CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/9/08

Finite-state transducers

- a : 0 is a notation for a mapping between two alphabets $a \in \Sigma_1$ and $0 \in \Sigma_2$
- Finite-state transducers (FSTs) accept pairs of strings
- Finite-state automata equate to regular languages and FSTs equate to regular relations
- e.g. L = { (xⁿ, yⁿ) : n > 0, x ∈ Σ₁ and y ∈ Σ₂} is a regular relation accepted by some FST. It maps a string of x's into an equal length string of y's

1/9/08

Regular relations

- A generalization of regular languages
- The set of regular relations is:
 - The empty set and (x,y) for all $x, y \in \Sigma_1 \times \Sigma_2$ is a regular relation
 - If R_1 , R_2 and R are regular relations then:

$$R_1 \cdot R_2 = \{ (x_1 x_2, y_1 y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2 \}$$

$$R_1 \cup R_2$$

$$R^* = \bigcup_{i=0}^{\infty} R_i$$

- There are no other regular relations

1/9/08

- Formal definition:
 - Q: finite set of states, $q_0, q_1, ..., q_n$
 - Σ : alphabet composed of input/output pairs *i*:*o* where $i \in \Sigma_1$ and $o \in \Sigma_2$ and so $\Sigma \subseteq \Sigma_1 \times \Sigma_2$
 - $-q_0$: start state
 - F: set of final states
 - $-\delta(q, i:o)$ is the transition function which returns a set of states

7

8

1/9/08

Finite-state transducers: Examples

- (a^n, b^n) : map *n a*'s into *n b*'s
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. cipher → pvcure
- reversal of a fixed set of words
- reversal of all strings upto fixed length k
- input: binary number n, and output: binary number n+1
- upcase or lowercase a string of any length
- *Pig latin: *pig latin is goofy* \rightarrow *igpay atinlay is oofygay*
- *convert numbers into pronunciations,

e.g. 230.34 two hundred and thirty point three four

- Following relations are cannot be expressed as a FST
 - $(a^n b^n, c^n)$: because $a^n b^n$ is not regular
 - reversal of strings of any length
 - $-a^{i}b^{j} \rightarrow b^{j}a^{i}$ for any *i*, *j*
- Unlike regular languages, regular relations are not closed under intersection
 - $(a^n b^*, c^n) \cap (a^* b^n, c^n)$ produces $(a^n b^n, c^n)$
 - However, regular relations with input and output of equal lengths are closed under intersection

1/9/08

Regular Relations Closure Properties

- Regular relations (rr) are *closed* under some operations
- For example, if R_1 , R_2 are regular relns:
 - union ($R_1 \cup R_2$ results in R_3 which is a rr)
 - concatenation
 - iteration (R_1 + = one or more repeats of R_1)
 - Kleene closure $(R_1^* = \text{zero or more repeats of } R_1)$
- However, unlike regular languages, regular relns are not closed under:
 - intersection (possible for equal length regular relns)
 - complement

Regular Relations Closure Properties

- New operations for regular relations:
 - composition
 - project input (or output) language to regular language; for FST *t*, input language = $\pi_1(t)$, output = $\pi_2(t)$
 - take a regular language and create the identity regular relation; for FSM *f*, let FST for identity relation be Id(*f*)
 - take two regular languages and create the cross product relation; for FSMs f & g, FST for cross product is f × g
 - take two regular languages, and mark each time the first language matches any string in the second language

1/9/08

FST Algorithms

- **Compose:** Given two FSTs *f* and *g* defining regular relations R₁ and R₂ create the FST *f o g* that computes the composition: R₁ o R₂
- Union: Given two FSTs f and g create an FST that computes the union f+g
- **Recognition**: Is a given pair of strings accepted by FST *t*?
- **Transduce**: given an input string, provide the output string(s)

1/9/08

1/9/08

13

What is T_1 composed with T_2 , aka T_1 o T_2 ?

Composing FSTs


```
1/9/08
```


Composing FSTs

FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:

match(s,t) =

 $\{ (s,t) \rightarrow^{x:z} (s',t') : s \rightarrow^{x:y} s' \in S.edges and t \rightarrow^{y:z} t' \in T.edges \} \cup$ $\{ (s,t) \rightarrow^{x:\varepsilon} (s',t) : s \rightarrow^{x:\varepsilon} s' \in S.edges \} \cup$ $\{ (s,t) \rightarrow^{\varepsilon:z} (s,t') : t \rightarrow^{\varepsilon:z} t' \in T.edges \}$

• Correctness: any path in composed transducer mapping *u* to *w* arises from a path mapping *u* to *v* in S and path mapping *v* to *w* in T, for some *v*

1/9/08

21

Cross-product FST

 For regular languages L₁ and L₂, we have two FSAs, M₁ and M₂

$$M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1) \ M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$$

• Then a transducer accepting L₁×L₂ is defined as:

$$T = (\Sigma, Q_1 imes Q_2, \langle q_1, q_2 \rangle, F_1 imes F_2, \delta) \ \delta(\langle s_1, s_2 \rangle, a, b) = \delta_1(s_1, a) imes \delta_2(s_2, b) \ ext{for any } s_1 \in Q_1, s_2 \in Q_2 ext{ and } a, b \in \Sigma \cup \{ \epsilon \}$$

1/9/08

Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with *p* outputs on the final state is called a *p*-subsequential FST
- A subsequential FST with all states as final states is called a **sequential** FST.

1/9/08

23

Summary

- Finite state transducers specify regular relations – Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, crossproduct);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction
 - Determinization, Minimization? (not all FSTs can be

1/9/08 determinized)