Acknowledgments. We are very grateful to Rao
Kosaraju, whose mastery of the theoretical results in
structured programming is impeccable, and to Robert
Taylor, for his helpful readings of the conclusions.

Received October 1974; revised December 1974

References

1. Allen, F.E., and Cocke, J. A catalogue of optimizing
transformations. In Randall Rustin (Ed.), Compiler Optimization.
Sth Courant Computer Science Symposium, Prentice-Hall,
Englewood Cliffs, N.J., 1972, (pp. 1-30).

2, Ashcroft, E. and Manna, Z. The translation of “GOTO”
programs to “WHILE” programs. Rep. No. STAN-CS-71-188,
Comput. Sci. Dep., Stanford U, 1971.

3. Bochmann, G. V. Multiple exits from a loop without the
GOTO. Comm. ACM 16,7 (July, 1973) 443-444,

4. Bohm, C., and Jacopini, G. Flow diagrams, Turing machines
and languages with only two formation rules. Comm. ACM, 9, 5
(May 1966), 366-371.

5. Bruno, J., and Steiglitz, K. The expression of algorithms by
charts. J. ACM, 19, 3 (July 1972), 517-525.

6. Cooper, D.C. Some transformations and standard forms of
graphs with applications to computer programs. In E. Dale and
D. Michie (Eds.), Machine Intelligence 2. American Elsevier, New
York, 1968, pp. 21-32.

7. Dijkstra, E. W. Notes on structured programming. In
Structured Programming. W .J. Dahl, EW. Dijkstra, and C.A H.
Hoare, Academic Press, New York, 1972, pp. 1-82.

8. Friedman, D., and Shapiro, S. A case for the while-until.
SIGPLAN Notices (ACM newsletter) 9,7 (July 1974), 7-14.

9. Gross, J.L., and Brainerd, W.S. Fundamental Programming
Concepts. Harper and Row, New York, 1972.

10. Henderson, P., and Snowdon, R. An experiment in structured
programming. BIT 12 (1972), 38-53.

11. Hoare, C.A.H., and Wirth, N. An axiomatic definition ef the
programming language PASCAL. Acra Informatica 2 (1973),
335-355.

12, Kernigham, B.W., and Plauger, P.J. The Elements of Program-
ming Style. McGraw-Hill, New York, 1974.

13. Knuth, D.E. Structured programming with GOTO state-
ments, Computing Surveys, 6 (Dec. 1974 261-301.

14. Knuth, D.E., and Floyd, R.W. Notes on avoiding GO TO
statements. Rep. No. CS-148, Comput. Sci. Dep. Stanford U.,
1970.

15. Kosaraju, R. Analysis of structured programs J. Comput.
and Syst. Sci., 9, 3 (Dec. 1974), 232-255, Tech. Rep. No. 72-11,
Elect. Eng. Dep., Johns Hopkins U, 1972.

16. Leavenworth, B. M. Programming with(out) the GOTO.
Proc. ACM Nat. Conf., 1972, pp. 782-786.

17. Ledgard, H. F. Programming Proverbs. Hayden Publishing
Co., Rochelle Park, N.J., 1975.

18. McKeeman, W.M., Horning, J.J., and Wortman, D.B. 4
Compiler Generator. Prentice-Hall, Englewood Cliffs, N.J., 1970.
19. Mills, H.D. Mathematical foundations for structured pro-
gramming. FSC 72-6012 Federal System Division, IBM Corp.,
Gaithersburg, Md., 1972.

20. Neely, P.M. On program control structure. Proc. ACM Nat.
Conf. 1973, pp. 119-125.

21. Peterson, W.W., Kasami, T., and Tokura, N. On the
capabilities of while, repeat, and exit statements. Comm. ACM,
16, 8 (Aug. 1973), 503-512.

22, Sites, R.L. Proving that computer programs terminate cleanly.
Rep. No. STAN-CS-74-418, Comput. Sci. Dep., Stanford U.,
1974,

23. Wirth, N. The programming language PASCAL. Revised
report, Eidgenoessische Technische Hochschule, Zurich, 1972.
24, Wirth, N. Program development by stepwise refinement.
Comm. ACM, 14,4 (Apr. 1971), 221-227.

25. Wulf, W.A,, Russell, D.B., and Habermann, AN. BLISS: A
language for systems programming. Comm. ACM, 14, 12 (Dec.
1971), 780-790.

26. Zahn, C.T., A control statement for natural top-down
structured programming. Symp. on Piog. Lang., Paris, 1974.

639

Programming
Languages

B. Wegbreit
Editor

Practical Syntactic
Error Recovery

Susan L. Graham
University of California, Berkeley

Steven P. Rhodes
Bell Laboratories, Greensboro

This paper describes a recovery scheme for syntax
errors which provides automatically-generated high
quality recovery with good diagnostic information at
relatively low cost. Previous recovery techniques are
summarized and empirical comparisons are made.
Suggestions for further research on this topic conclude
the paper.

Key Words and Phrases: syntax errors, error
recovery, error correction, parsing, simple precedence,
compilers, debugging ‘

CR Categories: 4.12,4.42, 5.23

1. Introduction

A substantial portion of any programmer’s time is
spent in debugging. One of the major services of every
compiler ought to be to provide as much information
as possible about compile-time errors in order to
minimize the time required for debugging. Ideally, at
compile time, the compiler should discover and report
all syntax errors and those semantic errors detectable
at that time. At the same time, no error messages
should be generated for nonexistent errors. These

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported in part by the National Science
Foundation under grants GJ-474 and GJ-43318. A preliminary
description of this work was presented at the ACM Symposium on
Principles of Programming Languages [6].

Authors’ addresses: Susan L. Graham, Computer Science
Division, 577 Evans Hall, University of California, Berkeley,
CA 94720; Steven P. Rhodes, Bell Laboratories, P.O. Box 21447,
Greensboro, NC 27420.

Communications November 1975
of Volume 18
the ACM Number 11

spurious error detections and their associated error
messages are usually engendered by an inappropriate
action taken by the compiler to remove a previous
error. Additionally, it is desirable to have diagnostic
information about what seems to be wrong, rather than
simply the information that an error occurred.

In this paper we consider the problem of recovering
from syntax errors in a way that detects almost all
errors, provides diagnostic information, and reports
few nonexistent errors. We have attempted to provide
a solution which depends to a great extent solely on
the form of the syntax. Just as formal methods for
syntax analysis have led to automatic parser construc-
tion (via parser-generators), formal methods for syntax
error recovery enable us to have automatic construction
of recovery capabilities. Not only does this free the
implementor from the extra task of designing and pro-
gramming recovery routines, but it also minimizes the
biases which cause handwritten recovery routines to
falter badly on unanticipated errors.

In order that the recovery techniques be usable in
production compilers, we consider it important that
the error recovery not degrade the parsing speed intol-
erably. The approach to be presented has the property
that no overhead for error recovery is incurred in
parsing correct programs or correct portions of pro-
grams with errors. The recovery routines are invoked
only when an error is detected. They restore the parser
to a valid configuration and return control to the
parser. The recovery techniques can be carried out
reasonably rapidly, permitting a small amount of
recovery time per error.

In our view, the most meaningful way to evaluate
the techniques presented here was to try them. Our
experiments indicate that our recovery techniques work
quite well in practice, particularly as compared with
the recovery actions taken by other compilers whose
designers claim high-quality recovery as one of their
achievements. Many errors can be corrected locally,
enabling our recovery techniques to handle densely
occurring errors without skipping portions of the
source text.

