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This paper describes a recovery scheme for syntax 
errors which provides automatically-generated high 
quality recovery with good diagnostic information at 
relatively low cost. Previous recovery techniques are 
summarized and empirical comparisons are made. 
Suggestions for further research on this topic conclude 
the paper. 
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1. Introduction 

A substant ia l  por t ion of any p rogrammer ' s  t ime is 
spent in debugging.  One of the major  services of every 
compiler  ought to be to provide as much in fo rmat ion  
as possible abou t  compile- t ime errors in order to 
minimize the t ime required for debugging.  Ideally, at 
compile time, the compiler  should discover and  report  
all syntax errors and those semantic  errors detectable 
at that  time. At  the same time, no error messages 
should be generated for nonexis tent  errors. These 
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spurious error detections and their associated error 
messages are usually engendered by an inappropriate 
action taken by the compiler to remove a previous 
error. Additionally, it is desirable to have diagnostic 
information about what seems to be wrong, rather than 
simply the information that an error occurred. 

In this paper we consider the problem of recovering 
from syntax errors in a way that detects almost all 
errors, provides diagnostic information, and reports 
few nonexistent errors. We have attempted to provide 
a solution which depends to a great extent solely on 
the form of the syntax. Just as formal methods for 
syntax analysis have led to automatic parser construc- 
tion (via parser-generators), formal methods for syntax 
error recovery enable us to have automatic construction 
of recovery capabilities. Not  only does this free the 
implementor from the extra task of designing and pro- 
gramming recovery routines, but it also minimizes the 
biases which cause handwritten recovery routines to 
falter badly on unanticipated errors. 

In order that the recovery techniques be usable in 
production compilers, we consider it important that 
the error recovery not degrade the parsing speed intol- 
erably. The approach to be presented has the property 
that no overhead for error recovery is incurred in 
parsing correct programs or correct portions of pro- 
grams with errors. The recovery routines are invoked 
only when an error is detected. They restore the parser 
to a valid configuration and return control to the 
parser. The recovery techniques can be carried out 
reasonably rapidly, permitting a small amount of 
recovery time per error. 

In our view, the most meaningful way to evaluate 
the techniques presented here was to try them. Our 
experiments indicate that our recovery techniques work 
quite well in practice, particularly as compared with 
the recovery actions taken by other compilers whose 
designers claim high-quality recovery as one of their 
achievements. Many errors can be corrected locally, 
enabling our recovery techniques to handle densely 
occurring errors without skipping portions of the 
source text. 

Of course, the recovery action taken does not neces- 
sarily correspond to the programmer's intention. Any 
given piece of syntactically invalid source text may 
mean different things for different computations. For 
example, consider the incorrect Algol statement 

I := I -- ( ( ( N , M )  -- ( I . J ) / 2 ) .  

Among the many equally plausible correct versions of 
the above statement are the following two (different) 
statements. 

I := 1 -- ( ( ( N . M )  -- ( I . J ) ) / 2 )  
I :=  1 -- ( ( N . M )  -- ( I . J ) / 2 )  

Furthermore, different classes of programmers (for 
instance, novice programmers versus experienced pro- 
grammers) may make different kinds of errors. Consider 
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the syntactically invalid Fortran IV statement 

READ532ABLE 

given by E. James and Partridge [9]. A former Fortran 
II programmer would probably have meant 

R E A D  532,ABLE 

whereas a Fortran 1V programmer would probably 
have meant 

READ(5,32)ABLE 

However, our techniques usually make plausible 
changes to incorrect programs. Even if the corrections 
are not what the programmer intended, they usually 
serve to show the programmer what error has been 
made. 

The paper is organized as follows. After presenting 
our notation and giving some general definitions, we 
briefly survey some of the other approaches to error 
recovery that have been proposed and, in some cases, 
used. We then give an overall explanation of our 
recovery technique, followed by a more detailed de- 
scription of the version we implemented and a summary 
of our empirical results. This is followed by a discussion 
of possible extensions to the scheme and some con- 
cluding remarks. 

Many of the results present in this paper are con- 
tained in the second author's Ph.D. dissertation [17]. 

