CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/13/08

Sequence Learning

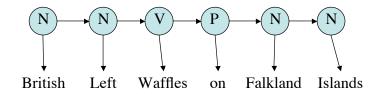
- British Left Waffles on Falkland Islands

 (N, N, V, P, N, N)
 (N, V, N, P, N, N)

 Segmentation 中国十四个边境开放城市经济建设成就显著
- (b, i, b, i, b, b, i, b, i, b, i, b, i, b, i, b, i, b, i)
 中国 十四 个 边境 开放 城市 经济 建设 成就 显著
 China 's 14 open border cities marked economic achievements

2

Sequence Learning



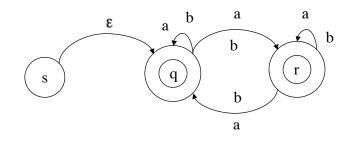
3 states: N, V, P **Observation sequence**: $(o_1, \dots o_6)$ **State sequence** (6+1): (*Start, N, N, V, P, N, N*)

3

4

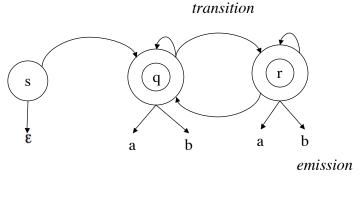
1/13/08

Finite State Machines



Mealy Machine

Finite State Machines



5

6

Moore Machine

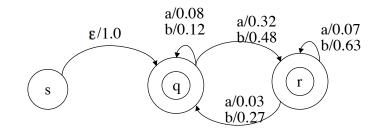
1/13/08

Probabilistic FSMs

- Each transition is associated with a *transition probability*
- Each emission is associated with an *emission probability*
- Two conditions:
 - All outgoing transition arcs from a state must sum to 1
 - All emission arcs from a state must sum to 1

Probabilistic FSMs $P(s_{i+1} \mid s_i)$ 1.0 0.7 0.2 0.8 r q S $P(o_t \mid s_{i+1})$ 0.3 έ b b 0.6 а а 0.9 0.1 0.4 $\sum_{x} P(q \rightarrow x) = P(q \rightarrow r) + P(q \rightarrow q) = 1.0$ $\sum_{x} P(\operatorname{emit}(q, x)) = P(\operatorname{emit}(q, a)) + P(\operatorname{emit}(q, b)) = 1.0$ 7

Probabilistic FSMs



Hidden Markov Models

- There are *n* states $s_1, \ldots, s_i, \ldots, s_n$
- The emissions are observed (input data)
- Observation sequence $\mathbf{O} = (o_1, \dots, o_t, \dots, o_T)$
- The states are not directly observed (hidden)
- Data does not directly tell us which state *X_t* is linked with observation *o_t*

1/13/08

$$X_t \in \{s_1,\ldots,s_n\}$$

Properties of HMMs

• Markov assumption

$$P(X_t = s_i \mid \ldots, X_{t-1} = s_j)$$

• Stationary distribution

$$P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+1} = s_i \mid X_{t+1-1} = s_j)$$

HMM Algorithms

- HMM as language model: compute probability of given observation sequence
- HMM as parser: compute the best sequence of states for a given observation sequence
- HMM as learner: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities

1/13/08

11

HMM Algorithms

- HMM as language model: compute probability of given observation sequence
- Compute $P(o_1, ..., o_T)$ from the probability $P(X_1, ..., X_{T+1}, o_1, ..., o_T)$ $= \prod_{t=1}^T P(X_{t+1} = s_j \mid X_t = s_i) \times P(o_t = k \mid X_{t+1} = s_j)$ $P(o_1, ..., o_T) = \sum_{X_1, ..., X_{T+1}} P(X_1, ..., X_{T+1}, o_1, ..., o_T)$

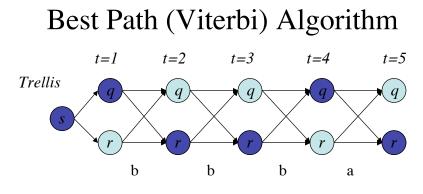
1/13/08

HMM Algorithms

- HMM as parser: compute the best sequence of states for a given observation sequence
- Compute best path X₁, ..., X_{T+1} from the probability P(X₁, ..., X_{T+1}, o₁, ..., o_T)
 Best state sequence X^{*}₁, ..., X^{*}_{T+1}

$$= rgmax_{X_1,...,X_{T+1}} P(X_1,\ldots,X_{T+1},o_1,\ldots,o_T)$$

1/13/08



- Key Idea 1: storing just the best path doesn't work
- Key Idea 2: store the best path upto *each* state

Viterbi Algorithm

function viterbi (edges, input, obs): returns best path edges = transition probability input = emission probability T =length of obs, the observation sequence num-states = number of states in the HMM Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s **for** each state s: viterbi[s, 0] = π [s] for each time step t from 0 to T: for each state s from 0 to num-states: for each s' where edges[s,s'] is a transition probability: new-score = viterbi[s,t] * edges[s,s'] * input[s',obs[t]] **if** (viterbi[s',t+1] == 0) **or** (new-score > viterbi[s', t+1]): viterbi[s', t+1] = new-score back-pointer[s',t+1] = s 1/13/08

