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A HMM is a probabilistic finite-state automata, in which ap,q represents the probability of taking
a transition from state q to state p and bk,q represents the probability of emitting alphabet symbol
k from state q. So our HMM is represented by θ = (a, b).

The Baum-Welch re-estimation algorithm for HMMs finds the maximum likelihood (MLE) esti-
mate θ̂ that maximizes the likelihood of a given data set D:

θ̂ = argmax
θ

Pr(D | θ)

The model θ describes many possible tag sequences T :

Pr(D | θ) =
∑
T

Pr(D,T | θ)

Instead of the MLE estimate, we can resort to a non-uniform prior over the possible θ values, in
which case the maximum a-posteriori (MAP) estimate is defined as:

θ̂ = argmax
θ

Pr(D | θ)P (θ)

We now are faced with how to define P (θ).
Let us assume we have n states and m vocabulary items that can be emitted from any state.

Both aq and bq for a given q are multinomial distributions: measuring the probability of choosing
to transition to another state from state q or choosing to emit a vocabulary symbol when at state
q.

Let’s consider aq in more detail, and everything we say in that case applies to bq. The only
difference is the transition outcome is from a set of states: 1, . . . , n, and the emission outcome is
from the set of vocabulary items: 1, . . . ,m.

We want to describe the probability of the data given a model. In this case, for a given state q the
probability ap,q describes the probability of a possible transition from q to p. Let’s say we observe
c independent samples and we want to estimate the probability that the c samples are assigned by
ap,q. The probability assigned to c samples depends only on the counts of each outcome: i.e. each
transition starting at q observed in the sample: c1,q, c2,q, . . . , cn,q where c = c1,q + c2,q + . . .+ cn,q.
The probability of this observation is:

Pr(c1,q, c2,q, . . . , cn,q | c, ap,q) =
c!

c1,q! . . . cn,q!

n∏
p=1

(ap,q)cp,q

The factor c!
c1,q !...cn,q ! is required because this is a distribution for unordered samples, where se-

quences of outcomes that are permutations on one another are considered to be the same joint
event. For ordered samples the distribution is simply:

Pr(c1,q, c2,q, . . . , cn,q | c, ap,q) =
n∏
p=1

(ap,q)cp,q

The normal scenario in learning is that a fixed set of outcomes (a sample) is provided and what
we care about estimating the probability ap,q in which case the difference between the ordered and
unordered case is a constant so we can ignore it. We generally use the ordered samples case because
it is simpler.



A Dirichlet prior is a prior distribution over each set of multinomial parameters in the HMM.
The parameters at state q can be combined with this prior. Consider the prior probability of aq:

g(aq) =
1

B(ν1,q, . . . , νn,q)

n∏
p=1

(ap,q)νp,q−1

B(ν1,q, . . . , νn,q) is the n-dimensional Beta function,

B(ν1,q, . . . , νn,q) =
Γ(ν1,q) . . .Γ(νn,q)

Γ(ν1,q + . . .+ νn,q)

where Γ(n) = (n−1)!, assuming that ν1,q, . . . , νn,q are all integers (which is the usual assumption).
The prior expectation of a transition from q to p is νp,q

ν0
where ν0 =

∑
i νi,q.

Let D = c1,q, c2,q, . . . , cn,q and c = c1,q + c2,q + . . .+ cn,q. The posterior probability P (aq | D) is:

P (aq | D) ≈ P (D | aq) · P (aq)

P (D | aq) =
n∏
p=1

(ap,q)cp,q

P (aq) =
1

B(ν1,q, . . . , νn,q)

n∏
p=1

(ap,q)νp,q−1

P (aq | D) =
n∏
p=1

(ap,q)cp,q · 1
B(ν1,q, . . . , νn,q)

n∏
p=1

(ap,q)νp,q−1

=
1

B(c1,q + ν1,q, . . . , cn,q + νn,q)

n∏
p=1

(ap,q)(νp,q−1)+cp,q

Note that P (aq | D) is in the same form as the rhs of P (aq), and let’s assume we want to re-
estimate P (D | aq) iteratively, we can compute a new value for the posterior P (aq | D) by using
this new estimate of P (D | aq) for the current iteration multiplied by the value of P (aq | D) from
the last iteration as a new conjugate prior which provides a new value for P (aq) for the current
iteration.

In practice, we set νi to be an integer greater than 1. If νi ≥ 1 and an integer then the prior
simply reduces to adding νi − 1 virtual samples to the likelihood expression, resulting in a MAP
estimate for ap,q which is the simple expression (note how it looks just like smoothing!):

ap,q =
(νp,q − 1) + cp,q∑
r(νr − 1) +

∑
r cr,q

Note that for transition probabilities hyperparameters ν1,q, . . . , νn,q can be tied to one value: νtq,
the hyperparameter for the transition probability from state q. Similarly, the emission hyperpa-
rameters can be all tied to a single value: νeq . Alternatively each νp,q for transition and emission
probabilities can be set individually based on prior knowledge.

The above explanation shows how MAP can be thought of as providing the basis for smoothing
each probability estimated from the data. The “virtual” counts and the estimates from the labeled
data are used in each iteration of MAP and the new values for νp,q in each iteration is simply the
value of νp,q from the previous iteration plus the (expected) counts cp,q. So it turns out that doing
MAP estimation is simply a couple of additions away!

However, if we want νi < 1 then things are not so simple. See (Goldwater and Griffiths, 2007;
Johnson, 2007) discuss the Bayesian literature on how to do parameter estimation in this case.
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