Error Repair in Shift-Reduce Parsers

BRUCE J. MCKENZIE, COREY YEATMAN, and LORRAINE DE VERE
University of Canterbury

Local error repair of strings during CFG parsing requires the insertion and deletion of symbols in
the region of a syntax error to produce a string that is error free. Rather than precalculating tables
at parser generation time to assist in finding such repairs, this article shows how such repairs can
be found during shifi-reduce parsing by using the parsing tables themselves. This results in a
substantial space saving over methods that require precalculated tables. Furthermore, the article
shows how the method can be integrated with lookahead to avoid finding repairs that immediately
result in further syntax errors. The article presents the results of experiments on a version of the
LALR(1)-based parser generator Bison to which the algorithm was added.

Categories and Subject Descriptors: 1).3.4 [Programming Languages]: Processors—-complers;
parsing; translator writing systems and compiler generators

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Bison, error recovery, least cost, shift-reduce, Yacc

1. INTRODUCTION

The problem of correcting and recovering from syntax errors during context-free
parsing has received much attention [Feycock and Lazarus 1976; Fischer and Mauney
1980: 1992; Fischer et al. 1980; Grosch 1990; Irons 1963; James 1972; Lak¥rance
1971; Leinius 1970; Levy 1971; Lyon 1974; Ripley and Druseikis 1978; Réhrich 1980;
Sippu and Soisalon-Soininen 1980a: 1980b; 1980c]. Given a context-free grammar
(CFG) and an invalid string sepr = f1t2.. . fe—iteteys ... tn we can identify an “er-
ror symbol” t. which is the first symbol at which the error could be detected by a
left-to-right scan of the string. This means the substring t1t2...%.—1 is the prefix
of some valid string #1¢5...%.—1 ... of the language while there is no valid string
ti1ty...1%, ... that includes the error symbol.

Recovery methods that “repair” the input to construct a string that is valid
according to the grammar can be divided into “local” or “global” error repair
methods. A local repair only involves changes to the substring fetey1 ...t, while
a global repair allows the possibility that the symbols before the error symbol
may also be changed by the repair. Local repairs have less impact on the parser
environment as there is no need to revoke earlier parsing decisions such as syntax
tree construction during the repair process. The repair method investigated in this
article involves only local repair.

Authors’ address: Department of Computer Science, University of Canterbury, Private Bag 4800,
Christchurch, New Zealand; email: B.McKenzie@cosc.canterbury.ac.nz.

Permission to make digital /hard copy of all or part of this material without fee 1s granted provided
that the copies are not made or distributed for profit or commercial advantage, the ACM
copyright/server notice, the title of the publication. and its date appear, and notice 1s given that
copying 1s by permission of the Association for Computing Machinery, Inc. (ACM) To copy otherwise, to

republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee
© 1995 ACM 0164-0925/95/0700-0672 $03 50

ACM Transactions on Programming Languages and Systems, Vol 17, No 4, July 1995, Pages 672-689

Error Repair in Shift-Reduce Parsers . 673

More than a single repair of an invalid string is usually possible, and some way
of deciding among these is required. A particular class of repair involves minimal-
distance or least-cost recovery [Aho and Peterson 1972; Anderson and Backhouse
1981: Anderson et al. 1983; Backhouse 1981: Dion 1978]. These involve associating
an insert/delete cost with each symbol thas is inserted in or deleted from the invalid
string. The repair with the lowest total cost is then chosen. Such a strategy is
applicable to both local and global repair, but the overheads of minimizing the cost
globally over the whole invalid string are so high that it has only been applied to
local repairs.

Error repair methods associated with parser generation systems require differing
levels of interaction by the user of the generator. Some are completely automatic
or require the user only to supply insert/delete costs. At the other extreme the
user may be required to provide extra information such as the “error productions”
available in Bison [Corbett and Staliman 1991} and Yacc [Johnson 1975]. Unfor-
tunately, providing such productions requires extensive knowledge of shift-reduce
parsing and is something of a “black art.”

The approach of Fischer and Mauney and others [Fischer and LeBlanc 1988;
Fischer and Mauney 1980; 1992: Fischer et al. 1979a; 1979b: 1980; Mauney and
Fischer 1980] which was used in their LL(1)-based FMQ and LALR(1)-based ECP
parser generators is closest in spirit to the method proposed in this article. They
employ user-supplied symbol insert/delete costs to precalculate for a given CFG
the tables S(A) and E(A, a) for each nonterminal A and terminal a. These tables
represent the least-cost string of terminals' that can be generated from the nonter-
minal A and the least-cost prefix string? (if any) that can be generated from the
nonterminal A that contains the terminal a.

For an LL(1) parser the parsing stack contains a prediction of the remainder of
the input as a stack of terminal and nonterminal symbols. For each symbol X on
the stack, the entry E(X, ... will give the least-cost insertion (if any) that can be
inserted before the error symbol to allow a correct repair. If no such string exists
then S(X) can be inserted and the next stack symbol used. After the least-cost
insertion (if any) is found that allows the parser to continue with symbol ¢, the
whole process can be repeated with symbol t..-+1, adding the deletion cost of the
error symbol to the insertion possible with the error symbol deleted. This process
is repeated with subsequent symbols until least-cost recovery is determined. In
this way the least-cost combination of inserting and deleting symbols to allow the
parse to continue can be found and thus used to repair the error. A similar method
is used for LALR(1)-based parsers, but in addition to S(A) and E(A4,a), tables
giving the predecessor state for each item in a parse state must be stored enabling
all possible paths through the parsing DFA to be followed using the state stack of
the LALR(1) parser.

The tables that need to be precomputed and stored® to assist in the repair are
quite large, especially for the LALR(1)-based parser generators, owing to the large

‘e.g., S(A) = x such that A4 =~ z and Cost{z) is minimized.