Of course, the recovery action taken does not neces-
sarily correspond to the programmer’s intention. Any
given piece of syntactically invalid source text may
mean different things for different computations. For
example, consider the incorrect Algol statement

I:=1— ((N«M) — (I+J)/2).

Among the many equally plausible correct versions of
the above statement are the following two (different)
statements.

I:=1— ((N«M) — (IxJ))/2)
I:=1— (NxM) — (IxJ)/2)
Furthermore, different classes of programmers (for

instance, novice programmers versus experienced pro-
grammers) may make different kinds of errors. Consider

If

640

the syntactically invalid Fortran IV statement
READS532ABLE

given by E. James and Partridge [9]. A former Fortran
II programmer would probably have meant

READ 532,ABLE

whereas a Fortran 1V programmer would probably
have meant

READ(5,32)ABLE

However, our techniques usually make plausible
changes to incorrect programs. Even if the corrections
are not what the programmer intended, they usually
serve to show the programmer what error has been
made.

The paper is organized as follows. After presenting
our notation and giving some general definitions, we
briefly survey some of the other approaches to error
recovery that have been proposed and, in some cases,
used. We then give an overall explanation of our
recovery technique, followed by a more detailed de-
scription of the version we implemented and a summary
of our empirical results. This is followed by a discussion
of possible extensions to the scheme and some con-
cluding remarks.

Many of the results present in this paper are con-
tained in the second author’s Ph.D. dissertation [17].

2. Definitions and Notation

A (context-free) grammaris a 4-tuple G = (V,Z,P,S),
where £ C V is a finite set of terminal symbols,
N = V — Z is a finite nonempty set of nonterminal
symbols, P is a finite set of rules or productions, X — x,
where X € N and x € V*' and S € N is the initial
symbol. For any rule X — x, X is termed the left-hand
side (abbreviated LHS) and x is the right-hand side
(RHS).

As usual, with respect to a grammar G = (V,Z,P,S)
we define the relation = on V* X ¥* such that for any
a€ V* be V* a=bifand only if there exist U € N,
o, m, u € V* and U~ uin P such that @ = ¢Ur and
b = our. We represent by =% (=%) the transitive
closure (reflexive-transitive closure) of =. For any
n>0a €V where 0 < i< n we say that the se-
quence a,= a, = ...=a, is a derivation of a. from a,
of length n in G. If ay = a; = ...= a, where for
0<Li<na=ocUmw;and a;py = oux; for some
o; € V¥, m; € ¥ and U; — u; in P, the derivation is a
rightmost derivation. A sequence of symbols u is a
sentential form if S =" u. The sentential form is right-
most if there is a rightmost derivation such that S =" u.
If u€ =" then u is a sentence. The language L(G)

! For any set of symbols ¥, V* denotes the set of all finite
length sequences of symbols from ¥ and ¥+ = V* — {\} where A
is the empty sequence.

Communications November 1975
of Volume 18
the ACM Number 11

defined (or generated) by G is the set of all sentences.
Thus L(G) = {u € 2*| S =" ul.

We refer to the process of reconstructing a deriva-
tion, given a sequence of terminal symbols and a gram-
mar, as parsing. Given a sentential form oum,
o € V¥, and a rule U — u, the transition from our
to ¢Ur obtained by substituting U for u is called a
reduction.

We restrict consideration to the parsing of deter-
ministic context-free languages. A bottom-up parsing
method is an algorithm which reconstructs derivations
in reverse order by making a sequence of reductions
from the input—a sequence of symbols from Z*—to
the initial symbol. (That is, if ¢y => a1 = ...=a, isa
derivation, and a, € =¥, then a, is the input and the
parser reduces @, t0 dn._1, @, tO a,_s, etc. until it
reaches a;.) The input is scanned symbol by symbol.
We refer to the symbol being scanned at any given time
as the current input symbol. The (bottom-up) parser
uses a pushdown store called the parsing stack which
we represent as a sequence of symbols with the base of
the stack at the left and the top of the stack at the right.
There is a base of the stack symbol designated ¢ and
an end of file symbol designated $, where ¢, $ are not
in the vocabulary of the grammar. The input is termi-
nated by $. The parsing stack contains symbols of the
vocabulary and possibly additional information, depend-
ing on the parsing method being used. Parsing actions
consist either of stacking the current input symbol and
advancing the input, or of making a reduction of sym-
bols at the top of the parsing stack.

Following Levy [13], we say that a parsing method
has the correct prefix property if the existence of a
syntax error is detected (in a single deterministic left-
to-right scan of the input) as soon as the input scanned
no longer forms a prefix of a sentence in the language
being parsed. LR(k) parsing and its variants (SLR(k),
LALR(k), etc.) and top-down recursive descent have
this property; the various precedence and bounded
right context methods do not.

3. Previous Methods of Error Recovery

Compiler writers have always had to deal with the
problem of error recovery. Many of the techniques in
use depend on the details of the programming language
being compiled. Often, the compiler writer includes in
the syntax analysis portion of the compiler, routines to
take particular actions if particular error situations
occur. Error recovery can be handled in this way even
when parsing is table driven. The approach taken by
Gries {7] and the PL/C implementers [4] is to include
in the parsing table error actions based on the imple-
menters’ knowledge of common programming errors
and appropriate recovery actions. This technique re-

2 Descriptions of these parsing methods can be found in [1].

641

quires a substantial amount of programming effort for
the error recovery portion of the compiler. Further-
more, although such a system handles the expected
errors reasonably well, it can fail badly on unanticipated
errors. Another kind of language dependent error
recovery, which is easier to implement in syntax directed
compilers, is to augment the grammar by “error pro-
ductions” (Wirth [20]). Again, unanticipated errors
cause trouble. A more local approach is to have a list
of possible local modifications and to use the first one
that works (see, for example, Wirth [20]). Additionally
one can have an implementer designed table of possible
local modifications for each symbol or pair of symbols
in error. (See, for example, Bauer et al. [2], and Peter-
son [16].) However, these techniques will not always
succeed.

The oldest and simplest recovery technique that is
essentially language independent is the so-called panic
mode. In this scheme, when an error is detected, the
input is advanced until one of a class of special symbols,
such as a “;” or an end is located. (The specification
of this class of symbols is language dependent but can
be determined rather easily.) The parsing stack is then
erased until the special symbol can legitimately follow
the top of the parsing stack. This method is fast and
requires a small amount of code, but the errors con-
tained in that portion of the text which is skipped are
not detected, thus possibly necessitating many addi-
tional computer runs to detect all of the errors in the
user’s program. In addition, little information is avail-
able about the nature of the error. If the parsing method
being used is predictive, that is, it is possible to deter-
mine easily all the possible valid continuation symbols
for the input read so far, then the input can be advanced
until one of these symbols is encountered. The recovery
scheme for LR parsing described by Leinius [12] and
Peterson [16] and implemented by L. James [10] is a
more sophisticated version of this technique. Alterna-
tively, the predictive capability can be used to insert one
or more symbols so that the next input symbol can
legitimately follow. This technique is presented in
Irons [8)].

Another early automatic technique is that of spelling
correction, which appears in COrRC [5] and was later
developed further by Morgan [15]. It is normally used
in conjunction with other recovery techniques.

An approach taken by Levy [13] and La France
[11] is to choose one of an automatically generated set
of corrections by simultaneously carrying out parses for
each possibility. If, as in the Levy method, one con-
tinues multiple parsing for an unbounded number of
steps, the ensuing combinatorial explosion in space and
time makes the technique very impractical. Conse-
quently, La France bounds the amount of multiplicity.
This improves efficiency, but can yield insufficient
information in some cases.

