
~.~ ~: ~

T. E. CHEATHAM, JR., Editor

An Error-Correcting Parse
Algorithm

E. T. IRONS

Institute.for Defense Analysis, Princeton, N. J.

During the past few years, research into so-called
"Syntax Directed Compiler" and "Compiler Compiler"
techniques [1, 2, 3, 4, 5, 6] has given hope that constructing
computer programs for translating formal languages may
not be as formidable a task as it once was. However, the
glow of the researchers' glee has obscured to a certain
extent some ve~T perplexing problems in constructing
practical translators for common progrannning languages.
The automatic parsing algorithms indeed simplify com-
piler construction but contribute little to the production
of "optimized" machine code, for example. An equally
perplexing problem for many of these parsing algorithms
has been what to do about syntactically incorrect object
strings. I t is common knowledge that most of the ALGOL
or .FORTRAN "programs" which a compiler sees are syn-
tactically incorrect. All of the parsing algorithms detect
the existence of such errors. Many have considerable
difficulty pinpointing the location of the error, printing
out diagnostic information, and recovering enough to
move on to other correct parts of the object string. I t is
the author's opinion that those algorithms which do the
best job of error recovery are those which are restricted to
simpler forms of formal languages.

The algorithm presented here is the outgrowth of an
a t tempt to alleviate some of these difficulties in error
detection and recovery. Its general characteristics are:

(1) I t will parse strings describable in essentially
Backus Normal .Form (BNF) [7, 8]. No automatic parse of
the author's acquaintance will work for substantially
more complicated languages.

(2) If an incorrect object string is presented to the
algorithm, it will make local insertions, deletions or sub-
stitutions in the object string until a syntactically correct
string is produced. Many errors made in such a way that
the "correction" is clear from context will be colTected.
In any event, no matter how garbled the object string is,
it will be manipulated until a correct string has been
obtained.

V o l u m e 6 / N u m b e r 11 / N o v e m b e r , 1963

(3) The algorithm is relatively efficient. Pilot Models
indicate that parsing proceeds at the rate of about 100
executed machine instructions per symbol of the object
string.

(4) The algorithm is economical of memory space. In
particular its intermediate storage requirements are quite
restricted.

The essentially novel characteristic of the algorithm is
that in parsing the object string (say from left to right)
when a situation arises where more than one parse is
possible for the next few symbols all possible pa~es are
carried along until a symbol is reached which "selects"
one of the parses. The following example will serve to
illustrate this principle. The BN F grammar

(A> : : = ab (D) : : = ce

(B> : : =

<G) : : =

assigns the parse
a
k

L

k

(A}c (E> : : = b<D>

(B>d (G} : : = a<E)

J

A
J

B

G

to the string abcd, and the parse

a b c e

D
L .2

E
L 3

G

to the string abce. This grammar presents a problem to a
left-to-right parse because regardless of what string may
occur to the left, the parse of abe cannot be determined
until the next symbol after c is encountered.

There are essentially two ways in which this dilemma
has been resolved.

(1) The grammar is restricted so that a unique parse
for a string A is determined by considering only the strings
to the left of A and one symbol to the right.

(2) The parsing algorithm makes an assumption that
one of the possible parses is correct, and if this turns out
not to be the case, the algorithm back tracks and tries
another parse.

The disadvantage of the first solution is simply that
the parsable languages are from a considerably more
restricted class than even BN F specified languages.

C o m m u n i c a t i o n s o f t h e A C M 669

The disadvantage of the second solution is that in
leaving the door open for back tracking, the occurrence of
an error requires that a whole host of unexamined alterna-
tives must be examined before it can definitely be estab-
lished that an error has occurred. Furthermore when all
alternatives have been so examined, the matter of deciding
which unsatisfied alternative is unsatisfied because of the

error is somewhat more than hopeless.
In the algorithm presented here, all possible parses are

carried along as shown below in the progressing parse of
abce according to the syntax of the earlier example.