%e.g., E(A,a) = z such that A => zay and Cost(z) is minimized.

3 Alternatively S(A) and E(A,a) can be calculated on demand and cached to avoid unnecessary
recomputation [Fischer and Mauney 1992].

ACM Transactions on Programming Languages and Systems, Vol 17, No. 4, July 1995.

674 . Bruce J. McKenzie et al.

number of states. The ECP implementation, for example, was forced to hold these
on external storage rather than hold them in memory.* A more serious problem is
that there is no validation of the error repair. So. although the repair is guaranteed
to accept the next input symbol, another error may occur immediately on the
following symbol, and potentially an avalanche of errors can result.

The problem of avalanche errors can be lessened by validating the correction.
This is known as regionally least-cost repair [Mauney 1982], where the cost is min-
imized within a fixed-sized region of the program. Effectively this requires the
repaired string to be correct for at least L tokens after the error. Choosing a region
size of say L = 5 was found to improve significantly the quality of error repair. An
extension of the FMQ algorithm to incorporate such validation is possible [Fischer
and Mauney 1992].

This article describes an algorithm for shift-reduce parsers that produces repairs
identical to that produced by the Fischer algorithm and allows the repair to be vali-
dated using an arbitrary region size of L symbols, but requires no additional tables.
The algorithm is presented in the next section with details of the implementation
within the LALR(1) parser generator Bison [Corbett and Stallman 1991] presented
in Section 3. Detailed results and timings are presented in Section 4, and the final
section presents our conclusions.

2. NEW ALGORITHM

A shift-reduce parser for a string of symbols from a CFG consists of a determinis-
tic parsing automata (DPA) and a stack, initially empty, of states from the DPA.
Variations such as SL(1), LR(1), or LALR(1) result in different DPA for the same
grammar, but these variations are not important in our context as the algorithm we
present is equally applicable to all of these. The DPA is a function, §(state, symbol),
consisting of entries:

shift ¢ shift to state ¢

reduce A — « reduce using a production
accept accept input and halt
error error in Input

The basic shift-reduce algorithm uses the symbols to make shift and reduce moves
based on the DPA until the string is accepted (i.e., it can be generated by the CFG)
or an error occurs. Algorithm SR in Figure 1 expresses this using operations on
a configuration < stackV, remaining input< >.°> In any practical implementation
the remaining input will be implicit, and each successive symbol will be supplied
when required by calling a “scanner.” Algorithm SR is expressed in this somewhat
unconventional manner to simplify the explanations of the error recovery algorithm.
When an error is encountered the basic algorithm terminates the parse with a
suitable error message.

If the CFG is augmented by error productions® then when an error is encountered
the stack is investigated for states allowing a shift or (nondefault) reduction on

4For example the tables for a Modula-2 grammar require 111KB when stored in their binary form.
5V and - represent the bottom of stack and end of input respectively.
5These are productions containing a special “error” symbol such as “decl—error 3.7

ACM Transactions on Programming Languages and Systems, Vol 17, No. 4, July 1995

Error Repair in Shift-Reduce Parsers . 675

config := < goV, s >,
loop
let < qiqa...V, titz. .. > = config;
case 6(qi1,t1) of
shift gs:
config := < gsqugz ... V. tz...4>;
reduce 4 — o
let { = length of o
et gr = 0(gr+1. A):
config := < @rqi4iGuez ... V. titz... >,

accept:
HAvT; -~ gceept input
€rror:
Havr; -~ error in input
end;

end

Fig. 1. Algorithm SR: Basic shift-reduce parsing.

“error.” The stack is cut back to such a state, the shift or reduction on “error”
performed, and then symbols in the input (including the error symbol) skipped
until one is found that allows a shift or reduction in this state before the parse
is allowed to continue. In practice this is usually augmented to require not just
a single symbol, but a number ({say three) can be shifted successfully after the
recovery. If another error occurs before this number of valid shifts occurs then the
stack is again stripped back to an error state and further symbols discarded. This
is repeated if necessary.

In this article we propose that the recovery be obtained by searching the DPA it-
self to find a suitable configuration to allow the parse to continue. For each terminal
symbol ¢ from the CFG we assume the existence of positive insert (I(¢)) and delete
(D(t)) costs. The recovery technique is presented in algorithm REC of Figure 2. Tt
maintains a priority queue of configurations augmented with the symbols inserted
(i1dg...), symbols deleted (dids...), and the total insert/delete cost (3, I(i;) +
Y., D(dg)). The queue is initialized and emptied with ClearQueue. Configurations
are inserted into the queue with the procedure Enqueue, and DeleteMin removes
the least-cost configuration.”

The major features of the algorithm involve beginning with a configuration of the
stack and remaining input when the error is detected (cost zero) on the queue and
successively investigating “moves” from the least-cost configuration in the queue.
This ensures that (a) the “state space” (in the sense of Kreutzer and McKenzie
[1991)) is investigated in a “breadth-first” and “least-cost” manner and (b) a least-
cost recovery will be obtained.

For each configuration retrieved from the queue without deletions, all possible
transitions from the state at the top of the stack are added to the queue for sub-

7For small queues a sorted list with the minimum at the front would suffice, while for larger queues
a heap or some other priority queue would be more efficient.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 4, July 1995.

676 . Bruce J. McKenzie et al.