2.  D e f i n i t i o n s  a n d  N o t a t i o n  

A (context-free) grammar is a 4-tuple G = (V ,E,P,S) ,  
where ~: _ V is a finite set of terminal symbols, 
N = V - -  ~ is a finite nonempty set of nonterminal 
symbols, P is a finite set of rules or productions, X ~ x, 
where X ~  N and x E  V*, 1 and SC  N is the initial 
symbol. For any rule X--~ x, X is termed the left-hand 
side (abbreviated LHS) and x is the right-hand side 
(RHS). 

As usual, with respect to a grammar G = (V,~,P,S) 
we define the relation ~ on V* X V* such that for any 
a ~ V*, b E V*, a ~ b if and only if there exist U C N, 
~,~r, uC V*,and U ~ u i n  P s u c h t h a t a  = ~Uvrand 
b = auvr. We represent by ~ +  (~*)  the transitive 
closure (reflexive-transitive closure) of ~ .  For any 
n >_ 0, ai ~ V* where 0 < i < n, we say that the se- 
quence a0 ~ al ~ . . .  ~ a ,  is a derivation o f a ,  f r o m  ao 
o f  length n in G. If a0 ~ al ~ . . .  ~ a, where for 
0 < i < n, ai = o ' i U i v l - i  and ai+x = ~yiuivri for some 
a~ C V*, 7ri C :~ , and U~ ~ u~ in P, the derivation is a 
rightmost derivation. A sequence of symbols u is a 
sentent ia l form if S ~ *  u. The sentential form is right- 
most if there is a rightmost derivation such that S ~ *  u. 
If  u ~ 2;* then u is a sentence. The language L(G)  

x For any set of symbols V, V* denotes the set of all finite 
length sequences of symbols from V and V + = V* -- {X} where X 
is the empty sequence. 
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defined (or generated) by G is the set of all sentences. 
Thus L(G) = {u ~ Y,*[ S ~ *  u}. 

We refer to the process of reconstructing a deriva- 
tion, given a sequence of terminal symbols and a gram- 
mar, as parsing. Given a sentential form au~-, 
~,u,r C V*, and a rule U 4 .  u, the transition from auTr 
to ¢rUrr obtained by substituting U for u is called a 
reduction. 

We restrict consideration to the parsing of deter- 
ministic context-free languages. A bottom-up parsing 
method is an algorithm which reconstructs derivations 
in reverse order by making a sequence of reductions 
from the input--a sequence of symbols from Z*-- to  
the initial symbol. (That is, if a0 ~ al ~ . . .  ~ a, is a 
derivation, and a, 6 Z*, then a,~ is the input and the 
parser reduces a, to a,_~, a,,_l to a,~_2, etc. until it 
reaches a0 .) The input is scanned symbol by symbol. 
We refer to the symbol being scanned at any given time 
as the current input symbol. The (bottom-up) parser 
uses a pushdown store called the parsing stack which 
we represent as a sequence of symbols with the base of 
the stack at the left and the top of the stack at the right. 
There is a base of the stack symbol designated # and 
an end of file symbol designated S, where #, $ are not 
in the vocabulary of the grammar. The input is termi- 
nated by $. The parsing stack contains symbols of the 
vocabulary and possibly additional information, depend- 
ing on the parsing method being used. Parsing actions 
consist either of stacking the current input symbol and 
advancing the input, or of making a reduction of sym- 
bols at the top of the parsing stack. 

Following Levy [13], we say that a parsing method 
has the correct prefix property if the existence of a 
syntax error is detected (in a single deterministic left- 
to-right scan of the input) as soon as the input scanned 
no longer forms a prefix of a sentence in the language 
being parsed. LR(k) parsing and its variants (SLR(k), 
LALR(k), etc.) and top-down recursive descent have 
this property; the various precedence and bounded 
right context methods do not. 2 

3. Previous Methods of  Error Recovery 

Compiler writers have always had to deal with the 
problem of error recovery. Many of the techniques in 
use depend on the details of the programming language 
being compiled. Often, the compiler writer includes in 
the syntax analysis portion of the compiler, routines to 
take particular actions if particular error situations 
occur. Error recovery can be handled in this way even 
when parsing is table driven. The approach taken by 
Gries [7] and the PL/C implementers [4] is to include 
in the parsing table error actions based on the imple- 
menters' knowledge of common programming errors 
and appropriate recovery actions. This technique re- 