PARSE 1 PARSE 2
b c e a b c

- - J t _ _

t

When the symbol e is encountered, Parse 1 cannot be
continued and is dropped, leaving Parse 2 as the correct
one.

Because the parse proceeds.in this way, the location of
an error is easily" detected, namely, at the point where no

parses can be continued. Erroi" "l:e6pvery is then effected
by examining the next few symbols in the object string in
relation to the syntactic statements concerning the parse
"brackets" whiclh have been extended up to the point of
error. A more detailed discussion of the error recovery
feature will be postponed until a more detailed description
of the algorithm has been presented.

T h e Parse A l g o r i t h m

In order to describe the algorithm we present first the
form of the metalanguage, used to specify the parsing
and the way in which the statements of the metalanguage
are stored in the machine.

We adopt as metasymbols those used in BNF, namely
(}1 and :: = , plus two braces { }. The statements of the
metalanguage take the form of BNF statements with
the following restriction: No syntactic variable may occur
both as the defined variable (left of the : : =) and the first
defining variable (immediately to the right of the : : =
or 1) nor may any set of statements exist such that a
variable is defined in terms of itself. For example

<TERM) :: = <TERM) <MULT OP} <PRIMARY}.

is not allowed nor are the set of statements

CA> : : = (C>

(B> : : = (A)<D}.

Having thus stripped BNF of all its recursive power by
restriction 1, we add instead an "iterative" power by
introducing the metasymbols { and } as follows:

Any set of syntactic variables embraced by the braces
{ } are spegificd to occur any nulnber of times in an input

string. For example ~?,

<SUM} : : = <TERM} {<MULT OP> <TERM}I

specifies that a (SUM } may consist of a <TERM) alone
or a <TERM) followed by any number of occurences of the
pair <MULT OP} <TERM}. A final restrictionprohibits
a brace from occurring immediately after the : : = i.e.,

(A> : : = {<B)} <C}

is not allowed.
Without bogging down in comparisons of this meta-

language to BNF and others, we assert that as a practical
metalanguage it is essentially as powerful as BNF and
furthermore lends itself to somewhat more compact
descriptions of languages. To reinforce this point we pre-
sent the syntax in our metalanguage :for a part of the
arithmetic section of ALGOL 60 which we shall continue
to use in later examples.

<LETTER.) :: = A [B] C ...
<DIGIT) ::= 0]i 12--.

1. (I])EN} : := (LETTER} {{ <LETTER.)} { (DIGIT}}
<ADOP) : := + [--
(MULOP> : := * I /

2. <PRIMARY> : := (IDEN}[(<SUM>)
3. <FACTOR> :: = <PRIMARY> {T(PRIMARY>}
4. <TERM) :: = <FACTOR) {{MULOP) <FACTOR)}

5. <SUM}::= <TERM) {(ADOP} {TERM}} l
6. (ADOP) (TERM)

The representation in the machine of these statements
is designed to facilitate the parsing algorith m. Ill pailtieular
we wish to be able to assign the complete parse (or several
of them) to a basic at the first moment it is encountered
in the object string. To this end, construct from the syntax
statements a "chain" table for each basic symbol as
follows.

Observing that letter A can be the first symbol of a
<LETTER}, <IDEN}, <PRIMARY), (FACTOR}, etc.
construct the chain

A ~ <LETTER> ° ~-- <IDEN> 1.1 ~ <PRIMARY> °
T

<SUM>Sa ~ <TERM>4a ~ <FACTOR>a a

for each letter. Five other symbols have chains:

+ ~ (ADOP) ° ~-- (SUM)6.1
_ ~ (ADOP} o ~ (SUM}~ .1
, ~ (MULOP) o
/ ~-- (MULOp}o
(¢-<PRIMARY} 2.1 ~-- (FACTOR)a., ~ (TERM} 4.1 t-

