Notes on MAP Estimation for HMMs Anoop Sarkar

A HMM is a probabilistic finite-state automata, in which $a_{p,q}$ represents the probability of taking a transition from state q to state p and $b_{k,q}$ represents the probability of emitting alphabet symbol k from state q. So our HMM is represented by $\theta = (a, b)$.

The Baum-Welch re-estimation algorithm for HMMs finds the maximum likelihood (MLE) estimate $\hat{\theta}$ that maximizes the likelihood of a given data set D:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \Pr(D \mid \theta)$$

The model θ describes many possible tag sequences T:

$$\Pr(D \mid \theta) = \sum_{T} \Pr(D, T \mid \theta)$$

Instead of the MLE estimate, we can resort to a non-uniform prior over the possible θ values, in which case the *maximum a-posteriori* (MAP) estimate is defined as:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \Pr(D \mid \theta) P(\theta)$$

We now are faced with how to define $P(\theta)$.

Let us assume we have n states and m vocabulary items that can be emitted from any state. Both a_q and b_q for a given q are *multinomial* distributions: measuring the probability of choosing to transition to another state from state q or choosing to emit a vocabulary symbol when at state q.

Let's consider a_q in more detail, and everything we say in that case applies to b_q . The only difference is the transition outcome is from a set of states: $1, \ldots, n$, and the emission outcome is from the set of vocabulary items: $1, \ldots, m$.

We want to describe the probability of the data given a model. In this case, for a given state q the probability $a_{p,q}$ describes the probability of a possible transition from q to p. Let's say we observe c independent samples and we want to estimate the probability that the c samples are assigned by $a_{p,q}$. The probability assigned to c samples depends only on the counts of each outcome: i.e. each transition starting at q observed in the sample: $c_{1,q}, c_{2,q}, \ldots, c_{n,q}$ where $c = c_{1,q} + c_{2,q} + \ldots + c_{n,q}$. The probability of this observation is:

$$\Pr(c_{1,q}, c_{2,q}, \dots, c_{n,q} \mid c, a_{p,q}) = \frac{c!}{c_{1,q}! \dots c_{n,q}!} \prod_{p=1}^{n} (a_{p,q})^{c_{p,q}}$$

The factor $\frac{c!}{c_{1,q} \dots c_{n,q}!}$ is required because this is a distribution for *unordered samples*, where sequences of outcomes that are permutations on one another are considered to be the same joint event. For *ordered samples* the distribution is simply:

$$\Pr(c_{1,q}, c_{2,q}, \dots, c_{n,q} \mid c, a_{p,q}) = \prod_{p=1}^{n} (a_{p,q})^{c_{p,q}}$$

The normal scenario in learning is that a fixed set of outcomes (a sample) is provided and what we care about estimating the probability $a_{p,q}$ in which case the difference between the ordered and unordered case is a constant so we can ignore it. We generally use the ordered samples case because it is simpler.

A Dirichlet prior is a prior distribution over each set of multinomial parameters in the HMM. The parameters at state q can be combined with this prior. Consider the prior probability of a_q :

$$g(a_q) = \frac{1}{B(\nu_{1,q},\dots,\nu_{n,q})} \prod_{p=1}^n (a_{p,q})^{\nu_{p,q}-1}$$

 $B(\nu_{1,q},\ldots,\nu_{n,q})$ is the *n*-dimensional Beta function,

$$B(\nu_{1,q},\ldots,\nu_{n,q}) = \frac{\Gamma(\nu_{1,q})\ldots\Gamma(\nu_{n,q})}{\Gamma(\nu_{1,q}+\ldots+\nu_{n,q})}$$

where $\Gamma(n) = (n-1)!$, assuming that $\nu_{1,q}, \ldots, \nu_{n,q}$ are all integers (which is the usual assumption). The prior expectation of a transition from q to p is $\frac{\nu_{p,q}}{\nu_0}$ where $\nu_0 = \sum_i \nu_{i,q}$.