2 Descriptions of these parsing methods can be found in [1 ]. 
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quires a substantial amount  of programming effort for 
the error recovery portion of the compiler. Further- 
more, although such a system handles the expected 
errors reasonably well, it can fail badly on unanticipated 
errors. Another kind of language dependent error 
recovery, which is easier to implement in syntax directed 
compilers, is to augment the grammar by "error  pro- 
ductions" (Wirth [20]). Again, unanticipated errors 
cause trouble. A more local approach is to have a list 
of possible local modifications and to use the first one 
that works (see, for example, Wirth [20]). Additionally 
one can have an implementer designed table of possible 
local modifications for each symbol or pair of symbols 
in error. (See, for example, Bauer et al. [2], and Peter- 
son [16].) However, these techniques will not always 
succeed. 

The oldest and simplest recovery technique that is 
essentially language independent is the so-called panic 
mode. In this scheme, when an error is detected, the 
input is advanced until one of a class of special symbols, 
such as a " ; "  or an end is located. (The specification 
of this class of symbols is language dependent but can 
be determined rather easily.) The parsing stack is then 
erased until the special symbol can legitimately follow 
the top of the parsing stack. This method is fast and 
requires a small amount  of code, but the errors con- 
tained in that portion of the text which is skipped are 
not detected, thus possibly necessitating many addi- 
tional computer runs to detect all of the errors in the 
user's program. In addition, little information is avail- 
able about the nature of the error. If the parsing method 
being used is predictive, that is, it is possible to deter- 
mine easily all the possible valid continuation symbols 
for the input read so far, then the input can be advanced 
until one of these symbols is encountered. The recovery 
scheme for LR parsing described by Leinius [12] and 
Peterson [16] and implemented by L. James [10] is a 
more sophisticated version of this technique. Alterna- 
tively, the predictive capability can be used to insert one 
or more symbols so that the next input symbol can 
legitimately follow. This technique is presented in 
Irons [8]. 

Another early automatic technique is that of spelling 
correction, which appears in CORC [5] and was later 
developed further by Morgan [15]. It is normally used 
in conjunction with other recovery techniques. 

An approach taken by Levy [13] and La France 
[11] is to choose one of an automatically generated set 
of corrections by simultaneously carrying out parses for 
each possibility. If, as in the Levy method, one con- 
tinues multiple parsing for an unbounded number of 
steps, the ensuing combinatorial explosion in space and 
time makes the technique very impractical. Conse- 
quently, La France bounds the amount of multiplicity. 
This improves efficiency, but can yield insufficient 
information in some cases. 

Another language-independent recovery technique 
investigated recently is to determine the minimum 
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number  of insertions, deletions, and substitutions of 
symbols which transform the entire incorrect input into 
a valid sentence of the language being analyzed. Studies 
by Lyon [14], Peterson [16], and Teitelbaum [18] have 
shown that for general context-free parsing, the "mini- 
mal distance" of an input sequence can be determined 
in time of order n 3 where n is the length of the input. 
However, these techniques do not provide linear-time 
minimal distance correction for linear-time parsing 
methods. More important,  as pointed out by Levy 
[13], minimal distance corrections may not be the best 
corrections according to the programmer.  

The previous work closest to our own is that of 
Leinius [12] and Levy [13]. Leinius proposes an error 
recovery scheme for simple precedence parsing? He 
introduces the notion of "phrase-level" recovery; 
namely, recovery actions that have the effect of re- 
ducing the parsing stack. He recognizes that if the 
parsing stack followed by the current input symbol 
contains any sequence of symbols abacd, where a, b, c, d 
are single symbols, a is a sequence of symbols, a < b, 
c .2> d, and bac contains an error, then bc~c can be re- 
placed by any "locally correct" nonterminal symbol as 
a recovery action. His recovery algorithm finds suc- 
cessively larger sequences enclosed by < and .> (by 
looking back in the stack or parsing ahead in the input) 
until one is found for which there is a unique locally 
correct nonterminal to replace i t J  

Levy attempts to find a theoretical basis for error 
correction in all deterministic context-free parsing 
methods having the correct prefix property. His method 
includes a backward move on the input to determine 
the entire left context of the error discovery point that 
could contain the error and then parallel parses from 
the beginning of the left context to pursue all possible 
minimal distance corrections of a fixed bounded dis- 
tance. This method is admittedly impractical and Levy 
proposes some heuristics to improve its efficiency. 