(SUM}5.1

(Although for this example, it happens that each link of the
chain has only one arrow pointing to it, there may, in
general, be several arrows pointing to an element. There
may be only one pointing away, however.) A chain for a
symbol may be interpreted as indicating that the symbol
may begin any syntactic category on its chain. Suppose,
for example, we wish to know the parse of a (TERM)
beginning with A. I t is determined by looking for (T E R M)

(670 Communications of the ACM Volume 6 / Number 11 / November, 1963

on A's chains, and following the arrows to A to const ruct

A
L 0

LETTER
L 1.1 CN[i, j]

IDEN
L 0

PRIMARY
L 3.1 CS[i, j]

FACTOR

The digits connected to the brackets (copied from the
digits in the chain) are called "syn tax poin ters" and
indicate elements of the syntax tree which effectively
determine how the brackets may be extended to the right.

The syntax " t ree" for our example would be

Index Names A lternates Successors

0 null
1.1 (LETTER) 1.2 1.1
1.2 (DIGIT) 0 1.1
2.1 (SUM) 2.2
2.2) 0
3.1 T 0 3.2
3.2 (PRIMARY) 3.1
4.1 (MULOP) 0 4.2
4.2 (FACTOR) 4.1
5. l (ADOP) 0 5.2
5.2 (TERM) 5.1
6.1 (TERM) 0

To in terpre t the tree, we adopt the following no ta t ion

S~ is the ith entry (line) of the tree table.
The alternates of S~ are Si, Sh, Sh, . . . , Sj,, where S h is the

alternate for Si and Siv,~ is the alternate for Sip.

A bracket whose syntax poin ter is i m a y be extended
right one symbol if the next symbol has any of the alter-
nates of S~ on its chain, and if all brackets "unde r " it can
be te rminated .

A bracket m a y be te~lninated if 0 (or mill) is one of
a l ternates of its pointer. Observe tha t for the parse

' 0
LETTER

t 1.1
IDEN

I - 0

PRIMARY
i 3.1

FACTOR

(IDEN} m a y be extended over a (L E T T E R } or (D I G I T }
or since (I D E N) and (P R I M A R Y } may be te rmina ted ,
(FACTOR} may be extended over 1"

Observe t ha t if any bracket is extended,
(1) all brackets "cover ing" it mus t be extended as well,
(2) all brackets "unde r " it mus t be t e rmina ted ,
(3) the pointer for the extended bracket becomes the

successor of S~ (where i was its old pointer) ,
(4) if it is possible to extend two or more brackets,

we mus t create a new parse for each extension.
Lest the workings of the a lgor i thm be completely ob-

scured by the above description, it Js presented more
precisely in the following (almost ALGOL) program.

Volume 6 / Number 1l / November, 1963

We define the following arrays (with all lower subscr ipt
bounds = 1) and variables:

1. The chain for a symbol j

CP[i, j]

NC[j]

is the name of the ith element of the chain for the symbol
whose numeric value (under some convenient mapping)
is j.
is the syntax link (given as superscript digits in the
earlier presentation) for the ith element of the chain
for j.
is the index of the next element in the chitin (and = 0
if the element is the last, namely the symbol j.
is the number of elements on the chain for j.

2. The syntax tree

SN[k] is the name of the kth element of the tree table.
SS[k] is the successor for this element.
SA[k] is the immediate alternate, (if there is no alternate SA[k]

= 0) SN[1] is the "null" element.

3. The Parses

N is the number of parses currently existing.
NP[nJ is the number of brackets in the nth parse.
PN[i, j] is the name of the j th bracket of the ith parse.
PS[i, j] is the syntax pointer for the bracket.
Pill, j] is the index of the first (left most) symbol under the

bracket.

