
Error Repair inShift-ReduceParsers

BRUCE J. MCKENZIE, COREY YEATMAN, and LORRAINE DE VERE

University of Canterbury

Local error repair of strings during C!FG parskg requires the insertion and de~etion of syrnbok in

the region of a syntax error to produce a string that k error free. Rather than precalculating tables

at parser generation time to assist in finding such repairs, this article shows how such repairs can

be found during shifk-reduce parsing by using the parsing tables themselves. This resu~ts in a

substantial space saving over methods that require precalculated tab~es. Furthermore, the article

shows how the method can be integrated with Iookahead to avoid finding repairs that immediately

result in further syntax errors. The article presents the resuks of experiments on a version of the

LALR(l)-based parser generator Bison to which the algorlthm was added.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compdem;

parsing; translator writing systems and compiler generators

General Terms: Algorithms, Languages, ‘Theory

Additional Key Words and Phrases: BMon, error recovery, least cost, shift-reduce, Yacc

1. INTRODUCTION

The problem of correcting and recovering from syntax errors during context-free

parsing has received much attention [Feycock and Lazarus 1976; Fischer and Mauney

1980; 1992; Fischer et al. 1980; Grosch 1990; Irons 1963; .James 1972; LaFrance

1971; Leinius 1970; Levy 1971; Lyon 1974; I%pley and Druseikis 1978; Rohrich 1980;

Sippu and Soisalon-Soininen 1980a; 1980b; 1980c]. Given a context-free grammar

(CIFG) and an invalid string se,r. = tltz . Llt,te+l . . . tn we can identify an “er-

ror symbol” t, which is the first symbol at which the error could be detected by a

left-to-right scan of the string. This means the substring tl rb . . . t,–1 is the prefix

of some valid string tltz . . . t._l . . . of the language while there is no valid string

tltz. ..te . . . that includes the error symbol.

Recovery methods that “repair” the input to construct a string that is valid

according to the grammar can be divided into “local” or “global” error repair

methods. A local repair only involves changes to the substring tete+l . . . t~ while

a global repair allows the possibility that the symbols before the error symbol

may also be changed ‘by the repair. Local repairs have less impact on the parser

enwronment as there is no need to revoke earlier parsing decisions such as syntax

tree construction during the repair process. The repair method investigated in this

article involves only local repair,

Authors’ address: Department of Computer Science, Umversity of Canterbury, Private Bag 4800,

Christchurch, New Zealand; email: B. McKenzie@ cosc.Canterbury. ac.nz.

Permlsslon to make digital/hard copy of all or part of this material without fee 1s granted provided
that the copies are not made or distributed for profit or commercial advantage, the ACM
copyright/server notice, the title of the pubhcation. and Its date appear, and notice 1s given that
copying IS by permmslon of the Association for Computing Macb]nery, Inc. (ACM) To copy otherwise, to

republish, to post on servers, or to redmtr-lbute to hsts requmes prior specific permission and/or a fee

631995 ACM 0164-0925/95/0700-0672 $0350

ACM Tran&act,ons on Programmmg Languages and Systems, Vol 17, No .!, July 1995, Pages 672-689

Error Repair in Shift-Reduce Parsers . 673

More than a single repair of an invalid string is usually possible, and some way

of deciding among these is required. A particular class of repair involves minimal-

distance orleast-cost recovery [Mm and Petersor~ 1972; Anderson and 13ackhouse

1981; Anderson et al. 1983; Ilackhouse 1981; 13ion 1978]. ‘These involve associating

an insert/delete cost with each symbol that is inserted in or deleted from the invalid

string. The repair with the lowest. total cost is then chosen. Such a strategy is

applicable to both local and global repair, but the overheads of minimizing the cost

globally over the whole invalid string are so high that it has only been applied to

local repairs.

Error repair methods associated with parser generation systems require differing

levels of interaction by the user of the generator. Some are completely automatic

or require the user only to supply insert/delete costs. At the other extreme the

user may be required to provide extra information such as the “error productions”

available in Bison [Corbett and Stallman 1991] and Yacc [Johnson 1975]. Unfor-

tunately, providing such productions requires extensive knowledge of shift-reduce

parsing and is something of a ‘(black ar~.”

The approach of Fischer and Ivlauney and others [Fischer and LeBlanc 1988;

Fischer and Mauney 1980; 1992; Fischer et al. 1979a; 1979b; 1980; Mauney and

Fischer 1980] which was used in their LL(’1)-based FMQ and LALR(l)-based ECP

parser generators is closest in spirit to the method proposed in this article. They

employ user-supplied symbol insert /delete costs to precalculate for a given CFG

the tables S(A) and 13(A, a) for each nonterminal A and terminal a. These tables

represent the least-cost string of terminals that can be generated from the nonter-

minal A and the least-cost prefix stringz (if any) that can be generated from the

nonterminal A that contains the terminal a.

For an LL(l) parser the parsing stack contains a prediction of the remainder of

the input as a stack of terminal and nonterminal symbols. For each symbol X on

the stack, the entry 13(X, t...) will give the least-cost insertion (if any) that can be

inserted before the error symbol to allow a correct repair. If no such string exists

then S(X) can be inserted and the next stack symbol used. After the least-cost

insertion (if any) is found that allows the parser to continue with symbol t...,the

whole process can be repeated with symbol it.rr+l, adding the deletion cost of the

error symbol to the insertion possible with the error symbol deleted. This process

is repeated with subsequent symbols until least-cost recovery is determined. In

this way the least-cost combination of inserting and deleting symbols to allow the

parse to continue can be found and thus used to repair the error. A similar method

is used for LALR(l)-based parsers, but in addition to S(A) and E(A, CL), tables

giving the predecessor state for each item in a parse state must be stored enabling

all possible paths through the parsing DFA to be followed using the state stack of

the LALR(1) parser.

The tables that need to be precomputed and stored3 to assist in the repair are

quite large, especially for the LALR(l)-based parser generators, owing to the large

~e. g., S(A) n z such that .4 +“ z and Cost(z) is minimized.