Another language-independent recovery technique
investigated recently is to determine the minimum

November 1975

Communications
of Volume 18
the ACM Number 11

number of insertions, deletions, and substitutions of
symbols which transform the entire incorrect input into
a valid sentence of the language being analyzed. Studies
by Lyon [14], Peterson [16], and Teitelbaum [18] have
shown that for general context-free parsing, the “mini-
mal distance” of an input sequence can be determined
in time of order #n® where n is the length of the input.
However, these techniques do not provide linear-time
minimal distance correction for linear-time parsing
methods. More important, as pointed out by Levy
[13], minimal distance corrections may not be the best
corrections according to the programmer.

The previous work closest to our own is that of
Leinius [12] and Levy [13]. Leinius proposes an error
recovery scheme for simple precedence parsing.® He
introduces the notion of “phrase-level” recovery;
namely, recovery actions that have the effect of re-
ducing the parsing stack. He recognizes that if the
parsing stack followed by the current input symbol
contains any sequence of symbols abacd, where a, b, ¢, d
are single symbols, « is a sequence of symbols, a < b,
¢ > d, and bac contains an error, then bac can be re-
placed by any “locally correct” nonterminal symbol as
a recovery action. His recovery algorithm finds suc-
cessively larger sequences enclosed by < and > (by
looking back in the stack or parsing ahead in the input)
until one is found for which there is a unique locally
correct nonterminal to replace it.*

Levy attempts to find a theoretical basis for error
correction in all deterministic context-free parsing
methods having the correct prefix property. His method
includes a backward move on the input to determine
the entire left context of the error discovery point that
could contain the error and then parallel parses from
the beginning of the left context to pursue all possible
minimal distance corrections of a fixed bounded dis-
tance. This method is admittedly impractical and Levy
proposes some heuristics to improve its efficiency.

Unfortunately, neither Leinius’ simple precedence
recovery nor Levy’s method appears to have been tested
empirically. However, both methods contain important
ideas, especially the attempt to provide better automatic
language-independent recovery or correction and the
use of context in this process.

4. General Description of Graham-Rhodes Method

We first describe our recovery method as incor-
porated in any bottom-up, no back-up parser, sup-
pressing for the moment the details of how the parser
works (i.e. how parsing decisions are made and how
errors are detected).

8 See Section 5 for an explanation of this parsing method.

4 The sequence enclosed by < and > is not examined.

® A second diagnostic message is issued only if there appears
to be a second error in the source text,

642

The error recovery routines are invoked when a
syntax error is detected by the parser. Control is re-
turned to the parser when the error state has been
removed. In view of the efficiency constraints placed on
the recovery method, input which has been scanned is
not retained by the parsing program. Consequently, the
error state is removed by making modifications to the
parsing stack and possibly to the remaining input, but
not to the already scanned input.

Immediately after an error is detected, most recov-
ery strategies consider what change to the parsing stack
and/or the input would recover from the error. In our
method, we first attempt to analyze the context in
which the error occurs. That is, the correction phase of
the recovery is preceded by a condensation phase which
condenses the surrounding context.

In the condensation phase, an attempt is first made
to make further reductions on the stack, preceding the
point of error detection. We refer to this attempt as the
backward move. The forward move is an attempt to
parse the input just beyond the point of error detection.
The forward move will terminate either because a
second error is detected further on in the input or, more
likely, because the only possible next parsing action is
a reduction involving that part of the stack containing
the detected error.’

We illustrate the condensation phase by several
examples. All the examples use the grammar given in
the Appendix for an Algol-like syntax. The point in
the program at which the error is detected is indicated
by “7T?; the corresponding point in the parsing stack
is designated by “?”.

Example 1.

M = Q — 3;

I = 2x(M— P) then K := lelse M .= 1;
7

The most probable error is that there is a missing if
preceding /. The error is detected when the = is “seen”
by the parser. At that point, the stack has the form

¢ (blockbody) ? (variable)

and the current input symbol is =.

No reductions are made by the backward move.
The forward move reduces I = 2«(M—P) to
{expression) and then terminates because no further
reductions which include {expression) or then are pos-
sible. In our experimental recovery system, the stack
then has the form

¢ (blockbody) ? (expression) then

and the current input symbol is K. (In some other
bottom-up parsing methods, the current input symbol
would be then.) Notice that there is no fixed a priori
bound on the amount of input read during the forward
move. By allowing the parser to determine the look-
ahead, the recovery routine can ‘‘see” the symbol then

Communications November 1975
of Volume 18
the ACM Number 11

before any correction is made. This contributes con-
siderably to the power of the method.

Example 2.
:X =1 J;
7

The most probable error is a missing operator between
I and J. The error is detected when the J is “seen” by
the parser. At that point, the parsing stack has the
form

¢ (blockbody) (variable) := (identifier)?

and the current input symbol is J. In this example, the
backward move reduces (variable) := (identifier) to
(statement) and the forward move reduces J to
(expression), leaving the parsing stack in the form

¢ (blockbody) (statement) ? {expression)

where the current input is ; .
Example 3.

\.vrite (begin [:= 3 end);
T

This is legal in so-called expression languages but is
invalid in our Algol dialect. The error is detected when
the begin is “seen” by the parser. The parsing stack
has the form

¢ (blockbody) (procedure id) (?

and the current input symbol is begin. The backward
move reduces (procedureid) (to (procedure head).
The forward move reduces begin 7:= 3 end to
(blockbody) (statement) end, leaving the parsing stack
in the form

¢ {(blockbody) {procedure head)? (blockbody) (statement) end

where the current input symbol js “)” . Since there ap-
pears to be another error,’ a second backward move re-
duces (blockbody) (statement) end to (statement).

The backward and forward moves are an attempt
to summarize the context surrounding the point of
error detection. The forward move provides, in effect,
an unbounded lookahead. The purpose of the correc-
tion phase is to change the condensed parsing stack so
that the error situation is corrected and the parsing
stack contains a sequence of symbols that could occur
in the parse of a sentence in the language. (In fact,
depending on the parsing method, the correction phase
may insure only that in the vicinity of the error the
parsing stack is legal.)

Since we wish to use as much of the context of the
error as can be efficiently exploited, the correction
phase considers changes to sequences of symbols,
rather than isolated changes to single symbols. The

6 end cannot be followed by) in a legal input.

"In the case of a tie, either some tie-breaking rule can be io-
voked or the selection can be made arbitrarily.

643

implementer can trade quality of recovery for efficiency
in determining how this correction is done. The idea is
to change the parsing stack, at the point of error, to an
RHS of the grammar, or to one or more prefixes of
RHS’s, which “fit in” in the sense that they can legiti-
mately occur in the given context.

In general, there will be more than one possible
change that appears locally to correct the error. For
instance, in Example 1, after the condensation phase,
the stack has the form

¢ (blockbody) ? (expression) then

and the current input symbol is K. One correction
that might be made would be to replace the symbols
(expression) then by (statement) ; . This change
appears locally to work, since

{blockbody) (statement) ;

is the RHS of the production, and could be followed
by (identifier) in a legal input. Alternatively, if could
be inserted before (expression), since if can follow
{blockbody) and

if {expression) then

is the RHS of a rule.