-- Routines to manspulate o priority queue of augmented configurations
procedure ClearQueue; -~ nitialize queue and set empty
procedure Enqueue(< stackV, input- > inserted,deleted,cost);

-- wnsert new configuration into queue
function DeleteMin() + (< stackV, snput— > inserted,deleted,cost);
-~ remove least-cost configuration from queue

function Recover(< stacke-~V, input,,, >} < stackney V, input, ., >,
begin
ClearQueue;
Enqueue(< stacker-V, input,,,.= >, €,,0);
while queue is not empty do
let (< qugz... gV, titz2... tm= >, I Acost) = DeleteMin();
if A =¢ then
foreach t € T do
case 6{(q1,t) of
shift gs:
Enqueue(< gsq1q2 .- ga ¥V, t1tz... tm= >, T.5,A cost+I(t));
reduce 4 — o
DoReduce(q1gz ... gn, A — o, tatz ... tm, I, cost);
otherwise: ; -- do nothing for error and accept
end;
end;
end;
Enqueue(< qiqa... quV, ta... tm= >, [LA#y,cost+D(t1));
if 8(q1,t1) # error then

return < q1qz2... @V, titz... i, > -- wnserted T’ and deleted ‘A’ to recover
end:
end;
HavT; -~ unable to recover — empty queue

end Recover;

procedure DoReduce(q1q2 . . gn,4 — a.t, t1t2... tm,I',Acost);
begin
let len = length of «;
let qnew = 6(qlen+1;A);
case §(gnew,t) of
shift g,:
Enqueue(< gsqnewGienti - - qnV. t1ta... t;m= >, T.t,A cost+1(t));
reduce A" — a”:
DoReduce(gnewQienti - - - Gn. A — &’ ot1t2 ... tm, I',A cost);
otherwise:
return ; -- error—add nothing to queue
end;
end DoReduce,

Fig. 2. Algorithm REC: Recovery by “searching” the DPA for least-cost insertions and deletions

ACM Transactions on Programming Languages and Systems, Vol. 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers - 677

sequent investigation. For shifts the new configuration is obtained by pushing the
new state onto the stack, adding the symbol to those inserted, and adding the insert
cost of the symbols. Reductions are treated by following any sequence of reductions
first and then making a final shift before the new configuration is gqueued again,
adding the symbol to those inserted and adding the insert cost.

Finally, a delete configuration is constructed from the least-cost configuration by
deleting the first symbol of the remaimng input, adding it to those deleted, and
accounting for the delete cost of the symbol. A configuration already involving
deletions is not investigated for further possible insertions to avoid duplication of
effors. For example the sequence “insert 21, delete dy, and then insert i5” results
in exactly the same configuration as the sequence “insert i1, insert i, and then
delete d;.” When there are a number of least-cost recoveries with the same cost.
the recovery chosen will vary depending on the order in which DeleteMin returns
configurations with the same cost. If, for example, it mainsained a sorted queue and
inserted such configurations after configurasions of the same cost then the recovery
involving fewer deletions would be favored. If, however, the opposite strategy of
inserting before configurations with the same coss was chosen, recoveries with more
deletions would be favored. In the implementation discussed in the next section
the former approach is taken, discriminating against deletions.

After all these new configurations have been queued then the least-cost config-
uration is checked to see if it is a possible recovery. If it is then we return the
resulting configuration as a recovery and allow the parse to continue.

In practice a couple of useful improvements can be made to algorithm REC.
First, instead of HALTing when the queue is empty it is possible to revert to the
error production recovery method.

The second improvement is to augment the algorithm with a validation of repairs
similar to that employed by the error production method. If another error occurs
too soon after returning from the error recovery procedure then the algorithm is
reentered to find the next least-cost recovery. This is repeated until a recovery that
allows the parser to continue for at least (say) three symbols is found. This requires
that the queue is kept until such a recovery is located.

A small example is useful to show the steps in the recovery of a simple error. Con-
sider the LALR(1) DPA for the simple-expression grammar E — E+E| ExE|E"E|
int in Figure 3.® When the input 1+2 3 4 is parsed using the shift-reduce algo-
rithm of Figure 1 the successive configurations are: < 0V, 1+ 2344 >, < 10V,
+2344 >, < 20V, +2344 >, < 320V, 234+ >, and < 1320V, 34- > at which point
an error is detected. Let us assume that we have insert costs of I(+) = 1, I(x) = 2,
I(") = 3, I(int) = 4, and delete costs equal to the insert costs, (D(z) = I(x)), for
each symbol. Upon detection of the error an initial configuration is added to the
gueue by the call

Enqueue(< 1320V, 344>, ¢, €, 0).

When this configuration is removed from the queue it generatses four new configu-
rations which will be queued in the order shown:

(< 1320V, 344>, ¢, €, O} — Enqueune(< 320V, 344>, "+", ¢, 1)
8Precedence and associativity of the operators have been used to resolve shift-reduce and reduce-
reduce conflicts arising from the ambiguity of the grammar.

ACM Transactions on Programming Languages and Systems. Vol 17, No 4, July 1995.

678 . Bruce J. McKenzie et al.

— Enqueue(< 46320V, 34+ >, "*", ¢, 2)
— Enqueue (< 56320V, 34+ >, """, ¢, 3)
~+ Enquene (< 1320V, 44>, €, "3", 4).

Removing the least-cost configuration from the queue generates:

(< 320V, 34+ >, "+", ¢, 1) — Enqueune(< 1320V, 34- >, "+int", e, 5)

— Enqueue(< 320V, 4 >, "+, "3", 5).
And then because it is possible to shift "3" in state 3 a recovery is attempted. This
will result in a further configuration < 1320V, 4- >, and another error is detected
before three symbols have been successfully shifted. As a result this recovery is
abandoned, and the next configuration from the queue is tried instead. Similar
unsuccessful recoveries will result from this and the next configuration which will
also add configurations with total costs 6 and 7 to the queue. When the next
configuration is removed it generates:

(< 1320V, 44>, ¢, "3", 4) — Enqueue(< 1320V, 4>, ¢, "3 4%, 8).
There are now two configurations with a cost of 5 in the queue, namely, (< 1320V,
34+ >, "+int", €, 5) and (< 320V, 4+ >, "+, "3% 5) The first of these
generates four new configurations:

(< 1320V, 34+ >, "+int", e. 5)— Enqueue(< 320V, 34+ >, "+int+", ¢, 6)