‘e.g., E(A, a) = x such that A + zay and Cost(z) is minimized.
3Alte~natively s(A) and E(A, a) can be calculated on demand and cached to avoid unnecessary

recomputation [Fischer and Mauney 1992/.

ACM Transactions on Programming Languages and Systems, Vol 17, No. 4, July 1995.

674 . Bruce J. McKenzie et al.

number of states. The EXH? implementation, for example, was forced to hold these

cm external storage rather than hokl them in memory.4 A more serious problem iS

that then-e is Ho validation of the em-or repair. So, although the repair is guaranteed

to accept the next input symbol, another error may occur immediately on the

following symbol, and potentially an avalanche of errors can result.

The problem of avalanche errors can be lessened by validating the correction.

This is known as regionally least-cost repair [Mauney 1982], where the cost is min-

imized within a fixed-sized region of the program. W?/ectively this requires the

repaired string to be correct for at least L tokens after the error. Choosing a region

s~ze of say L = 5 was found to improve significantly the quality of error repair. An

exterxsion of the FMQ a~gorithm to incorporate such validation is possible [Fischer

and Mauney 1992].

This article describes an algorithm for shift-reduce parsers that produces repairs

identical to that produced by the Fischer algorithm and allows the repair to be vali-

dated using an arbitrary region size of L symbols, but requires no additional tables.

The algorithm is presented in the next section with details of the implementation

within the LALR(I) parser generator 13zson [Corbett and Stallman 1991] presented

in Section 3. Detailed results and timings are presented in Section 4, and the final

section presents our conclusions.

2, NEW ALGORITHM

A shift-reduce parser for a string of symbols from a CFG consists of a determinis-

tic parsing automata (DPA) and a stack, initially empty, of states from the DPA.

Variations such as SL(l), LR(1), or LALR(I) result in different DPA for the same

grammar, but these variations are not important in our context as the algorithm we

present is equally applicable to all of these. The DPA is a function, d(state, symbol),

consisting of entries:

shift q shift to state q

reduce A + a reduce using a production

accept accept input and halt

error error in input,

The basic shift-reduce algorithm uses the symbols to make shift and reduce moves

based on the DPA until the string is accepted (i.e., it can be generated by the CFG)

or an error occurs. Algorithm S7? in Figure 1 expresses this using operations on

a configuration < stack~, remaining input 4 > .5 In any practical implementation

the remaining input will be implicit, and each successive symbol will be supplied

when required by calling a %canner. q’ Algorithm S7? is expressed in this somewhat

unconventional manner to simplify the explanations of the error recovery algorithm.

When an error is encountered the basic algorithm terminates the parse with a

suitable error message,

If the CFG is augmented by error productions~ then when an error is encountered

the stack is investigated for states allowing a shift or (nondefault) reduction on

4For ~xamp~e the tables for a ModuIa.2 grammar require 111 KB when stored in their binary form.

5V and ~ represent the bottom of stack and end of input respectively.

‘These are productions containing a special “error” symbol such as “decl+error ;.”

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No. 4, July 1995

Error Repair in Shift-Reduce Parsers . 675

con fig := <q07, s+>,

loop

let < qlq2 . . . v,tlt2 ..+> =Config;

case J(ql,tl] of

shift qs:

con fig := < q.ql~~ . ..7. t2 . ..4 >;

reduce A + a:

let 1 = length of a;

Iet q, = d(q~-+~, A);

config := < qvql+iq[+z . ..7. t~tz . . ~ >;

accept:

HALT;

error:

EIALT;

end;

end

–- accept input

–- error in input

Fig. 1. AIgorithm LYR: Basic shift-reduce parsing.

“error.)’ The stack is cut back to such a state, the shift or reduction on “error”

performed, and then symbols in. the input (including the error symbol) skipped

until one is found that allows a shift or reduction in this state before the parse

is allowed to continue. In practice this is usually augmented to require not just

a single symbol, but a number (say three) can be shifted successfully after the

recovery. If another error occurs before this number of valid shifts occurs then the

stack is again stripped back to an error state and further symbols discarded. This

is repeated if necessary.

h this article we propose that the recovery be obtained by searching the DPA it-

self to find a suitable configuration to allow the parse to continue. For each terminal

symbol t from the (3I?G we assume the existence of positive insert (1(t)) and delete

(D(t)) costs. The recovery technique is presented in algorithm %iXC of Figure 2. It

maimains a priority queue of configurations augmented with the symbols inserted

(iliz . . .), symbols deleted (dldz . . .J, and the total insert/delete cost (~j ~(i~) +

~~ ~(d~)). The queue is initialized and emptied with Clear Queue. configurations

are im.serted into the queue with the procedure Enqueue, and Delet eMi.n removes

the least-cost configuration.7

The major features of the algorithm involve beginning with a configuration of the

stack and remaining input when the error is detected (cost zero) on the queue and

successively investigating “moves” from the least-cost configuration in the queue.

This ensures that (a) the “state space” (in the sense of Kreutzer and McKenzie

[1991]) is investigated in a “breadth-first” and “least-cost” manner and (b) a least-

cost recovery will be obtained.

For each configuration retrieved from the queue without deletions, all possible

transitions from the state at the top of the stack are added to the queue for sub-

7For ~ma~l ~ueue~ ~ sorted list with the mimmurn at the front would Suffi% whi~e for larger queues

a heap or some other priority queue would be more efficient.

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No. 4, July 1995.

676 . Bruce J. McKenzie et al.