In order to provide helpful diagnostic information
to the programmer, as well as to increase the likelihood
that, in the absence of a more global analysis, the change
really corrects the error, it is necessary to make some
effort to choose the “best” correction. The way this is
done is to determine which of the possible locally
correct changes has the ‘“closest fit”’; that is, which
change requires a minimum of symbol by symbol
modification of the parsing stack. A weighted minimum
distance measure is used. In order to compute how close
a given RHS is to one of the candidates for change,
two vectors I and D are used. For each symbol in the
grammar, the I vector contains the cost of inserting
that symbol anywhere in the stack and the D vector
gives the cost of deleting that symbol anywhere in the
stack. The closest fit is then defined to be the match
with the minimum cost. As an example of the cost
computation, consider yet again Example 1. The cost
of changing (expression) them to (statement) ; is
D((expression)) + D(then) + I({statement)) + I(;),
whereas the cost of inserting if before {expression) is
I(if). Notice that Example 2 can be corrected at a cost
of D({expression)).

In Example 3, the form of the stack after the con-
densation phase is

¢ (blockbody) (procedure head) ? (statement)

and the current input symbol is ““)”’. One way to correct
this error is to replace (statement) by (expression), at a
cost of D((statement)) + [({expression)).

After the pattern matching process has determined
the cost of the changes by using the cost vectors, the
minimum cost change is made.” Control then returns

Communications November 1975
of Volume 18
the ACM Number 11

to the parser. However, in the unlikely event that the
minimum cost is greater than a fixed a priori maximum,
a form of the panic mode is used. The assumption in
that case is that the change, although locally correct, is
so bizarre that it is probably wrong.

Clearly, the change which is selected depends on
the values of I and D. These cost functions, in effect,
indicate the relative likelihood that each grammatical
symbol is intentional if it occurs in the input text and
is unintended if it does not occur. There are a variety
of heuristics which can be used in selecting the costs in
order to improve the quality of the recovery. For
example, brackets (begin, end, (,), etc.) and the non-
terminals generating them ((blockhead), (blockbody),
etc.) should have relatively high 7 and D values and
long “reserved words” should have high deletion costs.
Using these rules, the cost vectors can be generated
mechanically. Alternatively, values for I and D can be
supplied by the implementer. This allows him or her to
incorporate language-dependent criteria about the use
of the implemented language and to “tune” the recov-
ery system to a particular user community.

An addition to the cost computation which we
found to be very useful is to include a cost function R
which assigns costs to the replacement of one symbol
by another. (The function values are normally lower
than the corresponding I and D costs.) The replacement
function can be used by the implementer for additional
tuning and for introducing such factors as lexical
similarity. For example, there can be a relatively low
replacement cost of = by := or of certain reserved
words by (identifier). Of course, introducing R in the
cost computation increases both the time to compute
costs and the amount of compiler code for recovery.

5. Error Recovery for Precedence Parsers

In order to explain in more detail how the recovery
method works, it is necessary to specify, for a given
parsing method, how errors are detected and what is
known about the parsing stack when an error is dis-
covered, how the condensation phase is carried out,
and how the set of possible changes is determined prior
to the cost computation.

We initially developed this recovery method for
simple precedence parsing, for which it is particularly
well suited. We now discuss more precisely the way in
which the various aspects of the recovery are carried
out in that parsing method. Subsequently, we consider
the incorporation of this approach to error recovery in
other parsing methods.

First, we briefly review simple precedence parsing
for the reader.

For any grammar G = (V 2,P,S), simple precedence
relations <, =, > are defined for all (4,B) € ¥V X V by:

A = B if for some o, 7 € V*, P contains a rule
U— cABr

644

A < B if for some o, 7, « € V¥, Y € N, P contains
arule U— cAYr and Y =" Ba
A > B ifforsomes, m, 0,y V¥ XCN, ye Vv, P

contains a rule U — ¢XYr and X =" v4 and
Y =% Ba.

A grammar G = (V,2,P,S) is a simple precedence
grammar [19] if: (a) For all (4,B) € V X V, at most
one precedence relation is satisfied. (b) P contains no
rule with RHS \. (¢) No two rules in P have the same
RHS. (d) With respect to G, there is no rightmost
derivation § =% §.

We extend the precedence relations to the end-
markers ¢ and § by the rules that for every X € V, if
there is some ¢ € ¥* such that S =% Xo, then ¢ < X
and if there is some o € ¥* such that S =7 X, then
X > 8.

Initially, the parsing stack contains only ¢ . For an
input string which is contained in L(G), the parser
works in the following way (excluding the output steps,
semantic routines, etc.):

Step 1. Read the next input symbol.

Step 2. If the precedence relation between the symbol
at the top of the parsing stack and the input symbol
is < or = then stack the input symbol and go to
Step 1.

Step 3. If the input symbol is $ and the contents of the
stack are ¢S then exit.

Step 4. (Otherwise the precedence relation between the
top stack symbol and the input symbol is >.) Scan
the stack from right to left until the first instance in
which a symbol (call it 4) and the symbol to the
right of it in the stack have the precedence rela-
tion <.

Step 5. Find the rule having as RHS the sequence of
symbols to the right of A4 on the parsing stack.
Replace the symbols to the right of 4 by the LHS
of that rule and go to Step 2.

In the usual precedence parser, errors are detected
in one of two ways. The first occurs when there is no
precedence relation between the top of the parsing stack
and the incoming symbol (Step 2); this situation is
usually referred to as a character pair error. In a typical
Algol grammar, for instance, the string

A:=1 J:= K,

would have a character pair error between the 7 and the
J since an identifier can never be followed by an identifier.

The second type of error is found when a potential
RHS is detected using the precedence relations (Step 4),
but it does not match any RHS of the grammar (Step 5).
This type of error is normally referred to as a reduction
error. A reduction error can arise in the following
way. The following simple precedence grammar:

S — N#
N—-D-D
D—1

generates only the one sentence 1 — 1#. If the parser
Communications November 1975

of Volume 18
the ACM Number 11

for this grammar is given as input 1 — 1 — 1, eventually
Step 4 finds a potential RHS D — D — D, yet no rule
of the grammar has this RHS.

The error detection capability of a simple precedence
parser can be significantly improved, at the cost of a
small increase in the running time of the parser. First,
as suggested by Leinius [12], when a reduction is per-
formed, a check can be made (Step 5) to see that A4
and the LHS to be stacked have precedence relation
< or =, otherwise a stackability error occurs.

The second error detection extension is an improve-
ment in the detection of reduction errors. In this second
extension, which is original as far as we know, the
system continually checks the top of the stack for
prefixes of RHS’s of rules of the grammar before it
puts a symbol onto the stack. This can be done, for
example, by having the production table sorted lexico-
graphically by RHS’s and having a pointer into this
table which is advanced before each symbol of an RHS
is stacked. All the RHS’s with a common prefix will
then be grouped together. When a new RHS is begun
(i.e. when the top symbol of the stack and the symbol
to be stacked have precedence relation <), the previous
pointer value is saved and the pointer is set to the first
production such that the leftmost symbol of the RHS
is the symbol to be stacked. When the prefix at the top
of the stack is to be continued (i.e. when the top symbol
of the stack and the symbol to be stacked have prece-
dence relation =), the pointer is set to the first RHS
having that prefix followed by the symbol to be stacked.
When the prefix at the top of the stack should be an
RHS (i.e. when the top stack symbol and the input
symbol have precedence relation >), the pointer
should be pointing to the rule with that RHS.

In the latter two cases, if there is no such RHS, a
nonvalid RHS error is said to have occurred. Since the
traditional parsing method must also search through
the RHS’s (Step 5), our method entails no increase in
parsing time except for the inability to hash-address the
production table in certain ways. The difference in our
method is that it does the searching incrementally,
whereas the usual method performs it all at one time.

Consider again the example 1 — 1 — 1 given in the
discussion of the usual precedence parser. In the system
described in this paper, the parser detects a nonvalid
RHS error on the second “—"" since there is no pro-
duction whose RHS begins with D — D — . Notice
that a character pair error is just another kind of stack-
ability error and a reduction error is one kind of non-
valid RHS error.

