
in the figure 1.3, i.e ξt(i, j) = P (qt = Si, qt+1 = Si+1|O, λ). This can be
rewritten in terms of the forward and backward variables.

The reestimation formulas for π, A and B can be computed using the
above variables, by counting the expected frequency of occurrence of that
event. For details please refer to the Rabiner paper [1].

1.4 Types of HMMs

HMMs can vary depending on their structure.

• Ergodic HMMs: These are HMMs in which each state can be reached
from any other in a finite number of steps.
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Figure 1.4. Left to right HMM

• Left-to-right HMMs: These are ones like those shown in figure 1.4,
where once a state is changed, the previous state cannot be reached.

• HMMs in which observations are associated with the transitions, rather
than the states. Of particular importance in these is the null-transition
which is a state transition without consuming an observation symbol.

Many modifications could be made to different parts of an HMM. Some
of them are listed below

• Continuous Observation Densities: Here instead of having a discrete
set of observations symbols, we have a continuous distribution.

• Tied Parameters: Sometimes the number of parameters in the HMM
becomes prohibitively large. In such cases, we can reduce the number
of parameters of the system by “tying” some parameters together. The
choice of parameters to tie depends on the domain. An example that
was discussed in class is the case of part of speech tags. Sometimes the
number of tags is large and there is insufficient data to train the model.
There would be certain tags or tag sequences that would not be seen
in the data. In this case, we can tie the observation probabilities of all
the unseen tag sequences as one parameter.

• Explicit State Duration Density: The inherent duration density in the
above models is exponential. The example discussed in class (and in the
Rabiner paper [1]) is the one where we want to determine the expected
number of days the weather doesn’t change given some probability
distribution. Sometimes this is undesirable and we would like to have
an explicit duration density. This causes modifications in the forward
and backward variables and is discussed in the paper [1]. Usually having
explicit duration densities causes a large increase in processing time.
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• Different Optimization Criterion: Instead of the maximum likelihood
reestimation procedure described above, one can train discriminative
HMM models which are a group of models such that the “Mutual In-
formation” is maximized or the “Discrimination Information” is mini-
mized.

1.5 Implementation Issues

1.5.1 Scaling

The forward and backward variables are a product of a number of transition
and emission probabilities. Given a large enough HMM, it is possible that
some of these values underflow and impact the algorithms described above.
To overcome this, at each time step we scale the forward and backward
variables by the scaling coefficient

ct =
1∑N

i=1 αt(i)

It is to be noted that even the backward variables are scaled by this factor.
This is done so that in the reestimation equations, the scaling terms cancel
out and we get the exact answer. Also, it should be mentioned that the
above procedure is not required for the Viterbi algorithm, as we can take the
log scale probabilities and just sum them up to get the best path. This will
avoid any underflow problems.

1.5.2 Multiple Observation Sequences

Sometimes we train the model based on multiple observation sequences in-
stead of a single one as described above. Again, an example for this would
be the part of speech tagging task, where each sentence is considered as a
new observation sequence. The algorithms described above change based on
the fact that we now need to optimize P (O|λ), where O is the vector of
observation sequences.

1.5.3 Insufficient Data

As discussed in Section 1.4, sometimes the model is too large to be modelled
accurately by the given data. In this case, we tie some of the parameters of
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the initial model λ to get a new reduced model λ′. Our final model can be a
weighted combination of the two,

λf = ελ + (1 − ε)λ′

Here ε is the weighting coefficient which is closer to 1 if there is a large
amount of data and closer to 0 if the data is insufficient. To find out the value
of epsilon, we can again use a variant HMM model (where the transitions
correspond to observations and null-transitions are possible) and train this on
a held-out subset of the data. This technique is called deleted interpolation.
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