— Enqueue (< 46320V, 34- >, "+int*", €, T)
—+ Enqueue (< 56320V, 34+ >, "+int"", €, 8)
— Enqueue (< 1320V, 44 >, "+int", "3", 9).
The other configuration with cost 5 generates the single configuration:
(< 320V, 44>, "+, 93", 5) — Enqueue(< 320V, - >, "+%, "3 4, 9)

and then discovers the possible recovery from state 3 on input symbol "4". This
results in successive configurations < 320V. 44 >, < 1320V, 4 >, < 6320V, - >,
< 20V, 4>, < 920V, 4 >. The final configuration is an ACCEPT configuration,
and so a least-cost recovery has been found which involved deleting the “3” and
inserting a “+” correcting the input from “1+2 3 4” to “1+2+4.7

It is not difficult to prove that the algorithm REC results in a valid least-cost
recovery. The algorithm investigates every possible series of symbols that can be
inserted and deleted at the point of the error. The only transitions made are exactly
those that would be made if such symbols had actually been encountered in a string.
Because the gueue returns configurations in order of increasing cost, a least-cost
recovery will be found.

It is interesting to note that the algorithm will be able to recover from any
possible error. This is because 1t has the potential to delete every symbol after the
error and replace them (insert) with any sequence of symbols. Because the symbols
up to the error symbol are a valid prefix of some valid string, then it is always
possible to insert symbols that would allow recovery. In spite of this it may be that
the computation and space requirements of this are excessive in practice.

3. IMPLEMENTATION

In this section we give details of incorporating the error recovery algorithm into
Bison [Corbett and Stallman 1991], a widely available LALR(1)-based parser gen-
erator, to determine the practicality of the algorithm. This parser generator con-
sists of a program to process the grammar and output the DPA and a fragment

ACM Transactions on Programming Languages and Systems. Vol. 17, No. 4, July 1995.

Error Repair in Shift-Reduce Parsers . 679

" E—int
if {+,%,".}

Fig. 3. LALR(1) parsing DFA for
Simple-Expression Grammar.

E—E+E E—ExE E—EE
if {+} if {+,1} if {+,%,7}

of constant code that implements the shift-reduce and error production parsing
algorithms. The scanner is supplied separately by the user. It was possible to
experiment with our error recovery method by only changing the constant code
section and not making any alteration to the program that generates the DPA.
A consequence of this is that it will be a simple matter to update any existing
Bison-generated system to the new error recovery method.

The description of both the shift-reduce (algorithm SR) and error recovery (al-
gorithm REC) algorithms given in the previous section is somewhat idealized. An
implementation based on these descriptions would be extremely expensive in both
space and time. Bison, like many shift-reduce parsers, does not maintain an explicit
< stackV, remaining input- > configuration. Rather the stack is treated as global,
and the remaining input is implicit. At any stage only the current input symbol
is available, and only after a shift operation is the scanner called to yield the next
input symbol. Both of these considerations clearly complicate the implementation
of the error recovery algorithm, which assumes such configurations exist and are
easily queued and manipulated.

A further complication (which is also applicable to many other shift-reduce sys-
tems) is that the DPA function, (g, a), is held in a highly compressed state to save
space. A variation of row displacement encoding [Aho et al. 1986, pp.144-146],
combined with the use of defaults [Aho et al. 1986, pp.244-247] is used. Although
this yields a very significant compaction of the shift-reduce parsing tables without
a significant penalty in parse time, it does significantly complicate the extraction
of the DPA function. In particular, it is not possible to limit investigation to only
“valid” transitions from a state. Rather it is necessary to try all possible values
of a to find the valid moves 6(g,a). Experiments were conducted to determine if

ACM Transactions on Programming Languages and Systems, Vol 17, No. 4, July 1995.

680 . Bruce J. McKenzie et al.

it was worthwhile to extract the complete DPA or at least extract and cache the
transitions for a state at a time during recovery., However only a few states were
normally needed for most recoveries, and around half the states have only a single
default reduction. Furthermore, becanse decoding the DPA is fast,® it is easier to
decode each state as required.

Another consequence of the compaction of the DPA table by means of de-
fault reductions is that error detection can be delayed. In particular if the input
t1ty... 1 ... is parsed using a DPA without default reductions the error ¢, will be
detected in state g where d(q,t.) = error. I, however, there is a default reduction
associated with state g then the reduction will be made (and possible further default
reductions), and when the error is detected!? the stack will have been altered. For
example consider the parsing DFA for the simple-expression grammar of Figure 3.
If this was compacted then all four reductions would become default reductions.
In the previous section when the example string 1+2 3 4 was parsed an error was
detected in the configuration < 1320V, 34+ >. With default reductions the error
would not be detected until after the reductions in state 1 (giving < 6320V, 34+ >)
and in state 6 (giving < 20V, 34+ >} had been made.

When the error recovery algorithm is scarted it is important that the stack be
the one existing before the default reduction(s) was (were) made. Although for
the 1+2 3 4 example described above it would make no difference; it would have
done so if the insert cost for “+” had been higher than that of “«” rather than the
reverse. In such a case the least-cost recovery chosen would have been to delete
“3” and insert “x” giving 1+2*4. However the reductions made would correspond
to (1+2)*4 rather than the correct 1+(2%4). Although this example merely results
in a semantically incorrect recovery, in other examples default reductions can mean
the least-cost recovery is missed.'* Hence, to allow all possible error recoveries to
be considered it is necessary to begin recovery from the configuration that existed
before the last chain of default reductions was made.

'This requires that the shift-reduce algorithm be augmented to save the state of
the stack before each default reduction is made in case an error is detected. This is
unfortunate as it will tend to slow the parsing of error-free inputs. Figure 4 shows
the time taken to parse Modula-2 programs of various sizes (measured in symbols)
with and without saving the stack before default vreductions. The trend lines in this
figure show that the parsing speed is reduced from 14600 to 10300 tokens/sec.