Observing tha t once a bracket has been t e rmina ted we no
longer need to keep it in the parse table, we m a y assign
the following s t ructure to P N (and corresponding parse
vectors): For i th parse, PN[i , l] is the outermost bracket
of the parse. P[i, 2] is the next bracket under it, and so on.
P[i, NP[i]] is the " inne rmos t " bracket , namely the one
covering the last parsed symbol.

The a lgor i thm for pars ing the "nex t " (qth) symbol in
the object s t r ing (call it O[q]) is:

t : = N + l ;
for i := I s t e p 1 u n t i l N d o
b e g i n

for] := NP[i] step - 1 un t i l 1 d o
b e g i n

for k := 1 step 1 u n t i l NC[O[q]] d o
b e g i n

SW := t r u e ;
l := PS[i, j];
L2: if CN[k, O[q]] = SN[I] t h e n
b e g i n

COPY PARSE (i, y);
LI: if CP[k] # 0 t h e n
b e g i n

] = / + 1 ;
PN[t, J] := CN[k];
PS[t, j] := CS[k];
PI[t, j] := q;
k := CP[k];
g o t o L1 e n d ;

l := l + 1 end;
i f l = I t h e n S W := false;
ifSA[l] # 0 t h e n b e g i n l := SA[l];

e n d ;
i f SW t b e n go to L3 e n d ;

L3 : e n d

go to L2 end;

Communica t ions of the ACM 671

The procedure C O P Y P A R S E is defined as follows:

procedure COPYPARSE (i, .i); value i, j;
begin

for u := 1 step 1 until j do
bcgi i i

l:'N[t, u} := PN[i, u];
I'S[t, u] := PS[i, u];
PI[t, u] := PI[i, u]; end;

PS{t, u] := SS[PS[t, u]]
for ~t = j + 1 step 1 unti l NP[i] do
Output appropriate information about PN[i, u] etc. Such out-

puts specify the final parse.
end

After executing these p rogram steps, the parses of the
object string lie in N P [N -4- 1], N P [N + 2] - . . . T h e y
are then moved to NP[1] , NP[2] . . . and the process is
repeated for the next symbol in the object string.

As an example of the parsing operatioil we give a blow-
by-blow description of the parse of

AB * (C 4- D)

according to the :syntax of our example. The final parse is:

(C + D)
[J t I L I

LETTER ADOP LETTER

A B •
k J I I L _ _ _ . 2

LETTER LETTER MULOP
L A L .l

IDEN IDEN
L _ _ J L J

PRIMARY PRIMARY
k I L J

FACTOR FACTOR
[J

TERM

t

SUM
L

PRIMARY
(_ _

FACTOR

L - - - J

IDEN

t J

PRIMARY
L _ _ = J

FACTOR
L I

TERM

J

TERM

SUM

The chain for A is
i CN[i, 'A '] CS[i. 'A '1 CP[i, 'A ']
1 A 0 0
2 letter 1 1
3 idea 2 2
4 primary 4 3
5 factor 6 4
6 term 8 5
7 sum 10 6

']?he complete syntax tree is:
i SN[i] SA[i] SS[i]
1 null 0 0
2 letter 3 2
3 digit 1 2
4 sum 0 5
5) 0 1
6 T 1 7
7 primary 0 6
8 mulop 1 9
9 factor 0 8

i0 adop 1 11
11 term 0 10
12 term 0 1

The parse (there is only one at all t imes for this example)
is (we abbreviate the syntact ic names by theh" first letter) :

PN[i], PStil

O/i 10 9 8 7 6 5 4 3 2 1
A L, 1 1,2 P, 1 F, 6 T, 8 S, 10
B L, 1 1,2 P, 1 F, 6 T, 8 S, 10
• M, 1 T, 9 S, 10
(P, 4 F, 6 T, 8 S, 10
C L, 1 1,2 P, 1 F, 6 T, 8 S, 10 P, 5 F, 6 T, 8 S, 10
+ F, 6 T, 8 S, 10
D L, 1 1,2 P, 1 F, 6 T, 8 S, 10
) F, 6 T, 8 S, 10

A, 12 S, 11 P, 5
F, 6 T, 8 S, 10 P, 5

P, 1

The ou tpu t of the p rogram is s imply a list of brackets
equivalent to the pictorial parse d iagram given earlier.