-— Routines to manipulate a przovity queue of augmented configurations

procedure CHearC@eue; . . initialize queue and set empty

procedure Enqueue(< stbckV, input-l >,inserted,deleted, cost);
-- znsert new configuration into queue

function IleleteMino (< stackV, zn.pwt-i > ,inserted,deleted, cost);
-. remove least-cost configuration jrom queue

function Fkcover(< stack,vv~, input,., + >) < stackn.W 7, inputn.W + >,
begin

ClearQueue;

Enqueue(< stack,,,~, input,rri >, c,c,O);

while queue is not empty do

let (< qlqz qnV, t~tz . . . t~+ >, ~, A,cost) = DeleteMino;

if A = e then

foreach t ~ T do

case 6(ql, t) of

shift q,:

Enquetie(< q,qlqz . . . q~V, t~tz . . . t~~ >, r.t,A,~ost+I(t));

reduce A -+ o:

DoReduce(qlq2 . q~, -.4 + at, tIt2 $~, ~,~,~ost);

otherwise: ; -- do nothing for error and accept

end;

end;

end;

Enqueue(< qlq2 . . qnV, t2 t~l >, ~,~.t~,cost+D(tl));

if J(ql, tl) # error then

return < qlq2 . qnV, ‘tltz . . ~m+ ~ ‘- ‘inserted ‘I” and deleted ‘~’ to recover

end;

end;

FL4LT; -- unable to recover – empty queue

end Recover:

procedure Dolleduce(qlqz . qm)A + a,t, tltg tm)r,A,~Ost);
begin

let Ien = length of a;

let q~.W = J(ql.n+l , A);
case d(qn.W, t) of

shift q3:

Enqueue(< q.qnewqi,n+~ q~V, tIt2 t~+ >, r.t)A,cost+I(t));

reduce Al + a?;

DoReduce(q~eWql. n+~ ~. q~, A’ + d,t.tltz. tm,r,A,cost);
otherwise:

return ; -— error—add nothing to queue

end;

end DoReduce,

Fig. 2. Algorithm 7Z&C: Recovery by “searching” the DPA for least-cost insertions and deletions

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No 4, July 1995

Error Repair in Shift-Reduce Parsers . 677

sequent investigation. For shifts the new configuration is obtained by pushing the

new state onto the stack, adding the symbol to those inserted, and adding the insert

cost of the symbols. l%ductions are weated by following any sequence of reductions

first and then making a final shift before the new configuration is queued again,

adding the symbol to those inserted and adding the insert cost.

Finally, a delete configuration k constructed from the least-cost configuration by

deleting the first symbol of the remaimng input, adding it to those deleted, and

accounting for the delete cost of the symbol. A configuration already involving

deletions is not investigated for further possibie insertions to avoid duplication of

effort. For example the sequence “insert ~~, dekxe dl, and then insert iz” results

h. exactly the same configuration as the. sequence “insert il, insert iz, and then

delete dl .“ Wherr there are a number of least-cost recoveries with the same cost.

the recovery chosen will vary depending on the order in which Delet el$in returns

configurations with the same cost. If, for example, it maintained a sorted queue and

inserted such configurations afie~ configurations of the same cost then the recovery

involving fewer deletions would be favored. If, however, the opposite strategy of

inserting before configurations with the same ccm was chosen, recoveries with more

deletions would be favored. In the implementation discussed in the nex~ section

the former approach is taken, discriminating against deletions.

After all these new configurations have been queued then the least-cost config-

uration is checked to see if it is a possible recovery. If it is then we return the

resulting configuration as a recovery and allow the parse to continue.

In practice a couple of useful improvements can be made to algorithm 7i!&C.

First, instead of HALT@’ when the queue is empty it is possible to revert to the

error production recovery method.

The second improvement is to augment the algorithm with a validation of repairs

similar to that employed by the error production method. If another error occurs

too soon after returning from the error recovery procedure then the algorithm is

reentered to find the next least-cost recovery. This is repeated until a recovery that

a~~ows the parser to continue for at least (say) three syrnbds ~S found. This rewires

that the queue is kept until such a recovery is located.

A small example is useful to show the steps in the recovery of a simple error. Clon-

sider the LAL12(I) DPA for the simple-expressior~ grammar E + ,E+131 E*El-E-El

int in Figure 3.8 When the input 1+2 3 4 is parsed using the shift-reduce algo-

rithm of Figure 1 the successive configurations are: < OV, 1 + 234+ >, < 10V,
+2344 >.< 20V, +234-1 >, < 320V, 2344>, and < 1320V, 34-I > at which point

an error-is detected. Let us assume that we have insert costs of 1(+) = 1, 1(*) = 2,

1(”) = 3, l(int) = 4, and delete costs equal to the insert costs, (D(z) = 1(z)), for

each symbol. Upon detection of the error an initial configuration is added to the

queue by the call

Enqueue[< 1320V, 344>, c, c, 0).

When this configuration is removed from the queue it generates four new configu-

rations which will be queued in the order shown:

[< 1320V, 34+ >, E, e, 0) + Enqueue(< 320V, 34+ >, “+”, e, 1)

‘Precedence ancl associativity of the operators have been used to resolve shift-reduce and reduce-

.reduce conflicts arising from the ambigui Ly d’ the grammar.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 4, July 1995.

678 . Bruce J. McKenzie et al.

+ Enqueue(< zKis207, W-i >, “*” , e, 2?)

+Enqueue(< 56320V, 34-i >, “-”, 6, 3]

-+ Enqueue[< 1320V, 4+>, e, “3”, 4).

Removing the least-cost configuration from the queue generates:

(< 320va 34+ >, “+”9 c, 1) -+ Enqueue(< 1320V, 34+ >, “+int” , e, 5)

-+ Enqueue(< 320V, 4+ >, “+”, “3”, 5).

And then because it is possible to shift “ 3” in state 3 a recovery is attempted. This

will result in a further configuration < i320V, 4-! >, and another error is detected

before three symbols have been successfully shifted. As a result this recovery is

abandoned, and the next configuratiori from the queue is tried instead. Similar

unsuccessful recoveries will result from this and the next configuration which will

also add configurations with total costs 6 arid 7 to the queue. When the next

configuration is removed it generates:

(< 1320V, 4+ >, e, “3”, 4) + Enqueue(< 1320V, i >, e, “3 4“, 8).