Viterbi Algorithm

finding the best path

best-final-score = best-final-state = 0for each state s from 0 to num-states: **if** (viterbi[s,T+1] > best-final-score): best-final-state = sbest-final-score = viterbi[s,T+1] # start with the last state in the sequence x = best-final-statestate-sequence.push(x) for t from T+1 downto 0: state-sequence.push(back-pointer[x,t]) x = back-pointer[x,t]return state-sequence

1/13/08

Forward-Backward Algorithm

- Algorithm that finds the transition and emission probabilities using training data that *does not have* hidden states provided
- Set the probabilities (for all parameters in the HMM) so that the training data T is assigned highest P(T) value (or lowest H(T), entropy value)
- This is called the maximum likelihood value over all possible hidden state sequences for the training data
- Exploits the fact that some transitions and resulting observations will occur more frequently
 ^{1/13} than others in the training data

Forward-backward Algorithm

- Consider input o₁,..., o_t,..., o_T where each o_t is from a set of symbols V = {1,..k,..K}
- Let π_i be the probability of state *i* being a start state (for simplicity, π_i is not discussed further)
- Let $a_{i,j}$ be the transition probability:

 $P(X_{t+1} = s_i | X_t = s_i)$ |S|² distinct $a_{i,j}$ values

• Let b_{ik} be the emission probability:

 $P(o_t = k | X_{t+1} = s_j)$ |S|×|V| distinct $b_{j,k}$ values

• Probability of going from state s_i to state s_j while observing input o_t is simply $a_{i,j} \times b_{j,k}$

Forward-backward Algorithm

- The algorithm starts with an initial setting for the probabilities in *a* and *b*
- We are provided with training data which consists of observation sequence(s): $o_1, ..., o_p, ..., o_T$
- The probability $P(o_1,...,o_T)$ depends on the values in *a* and *b*
- For given observation sequence(s), different transitions/emissions will be visited with different frequencies

1/13/08

19

Forward-backward Algorithm

- For every path through the HMM, we count how many transitions occurred from state *i* to state *j* on observation *o*_t
- Then (loosely speaking) we reward those transitions (and emissions) which have high *expected* frequency and penalize the competing transitions
- Expected frequency means we multiply the frequency with the current probability (taken from *a* and *b*)

1/13/08

Forward-backward Algorithm

- P(o₁,...,o_T) is the expected frequency of visiting all transitions and so the new frequency is the expected occurrence of a transition divided by P(o₁,...,o_T)
- This gives us new values for all probabilities: *a*' and *b*' and we set *a* and *b* to these new values
- Compute $P(o_1,...,o_T)$. If the value is unchanged from before iteration then stop (convergence)
- Otherwise iterate (the entire procedure) with new values for *a* and *b*

1/13/08

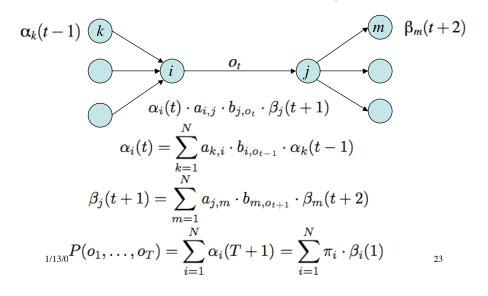
21

22

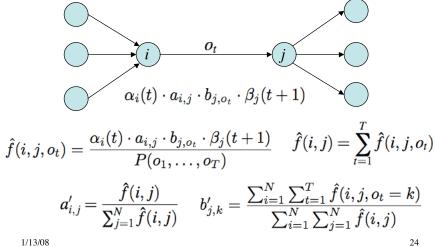
Forward-backward Algorithm

- How to compute expected frequency over all paths efficiently (*reuse dynamic programming idea from Viterbi algorithm*)
- For input $o_1, ..., o_t, ..., o_T$ where $o_t \in V = \{1, ..k, ...K\}$
- For every path from a start state to state *i* we can compute the probability of observing $o_1, ..., o_{t-1}$
- Let $\alpha_i(t)$ be the sum of all these probabilities
- For every path from state *j* to a final state we can compute the probability of observing $o_{t+1}, ..., o_T$
- Let $\beta_j(t+1)$ be the sum of all these probabilities

Forward-Backward Algorithm



Forward-Backward Algorithm



Forward-Backward Algorithm

- Each iteration provides new values for all the *parameters*
- But are the new parameters any better? How can we tell?
- Compute probability of the training data
- For HMMs, Baum 1977 shows that the probability will always be non-decreasing (later generalized to the more general EM algorithm)
- Same as cross-entropy is non-increasing

$$KL(\mu_{i+1} || D) \leq KL(\mu_i || D)$$

1/13/08