An alternative to saving the stack before a series of default reductions would be
to avoid them altogether by not compressing the parse tables in this way. This
has a significant space penalty. For example the parsing LALR(1) DFA tables
for Modula-2 have 400 default reduction entries, and if these are removed the 457
action entries (shifts and explicit reductions) increase to 3332. Of more concern,

9Decoding a single state requires about 70 microseconds on a Sparc 10 running at 40MHz, averaged
over all states in DPAs for the Pascal, Modula-2, and C languages. Decoding states contributes
only 1% of the error recovery time.

10The error will always be detected before the error symbol t. is shifted.

11For example, consider a small addition to the expression grammar so the grammar rule & — E+E
became E — E+optE with opt — []|e. When parsing the input 1+12 with default reductions the
error is not detected until after the reduction opt — € has already been committed, and so the
recovery of inserting [is no longer available.

ACM Transactions on Programming Languages and Systems, Vol. 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers

0.45 T u T T T T T T
04 F With save P
(10300 tokens/second) ------ & °
035 + Nosave - . LA
(14600 tokens/second) L35

- 03 F o o :/o’ g © + B
2 f’%a‘?.g%"’ . .
3 025 r 25% ° s A+ T
Q ® e O + 4. *
< e 4 o
g 02 r £e it .
§ . O OO ;:34_.” -
b @ o A

0.15 s 0°Sen-3s L 1

moo woooﬁ- T
0.1 F e i -
BHeE i
I’ QUH-
005 | & e -
p 2 + 4+
s -—o
0 B L : i L : L :

0 500 10006 1500 2000 2500 3000 3500 4000 4500
Size of program (tokens)

Fig. 4. Time (in seconds) to parse error-free Modula-2 programs of various sizes (in numbers of
tokens) both with and without saving the stack before default reductions.

however, is that even without default reductions it is still possible for a reduction
to occur because the next input symbol occurs in the lookahead set'? yet there is
no shift possible on this symbol from the state entered after the reduction. This is
a consequence of the LALR(1) heuristic of merging “similar” states and combining
their lookahead sets. This means it would still be necessary to save the stack before
a chain of reductions. Finally the time for error recovery in the absence of default
reductions is significantly longer. This is because when a state contains a default
reduction the chain of reductions is followed, and then each possible shift from the
resulting state is investigated, while without default reduction each symbol in the
reductions lookahead set will result in a (usually similar) chain of reductions before
making a single shift.

The queue of configurations to investigate can become quite long, so it is impor-
tant that it is implemented efficiently. As specified by the algorithm REC we might
expect to store a copy of the stack, the remaining input, along with inserted/deleted
symbols and total cost.

Clearly it would be difficult to store the remaining input because it is not
available—only the current symbol is available, and then further symbols that the
algorithm may consider deleting will be supplied by the scanner. The solution cho-
sen is to store any symbols returned by the scanner during error recovery in an
array. Each configuration stores the symbols deleted, and when a further deletion
is considered it can be obtained from the array, forcing a further symbol to be
returned from the scanner and stored if necessary. When the recovery is complete,
and control returns to the shift-reduce parsing algorithm, it will need to reuse any
symbols read into this array but not regarded as being deleted by the successful

123ee Aho et al. [1986, p.230] for an explanation of lookahead sets.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 4, July 1995.

682 . Bruce J. McKenzie et al.

40 12 T T T T T Y T 7

30 F
25 +

20

Depth of stack

15

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of tokens parsed

Fig. 5. Size of the parse stack during the parsing of a 216-line, 4659-token Modula-2 program.

Table I. Maximum Size of Stack when
Parsing C and Pascal Programs

Language State stack size
Average | Std Dev | Max

Pascal 20.4 } 9.6 60

C 135 | 105 | 54

recovery.

To assist in deciding how to represent the saved stack in each configuration a
number of experiments were conducted to determine the distribution of stack sizes
encountered during parsing. Figure 5 shows the size of the stack at each point
during the parsing of a 216-line, 4659-token Modula-2 program. For this example
the maximum stack size was 38 states with a mean size of 2346 states.'® Table I
shows the result of parsing a large number of Pascal and C programs, recording
the maximum size of the stack for each. This indicates that on average the state
stack is not extremely large, even though there is a reasonable amount of variation
from the mean.'* This suggests that a complex scheme which avoids duplication
of the similar stacks is not necessary. Although it has the potential to reduce the
space requirements of the algorithm, the added complexity is not justified in the
light of the reasonably small stacks that need be saved. The validation of recoveries
is achieved by retaining the contents of the priority queue and any symbols used
to lookahead when control is returned to the parser. The parser is then allowed to
proceed normally, and each successful shift is counted. If another error occurs before

13 Throughout this article we use the notation 236 for a mean of 23 with a standard deviation
of 6.
4 Bison allocates an 1nitial stack size of 200 configurations.

ACM Transactions on Programming Languages and Systems, Vol 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers . 683

the required number of validated symbels have been shifted, the error recovery
process is restarted with the same priority queue and saved symbols.

A final change was made o the implementation of algorithm REC to improve its
efficiency. This change is not required to guarantee leasi-cost repairs, but it does
result in significantly better repair speeds. During a recovery it is possible for a
sequence of insertions to form a cycle within the DPA. Looking again at the expres-
sion example of the previous section when the erroneous input 1+2 3 4 was parsed,
we see than one of the first few configurations generated by the error recovery was
Enqueue (< 320V, 344 >, "+", ¢, 1). At a later stage the following configura-
tion was queued Enqueue(< 320V, 34 >, "+int+", ¢, 6). This configuration
is identical but of higher cost, and so it {and consequently any of its children) could
be pruned from the priority queue. It could never generate a least-cost recovery
because if it resulted in a recovery the previous configuration would have yielded
one of lower cost. It is also possible that configurations are generated in which the
stack is not identical but has exactly the same top state as a previous configuration
as a result of investigating a cycle in the DPA. These could also be pruned from
the queue because the recovery without the cycle would have a lower cost.