The advantage of the added detection capability for
our error recovery method is that we can more accu-
rately determine the likely location of the error. At the
commencement of the condensation phase of recovery,
that location is assumed to be either the point at which
no precedence relation holds (possibly after condensa-
tion) or the point at which the previous contents of the
stack do not form a prefix of an RHS (possibly after

645

condensation). More specifically, the error location is
the point immediately preceding an RHS if the corre-
sponding LHS causes a stackability error; the top of
the stack if the corresponding LHS causes a nonvalid
RHS error or in the case of a character-pair error. If
the current input symbol causes a nonvalid RHS error,
the incoming symbol is stacked, the input is advanced,
and the new top of the stack is designated the location
of the error.

The condensation phase is carried out easily. For
the backward move, it is assumed that there is a prece-
dence relation > between the symbol immediately pre-
ceding and the symbol immediately following the point
of error. Control is transferred to the parser, which
makes all possible reductions (possibly none) preceding
the point of error. For the forward move, the state of
the parser is adjusted, by stacking the current input
symbol if necessary, so that the location of the error is
one symbol below the top of the stack. It is assumed
that there is a precedence relation < or = between the
symbol immediately preceding and the symbol imme
diately following the point of error, the nonvalid RHS
check in the parser is turned off, and control is again
returned to the parser. The forward move terminates
either because of a new stackability error, or, more
likely, because a > is encountered, but the stack does
not contain a valid RHS (because of the error which
necessitated the forward move). If necessary, a second
backward move is done from the second point of error
by again assuming > and returning control to the
parser.

In the correction phase, we exploit the properties of
the precedence relations. For the sake of efficiency,
possible changes are restricted to replacing a portion of
the condensed parsing stack by the RHS of a rule (not
by a prefix). There are three sequences of symbols that
are considered for correction. They are the sequence of
symbols from the nearest < to the left of the point of
error up to the point of error, the sequence from that
< to the top of the stack, and the sequence from the
point of error to the top of the stack. The restriction
on possible replacements is not unreasonable, since it
corresponds to the possibilities (1) that the precedence
relation at point ? is >, (2) that the precedence relation
at point ? is =, and (3) that the precedence relation at
point ? is <. (There is also an implicit assumption that
the precedence relation at the top of the stack is >. In
practice, this is very often the case. One can modify the
correction phase so that prefixes of RHS’s are also
possible replacements, but the increase in computation
is significant when measured against the empirical per-
centage of instances when such replacements are neces-
sary.) Additionally, the possibility that any of the three
stack sequences be deleted is considered. Thus if the
number of rules in the grammar is #, at most 3(n + 1)
changes are considered.

The next step is to reduce the set of possible changes
to those which would enable the parser to continue;

Communications November 1975
of Volume 18
the ACM Number 11

that is, those which, in the immediate context, appear

to correct the error. Essentially, a modification is

locally correct if it does not create a stackability error
or a nonvalid RHS error. More precisely,

Definition. Let G = (V,Z,P,S) be a simple prece-
dence grammar. A production X — x is locally correct
in the context® (y4, B); x, y € V*; X € N; A, BC V if
the following three conditions are satisfied.

Pl. A < Xord =X,

P2. X < Bor X = BorX > B.

P3. If A = Xand X > B, then y4X is the RHS of some
rulein P;if A < X and X > B then X is the RHS
of some rule in P; otherwise, if 4 = X then y4X
is a proper prefix of the RHS of some rule in P.

The deletion of a string x is locally correct in the
context (y4, B); y € V*; 4,B € V if the following two
conditions are satisfied.

Dl. A < BorAd= BorA4 > B

D2. If A = B then yAB is the prefix of the RHS of
some rule in P; if 4 > B then yA is the RHS of
some rule in P.

Notice that since we consider replacing sequences
of symbols only by RHS’s, not by prefixes of RHS’s,
the tests for local correctness can be carried out rapidly,
since it is the set of LHS’s or nonterminals which are
tested and the error checks are those done by the
parser. In most cases, these tests eliminate a substantial
portion of the possibilities (90-95 percent in our ex-
periments).

The cost computations are made on those possible
changes which are locally correct, as described in
Section 4, and the minimum cost change is then made.

6. Experimental Results

We programmed a simple precedence parser in
which we incorporated the described recovery tech-
niques, together with a variety of experimental modifi-
cations that could be independently enabled or dis-
abled. Our test of these recovery techniques was to
compare our recovery with that of other compilers in
general use. We implemented both an Algol subset and
the full syntax of PascaL [21]. We prepared a set of test
programs with a wide variety of syntax errors. (The
source of most of these errors was student programs;
a few errors were deliberately designed to challenge any
recovery system.) We then compared the results on our
Algol programs with the result of submitting PL/1-equiv-
alent programs to the pL/C compiler {3, 4]. This seemed
particularly appropriate in view of the pL/C design
objective of providing a maximum degree of diagnostic
assistance. Output for the PASCAL programs was com-
pared with the results of running the same programs
on the PASCAL compiler produced by Wirth’s group

8 In considering a candidate sequence for replacement or dele-
tion, the left context is always the sequence of symbols starting
with the nearest < to the left.

646

(hereafter referred to as the Zurich compiler). Again
we compared with an implementation designed to
provide good recovery. To quote Wirth [22, p. 320],

... It was also recognized that one of the major challenges in
developing a processing system for a language is its capability to
meaningfully diagnose syntactic errors and to continue processing
of subsequent text with a reasonably large probability of correct
diagnosis. If the system is to be used successfuly in an environment
of programming novices, this capability must be assigned no less
than highest priority. The problem of syntax analysis thereby ob-
tains entirely new aspects; the compiler must not only process the
defined language, but virtually all sequences of symbols of the
basic vocabulary. . . .

Such comparisons are necessarily somewhat sub-
jective. However, it appears that our error recovery
techniques are qualitatively better than those of the
Zurich and pL/c implementations. The errors which
those compilers handle well are also dealt with appro-
priately by our recovery scheme. In addition, we handle
well a variety of errors that are improperly dealt with
in the other compilers. The PASCAL compiler tends to
find only the first of a set of dense errors and to skip
arbitrarily large portions of text in getting “back on
the track.” (In one of our tests, an error in a declara-
tion caused the PASCAL compiler to skip all of the sub-
sequent declarations, causing a plethora of undefined
symbols in the remainder of the program.) The pL/C
compiler treats errors substantially more locally, thereby
detecting more errors than the PASCAL compiler, al-
though fewer than our programs find. However, the
PL/C compiler can sometimes correct too locally,
thereby failing to use context information. Additionally,
it tends to have a left-to-right bias (that is, it assumes
that any text already parsed must have been parsed
correctly) and an inflexibility with regard to misuse of
key words.

For lack of space we present only a representative
example. Figure 1 contains a program run on our Algol
recovery parser; Figure 2 contains a PL/C-equivalent
program run on the pL/c compiler; Figure 3 contains a
PASCAL-equivalent program run on our PASCAL recovery
parser; and Figure 4 contains the same PASCAL program
run on the PAsCAL compiler produced in Zurich.

[In the research reported here, we were concerned
primarily with the recovery actions taken by the com-
piler. Little emphasis was placed on the wording of the
messages. The first author has subsequently considered
this problem; the examples shown represent a transi-
tional stage in improving the wording.]

