CMPT 825
Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/9/08

Finite-state transducers

e a:0 is anotation for a mapping between two
alphabetsa€e X, and 0 € X,

* Finite-state transducers (FSTs) accept pairs of
strings

 Finite-state automata equate to regular languages
and FSTs equate to regular relations

eegL={(y):n>0,xeX, andy€e2,}isa
regular relation accepted by some FST. It maps a
string of x’s into an equal length string of y’s

1/9/08

Finite-state transducers

R(T,) =R(T,) ={ (aa, 10), (ab, 1) }

T,

®‘/‘°"'\”_. bi<eps> . o .

1/9/08 3

Finite-state transducers

Finite-state transducers

Regular relations

* A generalization of regular languages

* The set of regular relations is:

— The empty set and (x,y) for all x, y €%, x X, is a regular
relation

— IfR,, R, and R are regular relations then:
Ry Ry = {(x1x2,y1y2) | (x1,1) € Ry, (x2,¥2) € Ry}
RiUR,
R* =UZR;

— There are no other regular relations

1/9/08 6

Finite-state transducers

e Formal definition:
— Q: finite set of states, ¢q,, g;, ..., g,

— 2: alphabet composed of input/output pairs i:0
where i€ ¥, ando €2, andso 2 C 3, x X,

— ¢, start state
— F: set of final states

— d(q, i:0) is the transition function which returns
a set of states

1/9/08

Finite-state transducers: Examples

e (a",b"): mapna’sintonb’s
* rotl3 encryption (the Caesar cipher): assuming 26 letters

each letter is mapped to the letter 13 steps ahead (mod 26),
e.g. cipher — pvcure

* reversal of a fixed set of words

» reversal of all strings upto fixed length k

* input: binary number 7, and output: binary number n+/
* upcase or lowercase a string of any length

* *Pig latin: pig latin is goofy — igpay atinlay is oofygay
* “*convert numbers into pronunciations,

€.g2. 230.34 two hundred and thirty point three four
1/9/08 8

Finite-state transducers

* Following relations are cannot be expressed as a
FST
— (a"b", c"): because a" b" is not regular
— reversal of strings of any length
— a'bi— bid for any i, j
e Unlike regular languages, regular relations are not
closed under intersection
— (@b, ¢ N (a* b, c") produces (a"b", c")
— However, regular relations with input and output of
equal lengths are closed under intersection

1/9/08 9

Regular Relations Closure Properties

* Regular relations (rr) are closed under some operations
* For example, if R}, R, are regular relns:

— union (R; U R, results in R; which is a rr)

— concatenation

— iteration (R ,+ = one or more repeats of R,)

— Kleene closure (R, * = zero or more repeats of R)

* However, unlike regular languages, regular relns are not
closed under:

— intersection (possible for equal length regular relns)
— complement

1/9/08 10

Regular Relations Closure Properties

* New operations for regular relations:
— composition

— project input (or output) language to regular language;
for FST ¢, input language = mt,(¢), output = 7,(7)

— take a regular language and create the identity regular
relation; for FSM £, let FST for identity relation be 1d(f)

— take two regular languages and create the cross product
relation; for FSMs f & g, FST for cross product is f x g

— take two regular languages, and mark each time the first
language matches any string in the second language

1/9/08 11

Regular Relation/FST
Kleene Closure

<eps>i<eps>

<Eps>I<eps>

FST Algorithms

e Compose: Given two FSTs fand g defining
regular relations R, and R, create the FST fo g
that computes the composition: R; o R,

e Union: Given two FSTs fand g create an FST that
computes the union f+g

* Recognition: Is a given pair of strings accepted by
FST #?

e Transduce: given an input string, provide the
output string(s)

1/9/08 13

Composing FSTs

What is T, composed with T,, aka T, 0 T, ?

1/9/08 14

Composing FSTs

ab :=ac
bb :=aa
1/9/08 15
Composing FSTs
: b:a b:a
O—Y~—@
a.
a.C
Ola:bSﬂ;Olb:a OOa:a 1la:d
02b:b5[%12b:2a 13b:a [[12a:¢
23b:b

0,0 (I,ha:a (0,0)(2,Db:a (0,1)0,1)a:d (1,L1)3,1)b:d
O, (12)a:a 0,1)22)b:a (0,)(02)a:c (1,1)(32)b:c
(20)(3.1)b:a (2.1)(3.2)b:a

16

Composing FSTs

Ola:b ||[01b:a OOa:a |[[1la:d
02b:b 12b:a 13b:a 12a:c
23b:b

0,0 (I,ha:a (0,0)2,Db:a (0,1)(0,1)a:d (1,L1)3,1)b:d
O, (12)a:a 0,1)22)b:a (0,)(02)a:c (1.HGB2b:c
20)(3.)b:a 2.1 (B2ba, —

start with pair of final states "’

Composing FSTs

Ola:b Olb:a O0OOa:a 1la:d
02b:b 12b:a 13b:a 12a:c
23b:b

00)(I.ha:a 00O @2.1b:a (0,1),)a:d (1,L1)3,1)b:d
O, (12)a:a 0,1)22)b:a (0,1)(02)a:c (1.HGB2b:c
(20)(3.1)b:a 2.1)(32)b:a

18

Composing FSTs

Ola:b ||[01b:a OOa:a |[[1la:d
02b:b 12b:a 13b:a 12a:c
23b:b

00 d.1)a:a (0.0)(R2.1)b:a 0,1)(O,1)a:d (1,1)3,1)b:d
0,1)(1,2)a:a (0,1)(22)b:a 0,1)0,2)a:¢c (1.1H)(B2)b:c
(Z,OP/Q%%,I)b:a 21 (32)b:a

19

Composing FSTs

1/9/08 20

FST Composition

* Input: transducer S and T

* Transducer composition results in a new transducer with
states and transitions defined by matching compatible
input-output pairs:

match(s,t) =

{(s,t) =¥2(s',t") : s =*¥ s* € S.edges and t =Y2 t” € T.edges } U
{(s,t) =X (s°,t) : s =X ¢g” € S.edges } U

{(s,t) =82 (s,t’) : t = &2 t” € T.edges }

* Correctness: any path in composed transducer mapping u
to w arises from a path mapping « to v in S and path
mapping v to w in T, for some v

1/9/08 21

Cross-product FST

* For regular languages L, and L,, we have
two FSAs, M, and M,

M, = (zanaqlaFlvél)
M, = (2,Q2,Q2,F2,62)

* Then a transducer accepting L, xL, is
defined as:

T = (2,01 % 02,(q1,92),F1 X F»,9)
6((s1,s2),a,b) = 61(51,61) X 62(S2,b)
119/08 for any 51 € Q1,5, € O, and a,b € ZU {e} 2

11

Subsequential FSTs

Consider an FST in which for every symbol
scanned from the input we can deterministically
choose a path and produce an output

Such an FST is analogous to a deterministic FSM.
It is called a subsequential FST.

Subsequential transducers with p outputs on the
final state is called a p-subsequential FST

A subsequential FST with all states as final states
is called a sequential FST.

1/9/08 23

Summary

Finite state transducers specify regular relations
— Encoding problems as finite-state transducers
Extension of regular expressions to the case of regular
relations/FSTs
FST closure properties: union, concatenation, composition

FST special operations:

— creating regular relations from regular languages (Id, cross-
product);

— creating regular languages from regular relations (projection)
FST algorithms

— Recognition, Transduction

— Determinization, Minimization? (not all FSTs can be

1/9/08 determinized) 24

12