Let $D = c_{1,q}, c_{2,q}, \ldots, c_{n,q}$ and $c = c_{1,q} + c_{2,q} + \ldots + c_{n,q}$. The posterior probability $P(a_q \mid D)$ is:

$$P(a_{q} | D) \approx P(D | a_{q}) \cdot P(a_{q})$$

$$P(D | a_{q}) = \prod_{p=1}^{n} (a_{p,q})^{c_{p,q}}$$

$$P(a_{q}) = \frac{1}{B(\nu_{1,q}, \dots, \nu_{n,q})} \prod_{p=1}^{n} (a_{p,q})^{\nu_{p,q}-1}$$

$$P(a_{q} | D) = \prod_{p=1}^{n} (a_{p,q})^{c_{p,q}} \cdot \frac{1}{B(\nu_{1,q}, \dots, \nu_{n,q})} \prod_{p=1}^{n} (a_{p,q})^{\nu_{p,q}-1}$$

$$= \frac{1}{B(c_{1,q} + \nu_{1,q}, \dots, c_{n,q} + \nu_{n,q})} \prod_{p=1}^{n} (a_{p,q})^{(\nu_{p,q}-1) + c_{p,q}}$$

Note that $P(a_q \mid D)$ is in the same form as the rhs of $P(a_q)$, and let's assume we want to reestimate $P(D \mid a_q)$ iteratively, we can compute a new value for the posterior $P(a_q \mid D)$ by using this new estimate of $P(D \mid a_q)$ for the current iteration multiplied by the value of $P(a_q \mid D)$ from the last iteration as a new *conjugate prior* which provides a new value for $P(a_q)$ for the current iteration.

In practice, we set ν_i to be an integer greater than 1. If $\nu_i \ge 1$ and an integer then the prior simply reduces to adding $\nu_i - 1$ virtual samples to the likelihood expression, resulting in a MAP estimate for $a_{p,q}$ which is the simple expression (note how it looks just like smoothing!):

$$a_{p,q} = \frac{(\nu_{p,q} - 1) + c_{p,q}}{\sum_{r} (\nu_{r} - 1) + \sum_{r} c_{r,q}}$$

Note that for transition probabilities hyperparameters $\nu_{1,q}, \ldots, \nu_{n,q}$ can be tied to one value: ν_q^t , the hyperparameter for the transition probability from state q. Similarly, the emission hyperparameters can be all tied to a single value: ν_q^e . Alternatively each $\nu_{p,q}$ for transition and emission probabilities can be set individually based on prior knowledge.

The above explanation shows how MAP can be thought of as providing the basis for *smoothing* each probability estimated from the data. The "virtual" counts and the estimates from the labeled data are used in each iteration of MAP and the new values for $\nu_{p,q}$ in each iteration is simply the value of $\nu_{p,q}$ from the previous iteration plus the (expected) counts $c_{p,q}$. So it turns out that doing MAP estimation is simply a couple of additions away!

However, if we want $\nu_i < 1$ then things are not so simple. See (Goldwater and Griffiths, 2007; Johnson, 2007) discuss the Bayesian literature on how to do parameter estimation in this case.

References

- Wray Buntine. 1992. Learning Classification Trees. In Artificial Intelligence Frontiers in Statistics: AI and Statistics III, ed. by D. J. Hand. Chapman and Hall.
- Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor, and Don Freedman. 1988. AutoClass: A Bayesian Classification System. In Proc. of the 5th Int'l Conf. on Machine Learning ICML-1988, pp. 54–64.
- Gregory Cooper and Edward Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. In *Machine Learning* 9:309–347.
- Sharon Goldwater and Thomas L. Griffiths. A Fully Bayesian Approach to Unsupervised Part-of-Speech Tagging. Proceedings of the Association for Computational Linguistics. ACL 2007.
- Mark Johnson. Why Doesn't EM Find Good HMM POS-Taggers? Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 2007.
- Andreas Stolcke. 1994. Bayesian Learning of Probabilistic Language Models. PhD Dissertation. University of California at Berkeley.