In the first declaration of each program, the comma
in the bounds list of the array declaration has been
omitted. Both the PL/c compiler and our Algol parser
recover by inserting the comma. Our PASCAL parser
recovers by deleting the subrange 1..10. This is an
equally good recovery action but is less likely to corre-
spond to the programmer’s intention. Notice that since
the recovery actions are based on the form of the gram-
mars, the Algol and PASCAL parsers do not necessarily
take the same action. The lack of lookahead in the

Communications November 1975
of Volume 18
the ACM Number 11

Fig. 1. Algol subset recovery parser.

ALGODL W sSuUBSET comMP1lLER - SEPT 1973 VERS | O N
1 RFGIN
2

INTEGFP ARRAY AyB(leeS5 1401013
+

o
SX$%ERRORIO) 5 CANNOT BE FOLLDWED BY t
- RECOVFRY ACTION WAS TO CHANGE: INTEGER ARRAYssslsee 1 o4 5
TI: INTEGER ARRAY.salees 1 oo S o

3 ENTEGER 1,J,K,L3

a UP:z L # J > K + L % & THEN GO L1 ELSE K IS5 23
+ * "
1 2 34

EXRRERROR (1) AEGINass CANNOT BE FOLLOWED BY I
- RECOVFRY ACTION WAS TO CHANGF: 1 + J > K + L * & THEN

YO: IF 1 ¢ J > K 4 L & & THEN

SEEXERROR(2) GO CANNDT BF FOLLOWED BY L1
- RECOVERY ACTION WAS TO CHANGE: GO L1 Ta: GO VO L1

AXSKERROR(3) VARTADLE IS HAS NOT BEEN OECLARED

*4SFERROR(S)Y K CANNOT BF FOLLOWED BY IS
- RECOVERY ACTION WAS TO CHANGE: IS fo: :=

s A 1,2 1= B(3 % (1¢4, IE/K)
* . LA
S5 6 78
HEXBERPIR(5) A CANNDT QE FOLLOWED BY 1t

RECOVERY ACTION WAS TO CHANGE: A TO: A (

SEEEERROR(S)

[

CANNOT HE FOLLOWEN 8y =
~ RECOVERY ACTION WAS TO CHANGE: <ARAAY INENTIFIER>{ees 2
TO: <CARRAY IDENTIFIER>(ees 2)

SEXXERROR(T)

1+4 CANNDT BE FOLLOWED BY
PECOVERY ACTION WAS TO CHANGE: ([+a TO: {4 1ea)

»

SAXBERPOR(3) CANNOT SE FOLLOWED BY /

~ RECOVERY ACTION WAS TO CHANGE: J # TO: g % CFACTOR>

6 TF 1 = 1 YHEN THEN GO T0 UR;
+ +
9 -]
£¢XXERROR(9)) CANNOT RE FOLLOWED By [F

~ RECOVERY ACYINN WAS TO CHANGE: BEGINseas SSTATEMENT>
TO: YEGINes. <STATEMENT>

*XEFERRON(O) IF I = 1 THEN CANNOT 3E FOLLOWED BY THEN
-~ RFCOVERY ACTION WAS TO OELETE: THFN

7 L2: END.
+
1
*SE$ERROR(1) END CANNOT NE FOLLOWED DY .
~ RECOVERY ACTION WAS TQ DELETE:

Fig. 2. PL/C compiler.

TEST: PROCEOURE OPTIONS(MAIN); PL/C-RB.6000
STMT LEVEL NEST BLOCK SOURCE STATEMENT
1 TEST: PROCEDURE OPTIONS(MAIN);
2 1 1 DECLARE(A,B) (1:5 1:10) FIXED;
ERROR SYG € MISSING COMMA

N 2
PL/C USES DECLARE (A,B) {(1: 5,1: 10) FIXED;

3 1 1 DECLARE (),J,K,L) FIXED
N 1 1 UP: I+J>K+L#4 THEN GO L1 ELSE K IS 12;
IN 4 ERROR SY1¢ IMPROPER ELEMENT
m 4 ERROR SY34 TMPROPER THEN OR ELSE
N 4 ERROR SYOF MISSING KEYWORD
N 4 ERROR SYN8 MISSING SEMI-COLON
PL/C USES UP: GOTO L1;
X 5 ERROR 5Y34 IMPROPER THEN OR ELSE
& S ERROR SY27 MULTIPLE DECLARATION
N 5 ERROR SY09 MISSING @
™ 5 ERROR SY0DO MISSPELLED KEYWORD
N 5 ERROR SYD7 EXTRA SEMI~COLON
PL/C USES $L0018: IF L2
6 1 1 A 1,2 = B{3e(i4, Je/K)
] 6 ERROR SY27 MULTIPLE DECLARATION
IN 6 ERROR SY09 MISSING :
IN 6 ERROR SY1 ¢t IMPROPER ELEMENT
™ 6 ERROR SY10 INCOMPLETE EXPRESSION
m 6 ERROR SYED COMMENT RUNS ACROSS CARD BOUNDARY
IN 6 ERROR 5Y10 INCOMPLETE EXPRESSION
PL/C USES THEN $L002$: IF I=]
7 1 1 {F 1 = 1 THEN THEN GO TO UP;
[k} 7 ERROR 5Y38 IMPROPER PREFIX ORDER
8 1

1 L2: END;
ERROR SYES ILLEGAL USE OF COLUMN 1 ON CARD
L2:

IN 8
PL/C USES END;

IN STMT 4 ERROR SM4l UROHG TYPE FOR EXPRESSION

PL/C USES UP: GOTO SULABEL;
IN STMT 5 ERROR SMs1 WRONG TYPE FOR EXPRESSION
PL/C USES $L001%: [F '1'8

Zurich compiler and its predictive parsing algorithm
cause it to choose ‘]’ instead of “,”” as the expected
symbol.

In the first executable statement, the symbol if is
missing, following the label. The statement following
then is a mutilated branch statement; the statement
following else is perhaps an assignment. Both of our
parsers insert the if and recover locally from each con-
ditionally executed statement, although again the ac-

647

Fig. 3. PASCAL recovery parser.

2 ASCaAL COMPILILER - 16 SEOT 19713 VERS ! ON

1 VAR A,HIARRAY[1445 1.,410) OF INTEGER:
+
o

AXXXTRROR(O) 5 CANNOT RE FOLLOWED AY I
-~ RECNVERY ACTION WAS TO DELETE: <TYPE>

2 ToJeKyL: ENTEGER;
1 AFGIN
a 3T [+ J > K+ L * 4 THEN GD | ELSE K IS 23
. +
1 2 3 A5
€XX£SRROR{1) BEGIN 3: CANNOT BE FOLLOWED BY I

-~ RECOVERY ACTION ®AS TO CHANGE: [+ J > K + L & & THFN
TO: IF 1 + J > K + L ¥ &4 THFN
SERAERROR(2) VARIABLE GO HAS NNT SEEN DECLARED
*EEXTPROALI) G0 CANNOT AF FOLLOWED RY 1
- RECOVERY ACTION WAS TD CHANGE: GO 1 To: GO iz 1
£REECRRDR(4) VARIAHLE 1S HAS NOT RFEN DECLARED
#*¢¢ERROR(S) K CANNNT RE FOLLOWED RAY IS
- RECOVERY ACTION WAS TO CHANGE: IS ¥D: 3=

S A 1,2 t=R [3 % 1+8,0%/K}
+ [}
3 v 8
*XX2ERROR(6) A CANNOT BE FOLLOWED Ry 1
-~ RECOVERY ACTION WAS TO CHANGF: A 1,2 TO: <IDENTIFIFR>

SEFHERROR(T)

144 CANNOT RE FOLLNWED 8Y
RFCOVERY ACTION WAS TO CHANGE: (L+a TO:

144)

BUARTRROR(B) CANNOT BE FOLLOWED Ay 7/

-~ RECOVERY ACTION WAS TO CHANGF: / K Ta: K

6 1f 1=1 THEN THEN GOTO 3%
+ +
9 [
*SRKERROR(D)] CANNOT BF FOLLOWED By IF

- RFCOVERY ACTION WAS TO CHANGE: BFEGIN <o <STATEMENT>
TO: BFEGIN s.¢ <STATEMENT> |

*REuCHRORIO) IF [=1 THEN CANNOT BE FOLLOWED BY THEN

- RECOVERY ACTION wAS TO DELETE: THEN

7 2: END.

