
1

1/9/08 1

CMPT 825
Natural Language Processing

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

1/9/08 2

Finite-state transducers

• a : 0 is a notation for a mapping between two
alphabets a ∈ Σ1 and 0 ∈ Σ2

• Finite-state transducers (FSTs) accept pairs of
strings

• Finite-state automata equate to regular languages
and FSTs equate to regular relations

• e.g. L = { (xn, yn) : n > 0, x ∈ Σ1 and y ∈ Σ2} is a
regular relation accepted by some FST. It maps a
string of x’s into an equal length string of y’s

2

1/9/08 3

Finite-state transducers

R(T1) = R(T2) = { (aa, 10), (ab, 1) }

T1

T2

1/9/08 4

Finite-state transducers

ε

3

1/9/08 5

Finite-state transducers

1/9/08 6

Regular relations

• A generalization of regular languages
• The set of regular relations is:

– The empty set and (x,y) for all x, y ∈ Σ1 × Σ2 is a regular
relation

– If R1, R2 and R are regular relations then:

– There are no other regular relations

4

1/9/08 7

Finite-state transducers

• Formal definition:
– Q: finite set of states, q0, q1, ..., qn

– Σ: alphabet composed of input/output pairs i:o
where i ∈ Σ1 and o ∈ Σ2 and so Σ ⊆ Σ1 × Σ2

– q0: start state
– F: set of final states
– δ(q, i:o) is the transition function which returns

a set of states

1/9/08 8

Finite-state transducers: Examples

• (an, bn): map n a’s into n b’s
• rot13 encryption (the Caesar cipher): assuming 26 letters

each letter is mapped to the letter 13 steps ahead (mod 26),
e.g. cipher → pvcure

• reversal of a fixed set of words
• reversal of all strings upto fixed length k
• input: binary number n, and output: binary number n+1
• upcase or lowercase a string of any length
• *Pig latin: pig latin is goofy → igpay atinlay is oofygay
• *convert numbers into pronunciations,

e.g. 230.34 two hundred and thirty point three four

5

1/9/08 9

Finite-state transducers

• Following relations are cannot be expressed as a
FST
– (an bn, cn): because an bn is not regular
– reversal of strings of any length
– ai bj → bj ai for any i, j

• Unlike regular languages, regular relations are not
closed under intersection
– (an b*, cn) ∩ (a* bn, cn) produces (an bn, cn)
– However, regular relations with input and output of

equal lengths are closed under intersection

1/9/08 10

Regular Relations Closure Properties

• Regular relations (rr) are closed under some operations
• For example, if R1, R2 are regular relns:

– union (R1 ∪ R2 results in R3 which is a rr)
– concatenation
– iteration (R1+ = one or more repeats of R1)
– Kleene closure (R1* = zero or more repeats of R1)

• However, unlike regular languages, regular relns are not
closed under:
– intersection (possible for equal length regular relns)
– complement

6

1/9/08 11

Regular Relations Closure Properties

• New operations for regular relations:
– composition
– project input (or output) language to regular language;

for FST t, input language = π1(t), output = π2(t)
– take a regular language and create the identity regular

relation; for FSM f, let FST for identity relation be Id(f)
– take two regular languages and create the cross product

relation; for FSMs f & g, FST for cross product is f × g
– take two regular languages, and mark each time the first

language matches any string in the second language

1/9/08 12

Regular Relation/FST
 Kleene Closure

7

1/9/08 13

FST Algorithms

• Compose: Given two FSTs f and g defining
regular relations R1 and R2 create the FST f o g
that computes the composition: R1 o R2

• Union: Given two FSTs f and g create an FST that
computes the union f+g

• Recognition: Is a given pair of strings accepted by
FST t?