Error C o r r e c t i o n A l g o r i t h m

An error in the object string will cause all parses to
disappear at or short ly after the error. I n this event the
following actions are taken:

1. A list is compiled of all the syntact ic elements or
basic symbols which might be called for after the error
point. The list consists of all elements of S N named by
the syntax pointers of all brackets in all parses (just before
the error point) and all successors and al ternates of these
S N elements.

2. The symbols at and after the error point are ex-
amined one by one and discarded until one is found which

a. occurs on the list of 1, or
b. has an element on its chain which occurs on the list

of 1.
3. The bracket f rom 1 which is selected in 2 is examined

in relation to the parses to determine a string of basic
symbols which, when inserted at the error point will allow
the parse to continue at least one symbol pas t the inserted
string.

4. The string of 3 is inserted into the object string a t the
error point and the parse is continued. The parse is forced
to cover the complete input str ing by initializing the parse
with a " p r o g r a m " bracket which requires a special symbol
(to be inserted at the end of input string) for its te rmina-
tion.

The pilot model used to verify these a lgor i thms used the
syntax product ions of Figure 1 to produce the parse and
error diagnostic shown in Figure 2.

An interesting side effect of the parse a lgor i thm is t h a t
ambiguous strings for a set of product ions are easily
detected since t h e y will cause the occurrence of two or
more identical parses in P N at the end of the ambiguous
string. Such occurrences cause all bu t one of the parses
to be dropped and the pr int ing of appropr ia te diagnostic
information.

A p p l i c a t i o n s

The most impor tan t applicat ion of the error correcting
parse a lgor i thm is to compiler construction. Th e error
correction feature will allow compilers using this technique
t o compile and run an error ridden p rogram to obta in a

672 Communica t ions of the ACM Volume 6 / Number 11 / November, 1.963

SYNTAX RULES
1. METAVARIABLES ARE ENCLOSED IN PARENTHESES.
2 . NO VERTICAL BAR ALLOWED.
3. USE + AND - FOR LEFT AND RIGHT BRACES'RESPECtIVELY.
4. THE FOLLOWING RULES PROVIOE FOR INSERTING BASIC SYMBOLS () • - '

USE ' L FOR (
USE 'R FOR)
USE 'P FOR '
USE 'A FOR
USE 'S FOR -

S. ASSIGNMENTS ARE TO THE RIGHT RATHER THAN TO THE LEFT.
I . E . (AI(B} ' (C) MEANS AN A CONCATENATED WITH A B FORMS A C.

(SL} =(PG)
A=(LT)
B=ILT)
C=ILT)
D=(LT)
E=(LT)
F=ILT)
G=(LT}
H=ILT)
I=(LT)
J=ILT)
~ = t L T)
L f (L T)
M=(LT)
N = I L T)
O={LT)
P=(LT}
Q=(LT)
R=(LT)
S:(LT)
TffiILT}
U=(LT|
V=(LT)
W f l L T)
X = (L T)
Y=(LT}
Z = { L T)
'A=IAO)
'S=(AO)
*=(MOI
/=(MO)
(LT)*(LT)-=IPR)
'L(SUI'R={RR}
(PR)e(MO)(PR}-=(TM)
(TMI+(AO)(TM}-=ISU)
(LT}+ILTI-=ISU}=[ST]
(ST)e; IST}- f lSL}

PRODUCTIONS F O R . F I G U R E 2 .