Fig. 4. Zurich PASCHAL compiler.

005001 VAP A,B:a%RAY{1..5 lea10] OF INTFGFR;
exE [} 37

005001 TyJeKyLs INTEGER]

005005 ACGIN

0CsnTIY 3: 0 ¢ 0 > K ¢ L % a THEN GO 1 ELSE K IS 2:

L [t 0 52 &4 52
005¢C71 A 1,2 3= 8 [3 % (1+8,J%/x])

xxkg LA 48 42
005074 1€ 1=1 THCN THEN GOTO 33

LT ¢ 0 + 5R 54 5%

005077 2: END.

COMPILFR® ERRNA MESSAGES:
SAAAB T IR ARRRATAFBERRE TG

37: Z)E FXPCCTYFDN.
423 ILLEGAL SYMI(L IN EXORFSSION.
48: FXPECTFD,
s23 FXPECTED.

541 [LLEGAL SYMROL IN STATEMFNT.
SR: I3 EXPECTEN,

tions may or may not conform to the programmer’s
intentions. (If the branch were backward and the label
already “seen,” the recovery might well be different.)
Both the pL/C compiler and the Zurich compiler
exhibit a left-to-right bias, thereby failing to insert the
if, causing subsequent error messages concerning the
structure of the statement. PL/C reconstructs the branch
statement but converts ““is” to if. The Zurich compiler
never detects the error following then, but it signals a
missing := .

In the assignment statement, the brackets around
the subscripts of 4 are missing and the subscripts of B
are mutilated expressions. There is also a missing “;”
following the statement. Our parsers recover satisfac-
torily from all these errors, although not always in the
same way. PL/C is unable to analyze the statement at
all. The Zurich compiler skips forward to the := in an
attempt to fix the previous error. It then inserts the
missing “)’’ and ;" .

Communications November 1975
of Volume 18
the ACM Number 11

The if statement contains an extra then. Both our
parsers delete the then and analyze the rest of the state-
ment. The PL/c compiler gives an unintelligible message
for the entire statement. The Zurich compiler objects
to the second then and skips to the «;” .

In our empirical studies, we tried a number of
optional features, some more successfully than others.
We found, for example, that one could reduce the
amount of computation in the correction phase and get
satisfactory, although lower quality, recovery. One
could consider additional replacements for candidate
substrings—for instance, replacement by any non-
terminal in the grammar (rather than only RHS’s). Our
studies on these variations are, for the most part, in-

conclusive. (Most of these experiments are described
in [17].)

7. Discussion

A distinction can be made between those error-
handling schemes which concentrate solely on getting
the parser “back on the track” and those which trans-
form incorrect input sequences into syntactically correct
programs.’ The work of Leinius is an example of the
first approach; Levy’s work exemplifies the second.
Our methods lie somewhere in between. Our weighted
minimum distance correction phase is an attempt to
determine a probable explanation for the error, not
only as a more powerful and more local method than
Leinius’ for choosing among locally correct changes
but also as an aid to the programmer in correcting his
program. However, we do not attempt to produce a
“corrected” program text. It seems likely that our
approach could be extended in this way at the cost of
some compile-time overhead for correct programs (at
the very least, retaining the input text and keeping track
of the correspondence between elements of the parsing
stack and locations in the input text). Additionally
there are some instances in which the recovery actions
taken clearly do not correspond to the programmer’s
intention. Consider again Example 2 of Section 4, in
which

X =1 J;
is parsed as
¢ (blockbody) (statement) ? (expression)

with current input symbol ‘;”’ . The recovery action is
to delete {expression); namely J. The same parsing
stack and subsequent action would ensue if the errone-
ous statement were

X:=1 J+ K«L;

9 Levy refers to the former approach as “recovery’’ and the
latter as “correction.” As our remarks in the introduction indicate,
we find this terminology inappropriate.

1 The first author is experimenting with a technique that solves
this problem.

648

although it seems clear that some binary operator
is missing between [and J.° However, notice that
the expression following 7 is analyzed, thereby discover-
ing and recovering from subsequent errors in the
expression.

It appears that certain aspects of our approach to
error recovery are easily incorporated in other
bottom-up parsing methods. For example, the use of
weightings in choosing among alternatives is a general
technique. (Interestingly enough, a probabilistic ap-
proach was used for spelling correction in corc [5]
more than ten years ago.) Many of the error recovery
techniques in use suffer from a left-to-right bias; namely,
it is assumed that the text prior to the point at which
an error is discovered must be correct because it can be
parsed. This bias can prevent insertion of missing if’s,
begin’s, and the like. In some instances this bias is
simply myopia on the part of the implementer. As
Peterson points out [16], this left-to-right bias can be
avoided in LR parsing by considering changes to entries
further back in the parsing stack, rather than restricting
consideration to the element at the top. A change below
the top of the LR parsing stack requires recomputing
all the elements above the one that is changed; this
computation can be bounded by the depth of the stack
at which changes are considered, and, in any case, is
substantially smaller than reparsing the input text.

However, correct prefix parsing methods appear to
be at a disadvantage when it comes to using context to
determine recovery actions. Left context information is
available in abundance. In fact, it is one of the strong
points of LR parsing that much important structural
information about the text already parsed is contained
on the parsing stack. However, that strength becomes
a weakness when it comes to analyzing the right context
of an error detection point. The fact that the next move
of the parser can depend on the entire correct prefix
already analyzed makes it difficult or impossible to
start up the parser after the error point. On the other
hand, it is quite straightforward to extend the context
analysis to other more local parsing methods, such as
the wide variety of mixed strategy and bounded right
context methods.

Although our approach to error recovery appears
very promising, there are still many issues to be investi-
gated. Details need to be worked out for the extension
to other parsing methods and the techniques should be
implemented and tested. It may turn out that if parsing
methods are used which put weaker constraints on
grammar form, more computation will be required in
the correction phase. A related question is in what
ways the characteristics of a grammar affect the quality
of recovery.

As the reader can observe, a number of heuristics
have been used in order to impose rather stringent
efficiency constraints. It would be interesting to know
what the tradeoffs are. How much better might the
recovery be if more context were used? What if the

Communications November 1975
of Volume 18
the ACM Number 11

correction phase were made ‘“‘smarter’’?

Another issue of importance, particularly for those
interested in producing ‘“‘corrected” source text, is the
incorporation in the recovery method of language-
dependent' features and of information from other
parts of the compiling process. In the method described,
language-dependent information is introduced by the
implementer only in the form of modifications to the
cost functions. If, as is usual, the lexical analysis is a
separate compiler phase which produces tokens or
symbols for the parser, incorporation of lexically based
recovery can be achieved by the addition of Morgan-
style spelling correction [15] whenever a detected error
involves an identifier and lexically determined low-cost
replacements (such as *;” for “:”’). Since our emphasis
was initially on automatically generated error recovery
techniques, we have not explored the introduction of
semantics (in the compiler sense, thereby including
non-context-free syntax issues) into the recovery pro-
cess. For instance, when it is determined that an identi-
fier is to be inserted, no attempt is made to infer which
identifier. At present we know of no alternative to
hand-coded recovery routines to handle this particular
problem. On the other hand, if the correction phase of
recovery succeeds in replacing part of the sentential
form by the RHS of a-rule, the compiler could then
execute the semantics associated with that rule, al-
though it might also be necessary to do semantic error
recovery in that case. In order to preserve semantic
integrity, the semantic rules must also be designed so
they can be executed ‘“out of order” by the forward
move.