There are now two configurations with a cost of 5 in the queue, namely, (< 1320’7,

34-I >, “+int,”, c, 5) and (< 320V, 4+ >, “+”, “3”, 5). The first of these

generates four new configurations:

(< 1320V, 34ti >, “+int”, e. 5)+ Enq,ueue(< 320V, 34+ >, “+int+”, e, 6)

4 I%queue(< 46320V, 34+ >, ‘i+int*” , c, 7)

-+ Knqueue (< 56320V, 34+ >, “+int-” , c, 8)

d Enqueue(< 132071 4-I >, “+int” , “3” , 9].

The other configuration with cost 5 generates the single configuration:

(< 320V, 44>, “+”, “3”, 51 -+ Enqueue(< 320V, -i >, “+”, “3 4“, 9)

and then discovers the possible recovery from state 3 on input symbol “4”. This

results in successive configurations < 320V. 4+ >, < 1320V, --i >, < 6320V, + >,

< 20V, -i >, < 920V, 4 >. The final configuration is an ACCEPT configuration,

and so a least-cost recovery has ‘been found which involved deleting the “3” and

inserting a “+” correcting the input from ‘LI+2 3 4“ to “1+2+ 4.”

It is not difficult to prove that the algorithm T3SC results in a valid least-cost

recovery. The algorithm investigates every possible series of symbols that can be

inserted and deleted at the point of the error The only transitions made are exactly

those that would be made if such symbols had actually been encountered in a string.

Because the queue returns configura~ions in order of increasing cost, a least-cost

recovery will be found.

It is interesting to note that T& algorithm will be able to recover from any

possible error. This is because it has the potential to delete every symbol after the

error and replace them (insert) with any sequence of symbols. Because the symbols

up to the error symbol are a valid prefix of some valid string, then it is always

possible to insert symbols that would allow recovery. In spite of this it may be that

the computation and space requirements of this are excessive in practice.

3. IMPLEMENTATION

In this section we give details of incorporating the error recovery algorithm into

Bison [Corbett and Stallman 1991], a widely available LALR(l)-based parser gen-

erator, to determine the practicality of the algorithm. This parser generator con-

sists of a program to process the grammar and output the DPA and a fragment

ACM Transactmns on Programming Lan@ages and Systems, Vol. 17, No. 4, July 1995.

Error Repair in Shift-Reduce Parsers . 679

Accept

Q9 EN
<

int

E--+int

1 if {+,*1-.-3}

Fig 3. LAIR(I) parsing DFA for

Simple-Expression Grammar.

E-+E+E E+E*E E-+ E-E

if {+,-l} if {+,*,+] if {+,*,+}

An

of constant

algorithms.

experiment

section and

code that implements the shift-reduce and error production parsing

The scanner is supplied separately by the user. It was possible to

with our error recovery method by only changing the constant code

not making any alteration to the program that generates the DPA.

A consequence of this is that it will be a, simple matter to update any existing

Bison-generated system to the new error recovery method.

The description of both the shift-reduce (algorithm S7?) and error recovery (al-

gorithm R&C) algorithms given in the previous section is somewhat idealized. An

implementation based on these descriptions would ‘be extremely expensive in both

space and time. Bison, like many shift-reduce parsers, does not maintain an explicit

< stackV, remaining input+ > configuration. Rather the stack is treated as global,

and the remaining input is implicit. At any stage only the current input symbol

is available, and only after a shift operation is the scanner called to yield the next

input symbol. Both of these considerations clearly complicate the implementation

of the error recovery algorithm, which assumes such configurations exist and are

easily queued and manipulated.

A further complication (which is ako applicable to many other shift-reduce sys-

tems) is that the DPA function, d(q, a), is held in a highly compressed state to save

space. A variation of row displacement encoding [Aho et al. 1986, PP.144–146],

combined with the use of defaults [Aho et al. 1986, pp.244–247] is used. Although

this yiekk a very significant compaction of the shift-reduce parsing tables without

a significant penalty in parse time, it does significantly complicate the extraction
of the DPA function. In particular, it is not possible to limit investigation to only

“valid” transitions from a state. Rather it is necessary to try all possible values

of a to find the valid moves d(q, a). Experiments were conducted to determine if

ACM TransactIons on Programming Languages and Systems, Vol 17, No. 4, July 1995

680 . Bruce J. McKenzie et al

it was worthwhile w extract the complew DPA or at least extract and cache the

transitions for a state at a time during recovery. However only a few states were

normally needed for most recoveries, and axound half the states have only a single

default reduction. Furthermore, because decoding the DPA is fast,g it is easier LO

decode each state as required.

Another consequence of the compaction of the DPA table by means of de-

fault reductions is that error detection can be delayed. In particular if the input

tltz . . . t. . . . is parsed using a DPA without default reductions the error t. will be

detected in state q where d(q, t. j = error. If, however, there is a default reduction

associated with state q then the reduction will be made (and possible further default

reductions), and. when the error is detected 10 the stack wiH have ‘been altered. For

example consider the parsing DI?A for the simpIe-expression grammar of’ I?igure 3.

If this was compacted then all four reductions would becomle default reductions.

In the previous section when the example string 1+2 3 4 was parsed an error was

detected in the configuration < 13241V, 344 >. With default reductions the error

would not be detected until after the reductions in state 1 (giving < 6320V, 34+ >)

and in state 6 (giving < 207, 343 >) had been made.

When the error recovery algorithm is started it is important that the stack be

the one existing before the default reduction(s) was (were) made. Although for

the 1+2 3 4 example described above it would make no difference; it would have

done so if the insert cost for “+” had been higher than that of “*” rather than the

reverse. In such a case the least-cost recovery chosen would have been to delete

“3” and insert “*” giving 1+2*4. However the reductions made would correspond

to (1+2)*4 rather than the correct 1+(2*4). Although this example merely results

in a semanticaHy incorrect recovery, in other examples default reductions can mean

the least-cost recovery is missed. II Hence to al]ow all possible error recoveries to

be considered it is necessary to begin reco’very from the configuration that existed

before the last chain of default reductions was made.