FIG. 1

maximum of diagnostic information in one t ry on a
machine. The success of the CoRe compiler testifies for the
merits of this mode of operation. We reiterate the earlier
s tatement that constructing a good compiler is still far
from being & trivial task; output code optimization and
"self-defining" or declarative languages are just two areas
which still present difficulties in compiler construction
which are not solved by (indeed are partly outside the
scope of) automatic parsing techniques. The error cor-
recting parse will, however, remove some of the burdens
of programming a good compiler.

A second area of application which may have some im-
portance in the future is in the area of pattern recognition.
One of the biggest problems in pattern recognition de-
vices is their lack of ability to capitalize as the human
reader does on the wealth of contextual information con-
tained in many patterns of interest. A combination of the
error correcting parse and a pattern recognizing device
which, for example, might offer several interpretations of a
pattern and weight for each, might produce an effective
device for reading and interpreting names on forms, in-
formation in journals and the like. At the very least, we
might hope to allow a programmer to present his hand-

INPUT STRING

;(RE=-V21)(.XM;*X=AcF~X-eHT.(R)eSTiEN

DIAGNOSTICS

IN COL 0| OF CARD B@| REPLA3ES ;(
IN COL ~6 OF CARD 00! REPLACES -
IN COL ~8 OF CARD 001 • REPLACES 2|)
IN COL 12 OF CARD 001 I) REPLACES
IH COL |6 OF CARD 0~1 REPLACES
IN COL 2~ OF CARD 001 = REPLACES --+
IN COL 28 OF CARD ~01 • REPLACES .
IN COL 01 OF CARD B@2 = I REPLACES

PARSE

R ~,~ LSSP
E 0,0 LSSP
= 0,0 SSP
V 0,0 LPTSSSP
• g,O ASSSP
(0 , g PTSSSP
I O,g LPTSPTSSSP
) 0,0 PTSSSP
• O,Q MTSSSP
X ~,0 LPTSSSP
M 0,0 LPTSSSP
; ~,0 SP
X g,Q LSS~
= g,O SSP
A Q.O LPTSSSP
÷ g,g ASSSP
F O,B LPTSSSP
; 0,0 SP
X ~,0 LSSP
= l g'O SSP
H ~ , 0 LPTSSSP
T ~,~ LPTSSSP
+ 0p0 ASSSP
(0,0 PTSSSP
R 0,0 LPTSPTSSSP
) ~,0 PTSSSP
• ~ , 0 MTSSSP
S 0t0 LPTSSSP
T 0,0 LPTSSSP
; O,g SP
E 0,0 LSSP
N ~ , ~ LSSP
= ~,0 SSP
I B , ~ LPTSSSP

FIG. 2

written XGoL program to the computer thus avoiding the
very serious restrictions of card punch and typewriter
character sets.

R E F E R E N C E S

1. IRONS, E. T. A syntax directed compiler for ALGOL 60.
Comm. ACM 4 (1961), 51-55.

2. - - Towards more versatile mechanical translators. To be
published.

3. - - - - The structure and use of the syntax directed compiler.
Ann. Rev. in Autom. Programming, 3, 207-228.

4. PAul,, M. A General Processor for Certain Formal Languages.
Symbol Languages in Data Processing. Gordon and Breach,
London 1962, 65-74.

5. EICKEL, J. , PAUL, M., BAUER, F. L., SAMUELSON, K. A syntax
controlled generator of formal language processor. Ins t i tu t
ffir Angew. Mat. der Univ. Mainz. Sept., 1962.

6. BROOKER, I{. A., MACCALLUM, I., MORRIS, D., ROHL, J. S.
The compiler compiler. Ann. Rev. Autom. Programming 3,
229-271.

7. BACKUS, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conf. Proc. In temat . Conf. Inform. Process., UNESCO,
(June 1959), 125-132.

8. NAUR, Pm'ER (ed.). Report on the algorithmic language
ALGOL 60. Comm. ACM 3 (1960) 299-314.

Volume 6 / Number 11 / November, 1963 C o m m u n i c a t i o n s o f the ACM 673

