CMPT 825
Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/13/08

Sequence Learning

e British Left Waffles on Falkland Islands
—(N,N,V,P,N,N)
— (N, V,N,P,N,N)

e Segmentation FE+EAHEFHETEFERARTE
—(b,1,b,1,b,b,1,b,1,b,1,b,1,b,1, b, 1, b, 1)
TE W 4 BB FE OET 25 RE AR BE

China 's 14 open border cities marked economic achievements

1/13/08

Sequence Learning

British Left Waffles on Falkland Islands

3 states: N, V, P
Observation sequence: (0, ... o)
State sequence (6+1): (Start, N, N, V, P, N, N)

1/13/08

Finite State Machines

Mealy Machine

1/13/08

Finite State Machines

transition

emission

Moore Machine

1/13/08

Probabilistic FSMs

e Each transition is associated with a
transition probability

e Each emission is associated with an
emission probability
e Two conditions:

— All outgoing transition arcs from a state must
sum to 1

— All emission arcs from a state must sum to 1

1/13/08

Probabilistic FSMs

P(sis1 | si)

0.4 0.6 0.1 09

S P(emit(q,x)) = P(emit(g,a)) + P(emit(q,b)) = 1.0 :

1/12

Probabilistic FSMs

a/0.08

1/13/08 8

Hidden Markov Models

There are n states s, ..., s, ..., §

[N

The emissions are observed (input data)

Observation sequence O=(o,, ..., 0, ..., 07)

The states are not directly observed (hidden)

Data does not directly tell us which state X,
1s linked with observation o,

X[6 {S],.. .,S,,}

1/13/08 9

Properties of HMMs

e Markov assumption
P(X, =S; | cos aXt—l = S'/)
 Stationary distribution

P(X,=si| Xi-1 = Sj) =PXy1=5i| Xosi1 = Sj)

1/13/08 10

HMM Algorithms

e HMM as language model: compute
probability of given observation sequence

e HMM as parser: compute the best sequence
of states for a given observation sequence

e HMM as learner: given a set of observation
sequences, learn its distribution, i.e. learn
the transition and emission probabilities

1/13/08 11

HMM Algorithms

e HMM as language model: compute
probability of given observation sequence

e Compute P(0,, ..., o) from the probability
P(X,, ... Xz, 04 ..., 07)
= [P(Xis1=15; | Xo = 8;) x Ploy =k | Xp41 = s)
t=1

P(ij"v OT) = Z P(Xla"'aXT-f—laola"'aOT)

1/13/08 12

HMM Algorithms

e HMM as parser: compute the best sequence
of states for a given observation sequence

e Compute best path X, ..., X, , from the
probability P(X,, ..., Xy, 04, .., OF)

Best state sequence X, ..., X 7,

= argmax P(Xi,...,Xr+1,01,...,07)
Xl,...,X'[,.,l

1/13/08 13

Best Path (Viterbi) Algorithm

t=1 =2 =3 t=4 t=5

Trellis

e Key Idea 1: storing just the best path doesn’t work
e Key Idea 2: store the best path upto each state

1/13/08 14

Viterbi Algorithm

function viterbi (edges, input, obs): returns best path

edges = transition probability

input = emission probability

T = length of obs, the observation sequence

num-states = number of states in the HMM

Create a path-matrix: viterbi[num-states+1, T+1] # init to all Os

for each state s: viterbi[s, 0] = mt[s]

for each time step t from O to T:

for each state s from O to num-states:
for each s’ where edges[s,s’] is a transition probability:
new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
viterbi[s’, t+1] = new-score

back-pointer[s’,t+1] = s
1/13/08 15

Viterbi Algorithm

finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
if (viterbi[s,T+1] > best-final-score):
best-final-state = s
best-final-score = viterbi[s,T+1]
start with the last state in the sequence
X = best-final-state
state-sequence.push(x)
for t from T+1 downto O:
state-sequence.push(back-pointer[x,t])
x = back-pointer[x,t]
return state-sequence