Detection of such unproductive paths was implemented by means of a bitmap
indicating which states had been ensered. The bitmap is shared by all configurations
with the same symbols deleted. The bitmap has a bit for each state in the DPA with
all bits initially cleared and a pointer to it associated with the initial configuration.
When a new configuration is created by inserting another symbol (via a shift or
reduce) the bitmap associated with the configuration is consulted to see if the bit
corresponding to the new top of the stack state is set. If it is set then the new
configuration is discarded. If it is not set then that bit is set, and when the new
configuration is queued a pointer to the same bitmap is associated with it. This
changed bitmap will be shared by all those configurations queued with a common
ancestor. When a configuration involving a fresh deletion is constructed, a pointer
to a fresh bitmap with all bits cleared is assoclated with the queued configuration.
A fresh bitmap is also begun if a reduction reduces the length of the stack below
that which it was for the ancestor configuration when the bitmap was created.
In these later two situations, rcentering the same state again does not necessarily
indicate a loop has been detected.

Removing these unproductive configurations from the queue can have a tremen-
dous influence on the efficiency of recovery. Using C with empty input as an example
then the least-cost recovery involves inserting Ident { }. Given insert costs related
to the length of tokens, using the bitmap technique, this recovery is found after in-
vestigating 43 and queuing 366 configurations. If, however, bitmap loop detection
is not used then the same recovery requires investigating 8586 and queuing 45,276
configurations. The results and timings in the next section are with bitmap loop
detection vurned on.

There is a subtle!® interaction between removing loops and validation. For exam-
ple, a least-cost repair of the C fragment if ¢ = getchar()) = 0)) (assuming
sensible insert/delete costs) with a validation of fewer than seven symbols would
insert a single left parenthesis before the ¢, and a further error would be detected at

15The authors are indebted to one of the reviewers for the following example.

ACM Transactions on Programming Languages and Systems, Vol 17, No. 4, July 1995

684 . Bruce J. McKenzie et al.

Table II. Statistics of CFG for Programming Languages Used in Tests
Giving Number of Terminals (T}, Nonterminals (), and Productions (P)

T N P
Pascal 61 79 | 177
Modula-2 | 72 126 | 248
] 89 102 | 313

Table III. Statistics of DPAs for Programming Languages Used 1n Tests Giving Number of
States {Q), Shifts (S), Normal Reductions on symbols {R,), and Default Reductions (Rg)

Q S Ry Ry
Pascal 323 662 51 195
Modula-2 | 400 481 72 | 275
C 517 | 2398 | 1 ; 354
the {=. If a validation of seven to nine symbols 1s used the least-cost repair inserts

two left parentheses, and the extra closing parenthesis would result in another er-
ror and be deleted. Finally if ten or more symbols are used for validation then the
least-cost repair of inserting three left parentheses is not chosen as this is eliminated
by the bitmap loop detection mechanism.'® In spite of this somewhat unfortunate
interaction between the loop detection heuristic and long validations, the dramatic
improvement in the speed of error repair yielded by the heuristic makes it well worth
while to add to any implementation of the algorithm. Furthermore, examples such
as this are not at all common when a lower validation length is used. In practice
a validation of three symbols appears to give good results—significantly reducing
the number of repairs that immediately result in a further error. Too high a value
runs the risk of combining two distinct errors sogether.

4. RESULTS AND TIMINGS

In this section we present the results of tests on the algorithm implemented in Bison
for a number of programming languages, using student programs containing syntax
errors. All tests were run on a Sparc 10 running at 40MHz. The programming
languages used in the tests were C, Pascal, and Modula-2. Table IT gives statistics
regarding the CFGs used, and Table III gives statistics regarding the corresponding
LALR(1) DPAs produced by Bison.

A measure of the complexity of the search is the branching factor, which is the
average number of alternatives that need be followed from each state during a
recovery. An analytical estimate can be derived from the number of states (Q),
shifts (S), normal reductions on symbols {R,t, and default reductions (Ry), and is
given by

BFA:M<I+@+§§+...) _S5+0hs

Q Q@ @ Q — Ry
An empirical estimate can be obtained by averaging the number of new configura-
tions generated from each state while a collection of sample programs is parsed. If

16The third but not the second parenthesis is regarded as a loop as the first is associated with the
if syntax and the next two as parenthesized expressions.

ACM Transactions on Programming Languages and Systems, Vol 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers . 685

Table IV. Analytical and Empirical (Both with and without Con-
figurations Discarded by the Bitmap Tests) Estimates of the Branch-
ing Factors for the Programming Languages Used in the Tests

BF, | BFg BF},
Pascal 5.2 4£2 342
Modula-2 4.4 8+3 7x4
C 14.7 | 20410 | 18+11

the new configurations that are discarded by the bitmap test are included, the re-
sulting value (BFg) should be more comparable with the analytical estimate, while
the value excluding these (BFy,) is a more realistic measure of the complexity. Ta-
ble IV shows the various branching factors for the languages used in the tests. The
large branching factors for the language C are a consequence of (a) the large num-
ber of operators available in that language and (b) that most configurations of the
language can be expressions.