Other aspects of the error recovery problem which
we are presently studying include the generation of
error messages, the effect of recovery considerations on
programming language design, and more sophisticated
cost function determination. Some of these topics are
discussed further in [17].

Despite the current activity in other areas of soft-
ware development, we see a continuing need for error
recovery techniques. Most syntax errors and many
semantic errors result from incomplete knowledge of
the programming language being used, transcription
errors, and carelessness. These errors will continue to
be in evidence. Our contribution is an attempt to pro-
vide recovery techniques that aid both the implementer
and the users of his or her implementation.

Received December 1974; revised February 1975

1 By “language-dependent” we really mean “not formally
specified”’; that is, knowledge of the language that must be explicitly
incorporated by the implementer.

649

References

1. Aho, A.V. and Ullman, J.D. The Theory of Parsing,
Translating, and Compiling. Prentice-Hall, Englewood, N.J., 1972.
2. Bauer, H.R,, Becker, S.. and Graham, S.L. Algol W imple-
mentation. Tech. Rep. CS 98, Computer Sci. Dep., Stanford U.,
Stanford, Ca., 1968.

3. Conway, R.W., Morgan, H.L., Wagner, R.A., and Wilcox,
T.R. PL/C. A high performance subset of PL/1. Tech. Rep. 70-55,
Computer Sci. Dep., Cornell U., Ithaca, N.Y., 1970.

4. Conway, R.W.,; and Wilcox, T.R. Design and implementation
of a diagnostic compiler for PL/I. Comm. ACM 16,3

(Mar. 1973), 169-179.

5. Freeman, D.N. Error correction in CORC, the Cornell
computing language. FJCC, 1964, 15-34.

6. Graham, S.L., and Rhodes, S.P. Practical syntactic error
recovery in compilers. ACM SIGACT-SIGPLAN Symp. on
Principles of Prog. Lang., Boston, Oct. 1973, pp. 52-58.

7. Gries, D. The use of transition matrices in compiling. Comm.
ACM 11,1 (Jan. 1968), 26-34.

8. [Irons, E.T. An error-correcting parse algorithm. Comm. ACM
6, 11 (Nov. 1963), 669-673.

9. James, E.G. and Partridge, D.P. Adaptive correction of
program statements. Comm. ACM 16, 1 (Jan. 1973), 27-37.

10. James, L.R. A syntax directed error recovery method.
Master’s Th., U. of Toronto, Computer Systems Research Group
Tech. Rep. CSRG-13, May 1972.

11. La France, J.E. Syntax directed error recovery for compilers.
Ph.D. Th., U. of 1llinois, Urbana, Computer Sci. Dep. ILLIAC
1V Doc. 249, 1971.

12. Leinius, R.P. Error detection and recovery for syntax directed
compiler systems. Ph.D. Th., Computer Sci. Dep., U. of
Wisconsin, Madison, 1970.

13. Levy, J.P. Automatic correction of syntax errors in program-
ming languages. Ph.D. Th., Cornell U., Computer Sci. Dep.
Tech. Rep. TR71-116, Dec. 1971.

14. Lyon, G. Syntax-directed least-errors analysis for context-free
languages: a practical approach. Comm. ACM 17,1 (Jan. 1974),
3-14.

15. Morgan, H.L. Spelling correction in system programs. Comm.
ACM 13, 2 (Feb. 1970), 90-94.

16. Peterson, T.G. Syntax error detection, corrections and
recovery in parsers. Ph.D. Th., Stevens Institute of Technology,
Hoboken, N.J., 1972.

17. Rhodes, S.P. Practical syntactic error recovery for program-
ming languages. Ph.D. Th., U. of California, Berkeley, Dep. of
Computer Sci. Tech. Rep. 15, June 1973.

18. Teitelbaum, R. Context-free error analysis by evaluation of
algebraic power series. Proc. ACM-SIGACT Fifth Ann. Conf. on
Theory of Computing, U. of Texas, Austin, Texas, 1973, pp.
196-199.

19. Wirth, H., and Weber, H. EULER: a generalization of Algol
and its formal definition; Parts 1 and II. Comm. ACM 9, 1-2
(Jan.-Feb. 1966), 13-35, 89-99.

20. Wirth, N. A programming language for the 360 computers.

J. ACM 15,1 (Jan. 1968), 37-74.

21. Wirth, N. The programming language PASCAL. Acta Infor-
matica 1,1 (Jan. 1971), 35-63.

22. Wirth, N. The design of a Pascal compiler. Proceedings of
the International Summer School of Program Structures and
Fundamental Concepts of Programming, Munich, Germany,
July 1971.

(Please turn the page for Appendix.)

Communicaions November 1975
of Volume 18
the ACM Number 11

Appendix: Syntax of Algol Subset

(program) ::= ENDMARKER (block) ENDMARKER
(block) ::= (blockbody) end
.1 = (blockbody) (statement) end
{blockbody) ::= (blockhead)
11 = (blockbody) (label-definition)
11 = (blockbody) (statement) ;
: (blockbody) ;
(blockhead) ::= begin
:: = (blockhead) (declaration) ;
(declaration) ::= (simple-declaration)
1= (array-declaration)
(simple-declaration): : = integer (identifier)
:: = (simple-declaration), (identifier)
(array-declaration) :: = (boundslist) {(expression) .. (expression))
(boundslist) :: = (arrayhead) (
11 = (boundslist) (expression) .. (expression) ,
(arrayhead) ::= integer array (identifier)
:: = {arrayhead) , (identifier)
(label-definition) :: = (identifier) :
(statement ::= (simplestatement)
;1= (if-then-cl) (statement)
] 11 = (if-then-cl) (elseclause) (statement)
(elseclause) :: = (simplestatement) else
(if-thencl) ::= if (expression) then
(simplestatement) :: = go to (identifier)
1= (block)
(variable) : = (expression)
(procedure-head) {(expression))
stop

i

I

I

i

Il

{procedure-head) :: = (procedure-identifier) (
1t = (procedure-head) (expression) ,
(expression) ::= (expr)
1= (expr) (relationop) {(expr}

(expr) ::= (term)

t1= + (term)

ii= — (term)

: {expr) + (term)
{expr) — (term)

: {expr) \/ (term)
(term) :: = (factor)
1t = (term) * {factor)
1= {(term / (factor)
i1 = (term) A (factor)

(factor) :: = (secondary)
11 = —(factor)
(secondary) ::= (primary)
¢ = (secondary ** (primary)
(primary) ::= (number)

1= (variable)
t:= ((expression))
(variable) :: = (simple-variable)
1= (arrayname) {(expression))
(simple-variable) :: = (identifier)
(arrayname) :: = (array-identifier} (
:: = (arrayname) {expression) ,

The symbols (identifier), (number), (array-identifier), (procedure-identifier), and (relationop) are handled by the lexical scanner.

(array-identifier) :: = (identifier)
(procedure-identifier) :: = READ

: WRITE
(identifier)

I

{relationop) ::

i

1

|
VIV TIAA

650

Communications November 1975
of Volume 18
the ACM Number 11