This requires that the shift-reduce algorithm be augmented to save the state of

the stack before each default reduction is made in case an error is detected. ‘This is

unfortunate as it will tend to slow the parsing of error-free inputs. Figure 4 shows

the time taken to parse Modula-2 programs of various sizes (measured in symbols)

with and without saving the stack before default reductions. The trend lines in this

figure show that the parsing speed is reduced from 14600 to 10300 tokens/see.

An alternative to saving the s~ack before a series of default reductions would be

to avoid them altogether by no~ compressing the parse tables in this way. This

has a significant space penalty. For example the parsing LALR(1) DFA tables

for ModuIa-2 have 400 default reduction entries, and if these are removed the 457
action entries (shifts and explicit reductions) increase to 3332. Of more concern,

9Decoding a single state requires about 70 microseconds on a Spare 10 running at 40MHz, averaged

over all states in DPAs for the Pascal, Moduk2, and C languages, Decoding states contributes

only 7.70 of the error recovery t line.
~o~he error WiH always be detected before the error symbol t, is shifted.

11For examP~e, consider a small addition 10 the expression grammar so tb grammar rule ~ + E+E

became E -+ E+optE with opt + [] le. When parsing the input 1+] 2 with default reductions the

error is not detected tmti~ after the reduction opt --+ c has already been committed, and so the

recovery of inserting [is no longer available.

ACM TransactIons on Programmmg Languages and Systems, Vol. 17. No -1, July 1995

Error Repair in Shift-Reduce Parsers . 681

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

1
.,,

withsave ~ ~:-6’
(10300 tolamslsecond)------ .,- ~

No save ~ ,W

(14600 tokenskecond)
~ *O,,,,’”0 .

--- “1
+ ..

+
+

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Size of program (tokens)

Fig. 4. Time (in seconds) to parse error-free Modula-2 programs of various sizes (in numbers of

tokens] both with and without saving the stack before default reductions.

however, is that even without default reductions it is still possible for a reduction

to occur because the next input symbol occurs in the lookahead set~2 yet there is

no shift possible on this symbol from the state entered after the reduction. This is

a, consequence of the IMLR(1) heuristic of mergi~g “similar” states and combining

their lookahead sets. This means it would still be necessary to save the stack before

a chain of reductions. l?inaHy the time for error recovery in the absence of default

reductions is significantly longer. This is because when a, state contains a default

reduction the chain of reductions is followed, and then each possible shift from the

resulting state is investigated, while without default reduction each symbol in the

reductions lookahead set will result in a (usually similar) chain of reductions before

making a single shift.

The queue of configurations to investigate can become quite long, so it is impor-

tant that it is implemented efficiently. As specified by the algorithm RXC we might

expect to store a copy of the stack, the remaining input, along with insertedfdeleted

symbols and tot al cost.

Clearly it would be difficult to store the remaining input because it is not

available—only the current symbol is available, and then further symbols that the

algorithm may consider deleting will be supplied by the scanner. The solution cho-

sen is to store any symbols returned by the scanner during error recovery in an

array. Each configuration stores the symbols deleted, and when a further deletion

is considered it can be obtained from the array, forcing a further symbol to be

returned from the scanner and stored if necessary. When the recovery is complete,

and control returns to the shift-reduce parsing algorithm, it will need to reuse any

symbols read into this array but not regarded as being deleted by the successful

Izsee Aho et al. [1986, p.230j for an explanation of lookahead sets.

ACM Transactions on Programming Languages and Systems, Vol. 17, No, 4, July 1995.

682 . Bruce J. McKenzie et al.

35

30

25

20

15

10

5 I

o
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of tokens parsed

Fig. 5. Size of the parse stack during the parsing of a 216-line, 4659-token ModuIa-2 program.

Table 1. Maxm-mrn Size of Stack when

Parsing C and Pascal Programs

Language State stack size

Average Std Dev Max

Pascal 20.4 I 9.6 60

c 13.5 \ 10.5 54

recovery.

To assist in deciding how to represent the saved stack in each configuration a

number of experiments were conducted to determine the distribution of stack sizes

encountered during parsing. Figure 5 shows the size of the stack at each point

during the parsing of a 216-line, 4659-token Modula-2 program. For this example
the maximum stack size was 38 states with a, mean size of 23*6 states. 13 Table I

shows the result of parsing a large number of Pascal and C programs, recording

the maximum size of the stack for each. This indicates that on average the state

stack is not extremely large, even though there k a reasonable amount of variation
from the mean.lz This suggests that a complex scheme which avoids duplication

of the similar stacks is not necessary. Although it has the potential to reduce the

space requirements of the algorithm, the added complexity is not justified in the

light of the reasonably small stacks that need be saved. The validation of recoveries

k achieved by retaining the contents of the priority queue and any symbols used

to lookahead when control is returned to the parser. The parser is then allowed to