• Transduce: given an input string, provide the
output string(s)

1/9/08 14

Composing FSTs

0 1 2
b:a b:a

T2:

a:d
a:c

What is T1 composed with T2, aka T1 o T2 ?

b an b := a dn a
b an a := a dn c

0

1

2
3

a:a a:b

b:b

b:a

b:b

T1:

an ab := an ba
an bb := an bb

8

1/9/08 15

Composing FSTs

0

1

2
3

a:a

b:a

b:c

b:a

T1 o T2:

ab := ac
bb := aa

1/9/08 16

Composing FSTs

0 1 2
b:a b:a

a:d
a:c

0

1

2
3

a:a a:b

b:b

b:a

b:b

0 1 a : b
0 2 b : b
2 3 b : b

0 1 b : a
1 2 b : a

0 0 a : a
1 3 b : a

1 1 a : d
1 2 a : c

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

(0,1) (0,1) a : d (1,1) (3,1) b : d
(0,1) (0,2) a : c (1,1) (3,2) b : c

9

1/9/08 17

Composing FSTs

0 1 2
b:a b:a

a:d
a:c

0

1

2
3

a:a a:b

b:b

b:a

b:b

0 1 a : b
0 2 b : b
2 3 b : b

0 1 b : a
1 2 b : a

0 0 a : a
1 3 b : a

1 1 a : d
1 2 a : c

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

(0,1) (0,1) a : d (1,1) (3,1) b : d
(0,1) (0,2) a : c (1,1) (3,2) b : c

start with pair of final states

1/9/08 18

Composing FSTs

0 1 2
b:a b:a

a:d
a:c

0

1

2
3

a:a a:b

b:b

b:a

b:b

0 1 a : b
0 2 b : b
2 3 b : b

0 1 b : a
1 2 b : a

0 0 a : a
1 3 b : a

1 1 a : d
1 2 a : c

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

(0,1) (0,1) a : d (1,1) (3,1) b : d
(0,1) (0,2) a : c (1,1) (3,2) b : c

10

1/9/08 19

Composing FSTs

0 1 2
b:a b:a

a:d
a:c

0

1

2
3

a:a a:b

b:b

b:a

b:b

0 1 a : b
0 2 b : b
2 3 b : b

0 1 b : a
1 2 b : a

0 0 a : a
1 3 b : a

1 1 a : d
1 2 a : c

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

(0,1) (0,1) a : d (1,1) (3,1) b : d
(0,1) (0,2) a : c (1,1) (3,2) b : c

1/9/08 20

Composing FSTs

0,0

1,1

2,1
3,2

a:a

b:a

b:c

b:a

T1 o T2:

ab := ac
bb := aa

11

1/9/08 21

FST Composition
• Input: transducer S and T
• Transducer composition results in a new transducer with

states and transitions defined by matching compatible
input-output pairs:
match(s,t) =
{ (s,t) →x:z (s’,t’) : s →x:y s’ ∈ S.edges and t →y:z t’ ∈ T.edges } ∪
{ (s,t) →x:ε (s’,t) : s →x: ε s’ ∈ S.edges } ∪
{ (s,t) → ε:z (s,t’) : t → ε:z t’ ∈ T.edges }

• Correctness: any path in composed transducer mapping u
to w arises from a path mapping u to v in S and path
mapping v to w in T, for some v

1/9/08 22

Cross-product FST

• For regular languages L1 and L2, we have
two FSAs, M1 and M2

• Then a transducer accepting L1×L2 is
defined as:

12

1/9/08 23

Subsequential FSTs

• Consider an FST in which for every symbol
scanned from the input we can deterministically
choose a path and produce an output

• Such an FST is analogous to a deterministic FSM.
It is called a subsequential FST.

• Subsequential transducers with p outputs on the
final state is called a p-subsequential FST

• A subsequential FST with all states as final states
is called a sequential FST.

1/9/08 24

Summary
• Finite state transducers specify regular relations

– Encoding problems as finite-state transducers
• Extension of regular expressions to the case of regular

relations/FSTs
• FST closure properties: union, concatenation, composition
• FST special operations:

– creating regular relations from regular languages (Id, cross-
product);

– creating regular languages from regular relations (projection)
• FST algorithms

– Recognition, Transduction
– Determinization, Minimization? (not all FSTs can be

determinized)