A collection of 70 Pascal, 135 Modula-2, and five C programs were selected from
programs containing syntax errors that students had submitted for compilation. For
each program, the algorithm was used to attempt an error recovery, and various
properties were measured. For the purpose of these experiments the insert and
delete costs were taken to be the length of the symbol. For variable-length tokens
such as identifiers and strings, a value that was representative of the average length
of such symbols was chosen. Although static costs were used for both insert and
delete costs for efficiency, it would be possible to choose a delete cost for, say, an
identifier, based on its spelling. Table V shows the statistics for a large number
of variables during the compilation of the Modula-2 programs. These generated
273 errors of which 240 could be recovered from and 33 reverted to panic mode
recovery after 1000 configurations had been queued without finding a recovery. A
validation region of three symbols was used. An analysis of the errors that did
not require panic mode processing showed that the majority (63%) produced a
least-cost recovery that was successfully validated immediately. However, some
errors resulted in recoveries being rejected by validation a number of times before a
successful recovery was found. Although the number of rejections before successful
validation was typically low (87% of errors required fewer than nine attempts) some
required a large number (up to 393 attempts) before a recovery that satisfied the
validation criteria was found. The mean number of retries was 10+£40. For the
errors that reverted to panic mode recovery this was usually only after a large
number of potential recoveries had been rejected by validation. The mean number
of retries for this group was 108+45.

As can be seen the mean recovery time is quite modest (0.02 seconds) which
corresponds to parsing around 200-300 tokens without error. For the 12% of errors
where the limit of 1000 configurations queued was reached and panic mode entered,
the recovery time for these averaged 0.20+.03 seconds with a maximum time of 0.29
seconds. If this cutoff point is increased to allow more configurations to be queued
before reverting to panic mode then reverting to panic mode is less common, but
the mean and maximum recovery time increases. There is no upper limit to the
recovery time for most realistic grammars. In the worst case it may be necessary
to delete all remaining symbols after the error symbol and then insert symbols that

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 4, July 1995.

686 . Bruce J. McKenzie et al

Table V. Statistics Collected During Recovery of 240 Synsax Errors in 135 Modula-2 Programs.
These include the number of symbols nserted and deleted in a recovery, the number of states
of the DPA expanded, and the number of these that were unique including the percentage of all
states ever expanded. Also included is the time to recover in seconds, the number of configurations
queued along with the maximum size of the queue during the recovery, and finally information
regarding the number of state bitmaps created, the oumber of bits tested, and those that were
found to be already set.

Symbols DPA States Time | Qued | Max Bitmaps

Ins | Del | Expand Visited(%1 | {S€C) Qlen | Created | Tested Set
Mean 1.1 {09 30.0 28.1 (7.0) 0.0z | 1205 83.3 52.6 | 261.7 61.1
Stddev | 09 | 4.2 67.8 | 23.9 (6.0} 0.04 | 162.2 | 985 137.6 | 437.1 | 132.2
Max 6 62 661 | 125 (31.2) D34 | 961 746 1461 3353 603

; E |
Min 0 0© 2 1(0.2) | 0.00 | 1 E 1 2 5 0 |

Number of mismatched left parentheses
(=)
W
o

0 e i L It 1 Il i Il
0 2 4 6 8 i¢c 12 14 16 18 20
Time o recover using new algorithm (seconds}

Fig. 6. Time to recover (in seconds) from error in C program fragment main() { int x; x = (((
...(0;} as number of mismatched lefi parentheses increases.

complete the input. For example, the C programmain() {int x; x = (((...(0;}
with an arbitrary number of opening parentheses requires an arbitrarily large time
to recover as shown by Figure 6.

Comparison with Fischer’s ECP system is somewhat complicated by the valida-
tion of errors by lookahead. In order to be comparable we need to turn off such
validation in our algorithm. When this is done the error repairs are either identical
(given the same insert and delete costs), or an alternative recovery with the same
cost is chosen. Figure 7 gives a comparison of the time taken for recovery when the
same Modula-2 error is corrected by the two algorithms. This figure represents 207
errors in 87 student programs. The average recovery time is 0.027+0.023 seconds
for Fischer’s ECP program and 0.019£0.026 seconds for the new algorithm. Only
when the recovery requires the insertion of a long string of symbols (and hence a
long search of the parsing DPA) was the recovery time for Fischer’s system signifi-

ACM Transactions on Programming Languages and Systems, Vol. 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers . 687

= 03 : ; ; ; n
e
=]
15} P
Q -~
£ 025 + .
£
s
5 02 F L]
S
<
dg)
5 0.15 4
£
@ -
S
5 01t L7 1
>
e 005t 1
2 2
P

= o LO®- ;e . u . i

0 0.05 0.1 0.15 02 0.25 03

Time to recover using ECP algorithm (seconds)

Fig. 7. Comparison of time to recover {in seconds) from the same 207 errors in 87 Modula-2
student programs using Fischer’s ECP and the method proposed in this article. The radius of the
circle is proportional to the number of programs it represents. The largest represents 50 programs,
the next 40, down to the smallest which represent only a singie program. Points below the line
represent programs for which our new algorithm recovers more quickly than Fischer’s algorithm.

cantly lower. The implementation used for ECP was a Pascal program distributed
by Mauney and Fischer in 1983 while our Bison-based implementation is written
in C, so these times should be treated with some care.

5. CONCLUSIONS

A new algorithm for recovering from syntax errors in shift-reduce parsers using the
information from the parsing DPA itself to find a least-cost recovery has been pre-
sented. The algorithm has been tested on a number of realistic grammars including
those for the programming languages C, Modula-2, and Pascal and was found to
work well. As the time to find the recovery has no upper bound it is necessary to
combine the algorithm with another recovery technique such as panic mode error
production recovery in any practical implementation.

A version of a driver for the parser generator system Bison has been produced
which implements the algorithm and is available via WWW.17 By default this uses
the length of the token as both the insert and delete costs and so can be used as
a replacement for the normal standard Bison driver program without any other
change. Although these default costs result in quite reasonable recoveries it is
straightforward for a more sophisticated user to override these defaults with their
OWIL COStS.

7URL http://www.canterbury.ac.nz/ bruce/ErrorRepair.html

ACM Transactions on Programming Languages and Systems, Vol 17, No 4, July 1995.