proceed normally, and each successful shift is counted. If another error occurs before

~~~hroughout this article we use the notation 23iE6 for a mean of 23 with a standard deviation

Of 6.
14 ~t~on a~]ocate~ an ~njtial stack size of 20CI cOTfgu~2i~~om.

ACM Transactions on Programmmg Languages and Systems, VOI 17, No 4, July 1995



Error Repair in Shift-Reduce Parsers . 683

the required number of validated symbols have been shifted, the error recovery

process is restarted with the same priority queue and saved symbols.

A final change was made to the implementation of algorithm 7?&C to improve its

efficiency This change is not required to guarantee least-cost repairs, but it does

result in significantly better repair speeds. During a recovery it is possible for a

sequence of insertions Lo form a cycle within the DPA. Looking again at the expres-

sion example of the previous section when the erroneous input 1+2 3 4 was parsed.

we see than one of the first fear configurations generated ‘by the error recovery was

IZnqueue (< 320V, 344>, “+”, E, ~). At a later stage the following configura-

tion was queued F.nqueue ( <3207, 34-I >, “+int+”, f, 6). This configuration

is identical but of higher cost, and so ii (and consequently any of its children) could

be pruned from the priority queue. It could never generate a least-cost recovery

because if it resulted in a recovery the previous configuration would have yielded

one of lower cost. It is also powible that configurations are generated in which the

stack is not identical but has exactly the same top state as a previous configuration

as a result of investigating a cycle in the DPA. ‘These could also be pruned from

the queue because the recovery without the cycle would have a lower cost.

Detection of such unproductive paths was implemented by means of a ‘bitmap

indicating which states had been en~ered. ‘The birmap is shared by all configurations

with the same symbols deleted. The bitmap has a bit for each state in the DPA with

all bits initially cleared and a pointer to it associated with the initial configuration.

When a new configuration is created by inserting another symbol (via a shift or

reduce) the bitmap associated with the configuration is consulted to see if the bit

corresponding to the new top of the stack state is set. If it is set then the new

configuration is discarded. If it is not set then that bit is set, and when the new

configuration is queued a pointer to the same bitmap is associated with it. This

changed bitmap will be shared by all those configurations queued with a common

ancestor-. When a configuration involving a fresh deletion is constructed, a pointer

to a fresh bitmap with all bits (:leared is associated with the queued configuration.

A fresh bitmap is ah begun if a reduction reduces the length of the stack below

that which it was for the ancestor configuration when the bitmap was created.

In these later two situations, reentering the same state again does not necessarily

indicate a loop has been detected.

Removing these unproductive configurations from the queue can have a tremen-

dous influence on the efficiency of recovery. Using C with empty input as an example

then the least-cost recovery involves inserting Ident { ). Given insert costs related

to the length of tokens, using the bitmap technique, this recovery is found after in-

vestigating 43 and queuing 366 configurations. If, however, bitmap loop detection

is not used then the same recovery requires investigating 8586 and queuing 45,276

configurations. The results and timings in the next section are with bitmap loop

detection turned on.

There is a subtle~5 interaction between removing loops and validation. For exam-

ple, a least-cost repair of the C fragment if c = get char ( ) ) ! = O ) ) (assuming

sensible insert/delete costs) with a validation of fewer than seven symbols would
insert a single left parenthesis before the c, and a further error would be detected at

15 The ~utho~s are indebted toone of the K!VkWWS fOr the fOllOW@ examde.

ACM TransactIons on Programming Languages and Systems, Vol 17, No. 4, July 1995



684 . Bruce J. McKenzie et al

Table H. Statistics of CFG for Programming Languages Used m Tests

Giving Number of Terminals [T), Nonterminak (N), and Pror!uctlons (F)

m

Table 111. Statistics of DPAs for Programming Languages Used m Tests Giwng Number of

States (Q), Shifts (S), Normal Reductions on symbols (R.), and Default Reductions (Rd)

1ModuIa-2

1

400
1

481 ~ 72 1 275

c 517 2398 / 1 i 354 1

the !=. If a, validation of seven to nine symbols E used the least-cost repair inserts

two left parentheses, and the extra closing parenthesis wouM result in another er-

ror and be deleted. Finally if ten or more symbols are used for validation then the

least-cost repaw of inserting three Ieft parentheses is not chosen as this is eliminated

by the bitmap loop detection mechanism. 16 In spite of this somewhat unfortunate

interaction between the loop detection heuristic and long validations, the dramatic

improvement in the speed of error repair yielded by the heuristic makes it well worth

while to add to any implementation of the algorithm. Furthermore, examples such

as this are not at all common when a lower validation length is used. In practice

a validation of three symbols appears to give good results—significantly reducing

the number of repairs that immediately result in a further error. Too high a value

runs the risk of combining two distinct errors Together.

4. RESULTS AND Tllvll NGS

In this section we present the results of tests ODthe algorithm implemented in Bison

for a number of programming languages, using student programs containing syntax

errors. All tests were run on a Spare 10 running at 40MHz. The programming

languages used in the tests were C, Pascal, and iModula-2. Table II gives statistics

regarding the CFGS used, and Table 111 gives statistics regarding the corresponding

LALR( 1) Dl?As produced by Bison.

A measure of the complexity of the search is the branching factor, which is the

average number of alternatives that need be fol~owed from each state during a

recovery. An analytical estimate can be derived from the number of states (Q),

shifts (S), normal reductions on symbols (R8 1, and default reductions (R~), and is
given by

S+R3
BF~ = — (

Rd R: ) S+R.

Q l+-Q+ZF+”””=Q-Rd”

An empirical estimate can be obtained by averaging the number of new configura-