1/13/08 16

Forward-Backward Algorithm

Algorithm that finds the transition and emission
probabilities using training data that does not have
hidden states provided

Set the probabilities (for all parameters in the
HMM) so that the training data T is assigned
highest P(T) value (or lowest H(T), entropy value)

This is called the maximum likelihood value over
all possible hidden state sequences for the training
data

Exploits the fact that some transitions and
resulting observations will occur more frequently

"Sthan others in the training data 17

Forward-backward Algorithm

Consider input 0,,..., 0,,..., o where each o, is from
a set of symbols V = {1,..k,..K}

Let mt; be the probability of state i being a start state
(for simplicity, m; is not discussed further)

Let a; ; be the transition probability:
P(Xyy1 =5; | X, =s;) ISP distinct a;; values
Let b, be the emission probability:
Plo,=k1X,,, = s;) ISIxIVI distinct b; , values

Probability of going from state s; to state s; while
observing input o, is simply a; ; x b;,

1/13/08 18

Forward-backward Algorithm

The algorithm starts with an initial setting for the
probabilities in a and b

We are provided with training data which consists

of observation sequence(s): 0,,..., 0,,..., O

The probability P(o,,...,0;) depends on the values
in a and b

For given observation sequence(s), different
transitions/emissions will be visited with different
frequencies

1/13/08 19

Forward-backward Algorithm

For every path through the HMM, we count how
many transitions occurred from state i to state j on
observation o,

Then (loosely speaking) we reward those
transitions (and emissions) which have high
expected frequency and penalize the competing
transitions

Expected frequency means we multiply the
frequency with the current probability (taken from
a and b)

1/13/08 20

10

Forward-backward Algorithm

P(o,,...,07) 1s the expected frequency of visiting all
transitions and so the new frequency is the
expected occurrence of a transition divided by
P(o,,...,07)

This gives us new values for all probabilities: a’
and b’ and we set a and b to these new values

Compute P(0,,...,0;). If the value is unchanged
from before iteration then stop (convergence)

Otherwise iterate (the entire procedure) with new
values for a and b

1/13/08 21

Forward-backward Algorithm

How to compute expected frequency over all paths
efficiently (reuse dynamic programming idea from
Viterbi algorithm)

For input 0,,..., 0,,..., o where 0, € V = {1,..k,..K}
For every path from a start state to state i we can
compute the probability of observing o,,..., 0, ;
Let o,(¢) be the sum of all these probabilities

For every path from state j to a final state we can
compute the probability of observing o,, ,..., 0

Let 3;(r+1) be the sum of all these probabilities

1/13/08 22

11

Forward-Backward Algorithm

/@ Bu(t+2)
{D—>——0
@i(t) - ai,j - bjo, - Bj (t\jl)\Q
N
az(t)

- Zak’i . bi’ohl . ak(t — 1)

Bit+1)= Za]m- mioees - Bt +2)

(lk(t — 1)

Sl

1/13/0P 015---,0 Zal T+1) = Z"Tt"ﬁi(l) 23
=1

Forward-Backward Algorithm

az(t) . a’i,j . bj:OL . ,Bj (t:N

7(i,4,00) = %) G Do f’j(t D j))=

y

f(l j’()!)

|M~:

a/‘ L f(llj) b/~ — Ei\;l Z?:lf(i).i»otzk)
D RV (0% B DA SR I OF)

1/13/08 24

12

Forward-Backward Algorithm

e Each iteration provides new values for all the
parameters

* But are the new parameters any better? How can
we tell?

e Compute probability of the training data

e For HMMs, Baum 1977 shows that the probability

will always be non-decreasing (later generalized
to the more general EM algorithm)

e Same as cross-entropy is non-increasing
KL(pi+1 || D) < KL(; || D)

1/13/08 25

13