688 . Bruce J McKenzie et al.

ACKNOWLEDGMENTS

The authors wish to thank Tim Bell and Jane McKenzie for their careful reading
of drafts of this article and the anonymous referees for their helpful observations.

REFERENCES

AHO. A. V. AND PETERSON, T. G 1972. A minimal distance error correction parser for context
free languages. SIAM J. Compui. 1, 305-312.

AHO, A V , SETHI, R, AND ULLMAN, J D. 1986. Compilers Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass

ANDERSON, S. O. AND BackHoUSE, B, C 1981. Locally least-cosi error recovery in Earley’s
algorithm. ACM Trans. Program. Lang. Syst. 3. 3, 318-347,

ANDERSON, S. O., BACKHOUSE, R. C., BuGGg, E H., AND STIRLING, C. P. 1983. An assessment
of locally least-cost error recovery. Comput. J. 26, 1, 15-24.

BACKHOUSE, R. C. 1981. Two global data flow analysis problems arising in locally least-cost
error recovery. Tech. Rep. 14, Dept. of Computer Science, Heriot-Watt Univ., Edinburgh,
Scotland.

CORBETT, R AND STALLMAN, R. 1991. Bison: Gnu parser generator. Texinfo documentation,
Free Software Foundation. Cambridge, Mass.

Dion, B A. 1978. Locally least-cost error correctors for context-free and context-sensitive
parsers. Ph.D. thesis, Tech. Rep. 344, Univ. of Wisconsin-Madison, Madison, Wisc.

FEYCOCK, S. AND LAZARUS, P. 1976. Syntax-directed correction of syntax errors. Softw. Pract.
Ezper. 6, 207-219.

FisceErR, C N. aNDp LEBLanc, R. J. Jr. 1988. Crafting a Compiler. Benjamin/Cummings,
Menlo Park, Calif., sect. 17.2.

FiscHER, C. N. AND MAUNEY, J. 1980. On the role of error productions in syntactic error
correction. Comput. Lang. 5, 131-139.

FiscHER, C. N. AND MAUNEY, J. 1992. A simple, fast, and effective LL(1) error repair algorithm.
Acta Informatica 29, 109-120.

FiscHER, C. N., Dion, B. A , AND MAUNEY, J 197%a A locally least-cost LR-error corrector
Tech. Rep. 363, Univ. of Wisconsin, Madison, Wisc

FiscHER, C. N., MiLToN. D. R., AND MaUNEY, 1. 1979b. A Jocally leasi-cost LL(1) error
corrector. Tech. Rep. 371, Univ ot Wisconsin. Madison, Wisc.

FiscHER, C. N., MittoN, D R., AND QUIRING, S B 1980. Efficient LL(1) error correction and
recovery using only insertions. Actae Informatica 13, 141-154.

GROSCH, J. 1990. Efficient and comfortable error recovery in recursive descent parsers. Struct.
Program. 11, 3, 129-140.

Irons, E. T. 1963. An error-correcting parse algorithm. Commun. ACM 6, 669-673.

James, L. R. 1972. A syntax directed error recovery method. M.S. thesis, Computer Systems
Research Group Tech. Rep. CSRG-13, Univ. of Toronto, Toronto, Canada.

Jounson, § C. 1975. Yacc: Yet another compiler-compiler. Computer Science Tech. Rep. 32,
Bell Laboratories, Murray Hill, N.J.

KREUTZER, W. AND McKENzIE, B. J. 1991. Programming for Artificial Intelligence: Methods
Tools and Applications. International Computer Science Series. Addison-Wesley, Reading,
Mass.

LAFRANCE, J. E. 1971. Syntax directed error recovery for compilers. Ph.D. thesis, Illiac IV
Doc. 249, Univ. of Illinois, Urbana-Champaign, Il

LeNtus, R. P 1970. Error detection and recovery for syntax directed compiler systems. Ph.D.
thesis, Univ. of Wisconsin-Madison, Madison, Wisc.

LEVY, J. P 1971. Automatic correction of syntax errors in programming errors in programming
languages. Ph.D. thesis, Tech. Rep. TR 71-116, Cornell Univ., Ithaca, N.Y.

Lyon, G. 1974. Syntax-directed least-errors analysis for context-free languages: A practical
approach. Commun. ACM 17, 3-14.

ACM Transactions on Programming Languages and Systems. Vol 17, No. 4. July 1995

Error Repair in Shift-Reduce Parsers . 689

MAUNEY, J. 1982. Least-cost ervor repair using extended right contexs. Tech. Rep. 495, Univ.
of Wisconsin, Madison, Wisc.

MAUNEY, J. aND Fi1scHER, C N. 1980. An improvement to immediate error detection in strong
LL(1) parsers. Tech. Rep. 392, Univ. of Wisconsin, Madison, Wisc.

RreLEY, G. D. AND Druseikis, F. C. 1976. A statistical analysis of syntax errors. Comput.
Lang. 3, 227-240.

ROHRICH, J. 1980. Methods for the auvomatic construction for error correcting parsers. Acta
Informatica 18, 115-139.

SIppPU, S. AND SOISALON-SOININEN, E. 1980a. A scheme for LR(k) parsing with error recovery:
Part I: LR(k) parsing. Int. J. Comput. Math. 8, 27-42, sect. A.

SippU. 8. AND SOISALON-SOININEN, E 1980b. A scheme for LR(k) parsing with error recovery:
Part II: Error recovery. Int. J. Comput. Math. & 107-119, sect. A.

SIPPU. S. AND SOISALON-SOININEN. E 1980c. A scheme for LR(k) parsing with error recovery:
Part [II: Error correction. Int. J. Comput Math. 5 189-206, sect. A.

Received August 1994; revised February 1995; accepted May 1995

ACM Transactions on Programming Languages and Systems, Vol. 17, No 4, July 1995.