tions generated from each state while a collection of sample programs is parsed. If

~6The third but not the second parenthesis is regarded as a loop as the first is associated with the

if syntax and the next two as parenthesized express~ons.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 4, July 1995



Error Repair In Shift-Reduce Parsers . 685

Table IV. Analytical and Empirical (Both with and without Con-

figurations Discarded by the Bitmap Tests) Estima~es of the Branch-

ing Factors for the Programming Languages Used in the Tests

-

the new configurations that are discarded by the bitmap test are included, the re-

sulting value (BFE) should be more comparable with the analytical estimate, while

the value excluding these (BF&) is a more realistic measure of the complexity. Ta-

ble W shows the various branching factors for the languages used in the tests. The

large branching factors for the language C are a consequence of (a) the large num-

ber of operators available in that language and (b) that. most configurations of the

language can be expressions.

A collection of 70 Pascal, 135 Modula-2, and five C programs were selected from

programs containing syntax errors that students had submitted for compilation. For

each program, the algorithm was used to attempt an error recovery, and various

properties were measured. For the purpose of’ these experiments the insert and

delete costs were taken to be the length of the symbol. For variable-length tokens

such as identifiers and strings, a value that was representative of the average length

of such symbols was chosen. Although static costs were used for both insert and

delete costs for efficiency, it would be possible to choose a delete cost for, say, an

identifier, based cm its spelling. Table V shows the statistics for a large number

of variables during the compilation of the Modula-2 programs. These generated

273 errors of which 240 could be recovered from and 33 reverted to panic mode

recovery after 1000 configurations had been queued without finding a recovery. A

validation region of three symbols was used. An analysis of the errors that did

not require panic mode processing showed that the majority (63Yo) produced a

least-cost recovery that was successfully validated immediately. However, some

errors resulted in recoveries being rejected by validation a number of times before a

successful recovery was found, Although the number of rejections before successful

validation was typically low (87% of errors required fewer than nine attempts) some

required a large number (up to 393 attempts) before a recovery that satisfied the

validation criteria was found. The mean number of retries was 10*4O. For the

errors that reverted to panic mode recovery this was usually only after a large

number of potential recoveries had been rejected by validation. The mean number

of retries for this group was 108*45.

As ca~ be seen the mean recovery time is quite modest (0.02 seconds) which

corresponds to parsing around 200-300 tokens without error. For the 12% of errors

where the limit of 1000 configurations queued was reached and panic mode entered,

the recovery time for these averaged 0.20*.03 seconds with a maximum time of 0.29

seconds. If this cutoff point is increased to allow more configurations to be queued

before reverting to panic mode then reverting to panic mode is less common, but

the mean and maximum recovery time increases. There is no upper limit to the

recovery time for most realistic grammars. In the worst case it may be necessary

to delete all remaining symbols after the error symbol and then insert symbols that

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 4, July 1995,



686 . Bruce J, McKenz]e et al

Table V. Statistics Collected During Recovery of 240 Syntax Errors in 135 Modula-2 Programs.

These include the number of symbols Inserted and deleted in a recovery, the number of states

of the DPA expanded. and the number of these that were unique including the percentage of all

states ever expanded. AISO included is the time to recover in seconds, the number of configurations

queued along with the rnax~mum size of the queue during the recovery, and finaHy infomnatlon

regarding the number of state bitmaps created. the number of bits tested, and those that were

found to be akeady set.

Symbols DPA States Time \ Qued Max ~ Bitmaps

Ins D.! Ezpmd (see) ~ Qlen Cr..t.d Tested se%

Mean 1.1 0.9 30.0 28.1 (7.0) \ 0.02 1205 83.3 , 52.6 261.7 61.1

Stddev 09 4.2 67.8 ~ 239 (6.0} 0.04 I 162.2 98.5 137.6 437.1 ~ 132.2

Max 16 62 661 125 (31.2’) t 13.34 ~ 961 ~ 746 ; 1461 3353 603 f

Min o 0 2 1 (02) ~ 0.00 1~1]2~5 0[

45
I

40 -
/

3.5

30 i-
/

25 ,,/

20

15 ‘-

10

5

f)
“O 2 4 6 8 lfI 12 14 16 18 20

Time m recover using new al,goritbm (seconds)

Fig. 6. Time m recover (in seconds) from error m C program fragroem rnain( ~ { ln~ x; x = C( C
. . . (O; ] as number of’ misrnamhed left parentheses increases.

complete the input. For example, the C program main ( 1 { int x; x = t ( (. . . (0; 1

with an arbitrary number of opening parentheses requires an arbitrarily large time

to recover as shown by Figure 6.

Comparison with Fischer’s ECP system is somewhat complicated by the valida-

tion of errors by lookahead. In order to be comparable we need to turn off such

validation in our algorithm When this is done the error repairs are either identical

(given the same insert and delete costs), or an alternative recovery with the same

cost is chosen. Figure 7’ gives a comparison of the time taken for recovery when the

same Modula-2 error is corrected by the uwo algorithms. This figure represents 207

errors in 87 student programs. The average recovery time is 0.027*0.023 seconds

for FisCher’S E~P program and 0.019 ti0.026 seconds for the new algorithm. Only

when the recovery requires the imertio~ of a long string of symbols (and hence a

long search of the parsing DF’A) was the recovery time for Fischer’s system signifi-

ACM Transactions on PrOgrammmg Languages and Systems,Vol. 17, No 4, July 1995



Error Repair in Shrft-Reduce Parsers . 687

0.3

0.25

0.’2

0,15

0.1

0.05

0
0 0.05 0.1 0.15 0.2 0.25 0.3

Time to recover using NY algorithm (seconds)

Fig, 7. Comparison of time to recover (in seconds) from the same 207 errors in 87 Modula-2

student programs using Fischer’s ECP and the method proposed in this article. The radius of the

