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• British Left Waffles on Falkland Islands
– (N, N, V, P, N, N)
– (N, V, N, P, N, N)

• Segmentation
– (b, i, b, i, b, b, i, b, i, b, i, b, i, b, i, b, i, b, i)

Sequence Learning
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Sequence Learning
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3 states: N, V, P
Observation sequence: (o1, … o6)
State sequence (6+1): (Start, N, N, V, P, N, N)

1/13/08 4

Finite State Machines
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Finite State Machines
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Moore Machine
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Probabilistic FSMs

• Each transition is associated with a
transition probability

• Each emission is associated with an
emission probability

• Two conditions:
– All outgoing transition arcs from a state must

sum to 1
– All emission arcs from a state must sum to 1
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Probabilistic FSMs
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Probabilistic FSMs
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Hidden Markov Models

• There are n states s1, …, si, …, sn

• The emissions are observed (input data)
• Observation sequence O=(o1, …, ot, …, oT)
• The states are not directly observed (hidden)
• Data does not directly tell us which state Xt

is linked with observation ot
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Properties of HMMs

• Markov assumption

• Stationary distribution
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HMM Algorithms

• HMM as language model: compute
probability of given observation sequence

• HMM as parser: compute the best sequence
of states for a given observation sequence

• HMM as learner: given a set of observation
sequences, learn its distribution, i.e. learn
the transition and emission probabilities
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HMM Algorithms

• HMM as language model: compute
probability of given observation sequence

• Compute P(o1, …, oT) from the probability
P(X1, …, XT+1, o1, …, oT)

   P(o1, …, oT)
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HMM Algorithms

• HMM as parser: compute the best sequence
of states for a given observation sequence

• Compute best path X1, …, XT+1 from the
probability P(X1, …, XT+1, o1, …, oT)

   Best state sequence X*
1, …, X*

T+1
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Best Path (Viterbi) Algorithm
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• Key Idea 1: storing just the best path doesn’t work
• Key Idea 2: store the best path upto each state
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Viterbi Algorithm
function viterbi (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s
for each state s: viterbi[s, 0] = π[s]
for each time step t from 0 to T:
    for each state s from 0 to num-states:
        for each s’ where edges[s,s’] is a transition probability:
            new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
            if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
                viterbi[s’, t+1] = new-score
                back-pointer[s’,t+1] = s
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Viterbi Algorithm
# finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
    if (viterbi[s,T+1] > best-final-score):
        best-final-state = s
        best-final-score = viterbi[s,T+1]
# start with the last state in the sequence
x = best-final-state
state-sequence.push(x)
for t from T+1 downto 0:
    state-sequence.push(back-pointer[x,t])
    x = back-pointer[x,t]
return state-sequence
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Forward-Backward Algorithm
• Algorithm that finds the transition and emission

probabilities using training data that does not have
hidden states provided

• Set the probabilities (for all parameters in the
HMM) so that the training data T is assigned
highest P(T) value (or lowest H(T), entropy value)

• This is called the maximum likelihood value over
all possible hidden state sequences for the training
data

• Exploits the fact that some transitions and
resulting observations will occur more frequently
than others in the training data
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Forward-backward Algorithm

• Consider input o1,..., ot,..., oT where each ot is from
a set of symbols V = {1,..k,..K}

• Let πi be the probability of state i being a start state
(for simplicity, πi is not discussed further)

• Let ai,j be the transition probability:
         P(Xt+1 = sj | Xt = si)   |S|2 distinct ai,j values
• Let bj,k be the emission probability:
         P(ot = k | Xt+1 = sj)     |S|×|V| distinct bj,k values
• Probability of going from state si to state sj while

observing input ot is simply ai,j × bj,k
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Forward-backward Algorithm

• The algorithm starts with an initial setting for the
probabilities in a and b

• We are provided with training data which consists
of observation sequence(s): o1,..., ot,..., oT

• The probability P(o1,...,oT) depends on the values
in a and b

• For given observation sequence(s), different
transitions/emissions will be visited with different
frequencies
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Forward-backward Algorithm

• For every path through the HMM, we count how
many transitions occurred from state i to state j on
observation ot

• Then (loosely speaking) we reward those
transitions (and emissions) which have high
expected frequency and penalize the competing
transitions

• Expected frequency means we multiply the
frequency with the current probability (taken from
a and b)
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Forward-backward Algorithm

• P(o1,...,oT) is the expected frequency of visiting all
transitions and so the new frequency is the
expected occurrence of a transition divided by
P(o1,...,oT)

• This gives us new values for all probabilities: a’
and b’ and we set a and b to these new values

• Compute P(o1,...,oT). If the value is unchanged
from before iteration then stop (convergence)

• Otherwise iterate (the entire procedure) with new
values for a and b
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Forward-backward Algorithm

• How to compute expected frequency over all paths
efficiently (reuse dynamic programming idea from
Viterbi algorithm)

• For input o1,..., ot,..., oT  where ot ∈ V = {1,..k,..K}
• For every path from a start state to state i we can

compute the probability of observing o1,..., ot-1
• Let αi(t) be the sum of all these probabilities
• For every path from state j to a final state we can

compute the probability of observing ot+1,..., oT
• Let βj(t+1) be the sum of all these probabilities
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Forward-Backward Algorithm
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Forward-Backward Algorithm

i j
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Forward-Backward Algorithm

• Each iteration provides new values for all the
parameters

• But are the new parameters any better? How can
we tell?

• Compute probability of the training data
• For HMMs, Baum 1977 shows that the probability

will always be non-decreasing (later generalized
to the more general EM algorithm)

• Same as cross-entropy is non-increasing