cmcle is proportional to the rmmber of programs it represents. The largest represents 50 programs,

the next 40, down to the smallest which represent only a single program. Points below the line

represent programs for which our new algorithm recovers more quickly than Fischer’s algorithm.

cantly lower. The implementation used for ECP was a Pascal program distributed

by IVlauney and Fischer in 1983 while our Bison-based implementation is written

in C, so these times should be treated with some care.

5. CONCLUS1ONS
A new algorithm for recovering from syntax errors in shift-reduce parsers using the

information from the parsing DPA itself to find a least-cost recovery has been pre-

sented. The algorithm has been tested on a number of realistic grammars including

those for the programming languages C, .Modula-2, and Pascal and was found to

work well. AS the time to find the recovery has no upper bound it is necessary to

combine the algorithm with another recovery technique such as panic mode error

production recovery in any practical implementation.

A version of a driver for the parser generator system Bison has been produced

which implements the algorithm and is available via W W W. 17 By default this uses

the length of the token as both the inser~ and delete costs and so can be used as

a replacement for the normal s~andard .Bzson driver program without any other

change. Although these default costs result in quite reasonable recoveries it is

straightforward for a more sophisticated user m override these defaults with their

own costs.

17’u~L ~~~p; [Iwvw. ~mterbury, ac. nz/-bruce/ErrO~~~Pa~~ .~~m~

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 4, July 1995.



688 . Bruce J McKenzie et al.

ACKNOWLEDGMENTS

The authors wkh to thank Tim Bell ancl Jane McKenzie for their careful reachg

of cbafts of this article and the anonymous referees for t~elr ~ekfu~ o~ser~at~ons

REFERENCES

AHO, A. V. AND PETERSON, T. G 1972. A. mimrnal distance error correction parser for context

free languages. SIAM 1. Comput. .!, 305-312.

.AHo, A V , SETHI, R , AND ULLMAR, J D. :986. Compdem Principles, Techniques, and Took.

Addison-WesIey, Reading, Mass

ANDERSON, S. 0. .AND B.ACKHOUSE. 1% C 1%31. Locafly least-cost error recovery in Earley’s

algorithm. ACM Trans. Program. Lang. Syst. 3, 3, 318–347

ANDERSON, S. 0., B~CKHOUSE, 1% C., BUGGE, E H., ANJJ S~IRLING, C. P. 1983. An assessment

of locally least-cost error recovery. Compttt. J. 26, 1, 15–24.

~.&3SHIOUSE, ~. C. 1981. Two global data flow analysis Problems arising in locally least-cost

error recovery. Tech. Rep. 14, Dept. of Compu~er Science, Heriot-Watt Univ., Edinburgh,

Scotland.

~ortBmT, ~ AND %AmMm, ~. ~~~1. Bison: Gnu parser generator. Texinfo documentation,

Free Software Foundation, Cambridge, Mass.

DION, B A. 1978. Locally least-cost error correctors for context-free and context-sensitive

parsers. Ph.D. thesis, ‘Tech. Rep. 344, Univ. of Wisconsin-Madison, Madison, Wise.

FEYCOCK, S. AND LAZARUS, P. 1976. Syntax-directed correction of syntax errors. Sofl~. Pratt.

Ezper. 6, 207–219.

FISCHER, C N. AND LEBLANC, R. J. JR. 1988, Cr@tng a Compder. Benjamin/Cummings,

Menlo Park, Calif., sect. 17.2.

FISCHER, C. N. i%ND L4AUNEY, J. 1980. On the role of error productions in syntactic error

correction. Comput. Lang. 5, 131–135.

FISCHER, C. N. AND MAUNEY, J. 1992. A simple, fast, and effective ILL(1) error repair algorithm.

Acts .tnformrztica 29, 109-120.

FISCHER, C. N., DION, B. A , AND MAUNEY, J 1979EL A locally least-cost LR-error corrector

Tech. Rep. 363, Univ. of Wisconsin, Madison, Wise

FISCHER, C. N., MILTON. D. FL, AND MAUNEY, ,1. 1979b. A Iocally least-cost IX(l) error

corrector. Tech. Rep. 371, Univ ot !A%consm. Madison, Wise.

FISCHER, C. N., MILTON, D R., AND QUIRIN~ S B 1980. Efficient IL(l) error correction and

recovery using only insertions. Acts Informaticrz 15’, 141–154.

~ROSCH, J. 1990. Efficient and comfortable error recovery in recurswe descent parsers. .%ruct.

Program. 11, 3, 129–140.

IRONS, E. T. 1963. An error-correcting parse algorithm. Commun. ACM 6, 669-673.

JAMES, L. EL 1972. A syntax directed error recovery method. M.S. thesis, Computer Systems

Research Group Tech. Rep. CSRG-13, Univ. of Toronto, Toronto, Canada.

JOHNSON, S C. 1975. Yacc: Yet another compi~er-compiler. Computer Science Tech. Rep. 32,

BeIl Laboratories, Murray Hillj N.J.

KREUTZER, ~. .AND MCKENZIE, B. J. 1991. Programming for Artificial Intelligence: Methods

Tools and Applications. hternational Computer Science Series. Addison-Wesley, Reading,

Mass

LAFSMNCE, J. E. 1971. Syntax directed error recovery for compilers. Ph.D. thesis, Illiac IV

Dec. 249, Univ. of Illinom, Urbana-Champaign, Ill.

LEINIUS, Ft. P 1970. Error detection and recovery for syntax directed compiler systems. Ph.D.

thesis, Univ. of Wisconsin-Madison, Mad]son, Wise.

LEVY, J. P 1971. Automatic correction of syntax errors in programming errors in programming

languages. Ph.D. thesis, ‘Tech. Rep. TR 7’1-116, Cornell Univ., Ithaca, N.Y.

LYON, G. 1974. Syntax-directed least-errors analysis for context-free languages: A practical

approach. Commun. ACM 17, 3–i4.

ACM Transactions on Programming Languages and Systems. Vol 17, No. 4, July 1995



Error Repair in Shhl-Reduce Parsers . 689

~iAUNEY, J. 1982. Least-cost error repair using extended right context, Tech. Rep. 495, Univ.

cf Wisconsin, Madison, Wk.

MAUNEY’, J. AND FISCHER, C N. 1980. An irnprovenwn to immediate error detection in strong

IX(1) parsers. Tech. Rep. 392, Univ. Of Wisconsin, Madisonj Wise.

RIPLEY, G, D, AND ~RUSEIKIS, F. C. 1978, A statMcal analysis of sym,ax errors. C70mput.

Lang. 3, 227–240.

l%OHRICH, J. 1980. Methods for the automatic construct,~on for error correcting parsers. Acts

ln~ormatica 13, 115–139.

SIPPU, S. AND SOISALON-SOININEiN, IZ. 1980a. A. scheme for LR(k) parsing with error recovery:

Part 1: LR(k) parsing. Int. J. Comput. Math. 8, 27–42, sect. A.

SIPI?O. S. AND SOEWLLOiV-SOININEN, E 1980b. A scheme for LR(k) parsing with error recovery:

Part H: Error recovery. Int. J. Comput. Math. $, 107–].19, sect. A,

SIPFW, S. AND SOISALON-SODWNEN. E 1980c. A scheme for LR(Ic) parsing with error recovery:

l%% 111: Error correctior~. lnt. J. Comput .Uath. 8, 189–206, sect. A.

Received August 1994; revised February 1995; accepted May 1995

ACM Transactions on Programming Languages and Systems, Vol. 17, No 4, July 1995,