Unfortunately, neither Leinius' simple precedence 
recovery nor Levy's method appears to have been tested 
empirically. However, both methods contain important  
ideas, especially the at tempt to provide better automatic 
language-independent recovery or correction and the 
use of  context in this process. 

4. General  Description of Graham-Rhodes Method 

We first describe our recovery method as incor- 
porated in any bot tom-up,  no back-up parser, sup- 
pressing for the moment  the details of how the parser 
works (i.e. how parsing decisions are made and how 
errors are detected). 

3 See Section 5 for an explanation of this parsing method. 
4 The sequence enclosed by < and .> is not examined. 

A second diagnostic message is issued only if there appears 
to be a second error in the source text. 
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The error recovery routines are invoked when a 
syntax error is detected by the parser. Control is re- 
turned to the parser when the error state has been 
removed. In view of the efficiency constraints placed on 
the recovery method, input which has been scanned is 
not retained by the parsing program. Consequently, the 
error state is removed by making modifications to the 
parsing stack and possibly to the remaining input, but 
not to the already scanned input. 

Immediately after an error is detected, most recov- 
ery strategies consider what change to the parsing stack 
and /or  the input would recover from the error. In our 
method, we first at tempt to analyze the context in 
which the error occurs. That  is, the correction phase of 
the recovery is preceded by a condensation phase which 
condenses the surrounding context. 

In the condensation phase, an at tempt  is first made 
to make further reductions on the stack, preceding the 
point of error detection. We refer to this a t tempt  as the 
backward move. The forward move is an at tempt  to 
parse the input just beyond the point of error detection. 
The forward move will terminate either because a 
second error is detected further on in the input or, more 
likely, because the only possible next parsing action is 
a reduction involving that part  of the stack containing 

5 the detected error. 
We illustrate the condensation phase by several 

examples. All the examples use the grammar  given in 
the Appendix for an Algol-like syntax. The point in 
the program at which the error is detected is indicated 
by " ]" "; the corresponding point in the parsing stack 
is designated by "?". 
Example 1. 

M : =  Q - 3 ;  
I = 2 . ( M - - P )  t h e n K : =  1 e l s e M  := 1; 

T 
The most probable error is that there is a missing if 
preceding I. The error is detected when the = is "seen" 
by the parser. At that point, the stack has the form 

¢ (blockbody) ? (variable) 

and the current input symbol is = .  
No reductions are made by the backward move. 

The forward move reduces I = 2 . ( M - - P )  to 
(expression) and then terminates because no further 
reductions which include (expression) or then are pos- 
sible. In our experimental recovery system, the stack 
then has the form 

¢ (blockbody) ? (expression) then 

and the current input symbol is K. (In some other 
bot tom-up parsing methods, the current input symbol 
would be then.) Notice that there is no fixed a priori 
bound on the amount  of input read during the forward 
move. By allowing the parser to determine the look- 
ahead, the recovery routine can "see" the symbol then 
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before any correction is made. This contributes con- 
siderably to the power of the method. 
Example 2. 

X : = I  J; 
T 

The most probable error is a missing operator between 
I and J. The error is detected when the J is "seen" by 
the parser. At that point, the parsing stack has the 
form 

¢ (blockbody) (variable) := (identifier)? 

and the current input symbol is J. In this example, the 
backward move reduces (variable) := (identifier) to 
(statement) and the forward move reduces J to 
(expression}, leaving the parsing stack in the form 

¢ (blockbody) (statement} ? (expression} 

where the current input is ; .  
Example 3. 

write (begin I := 3 end); 

T 
This is legal in so-called expression languages but is 
invalid in our Algol dialect. The error is detected when 
the begin is "seen" by the parser. The parsing stack 
has the form 

¢ (blockbody) (procedure id) ( ? 

and the current input symbol is begin. The backward 
move reduces (procedureid) ( to (procedure head}. 
The forward move reduces begin I := 3 end to 
(bloekbody) (statement} end, leaving the parsing stack 
in the form 

¢ (blockbody) (procedure head)? (blockbody) (statement) end 

where the current input symbol i s " ) " .  Since there ap- 
pears to be another error, 6 a second backward move re- 
duces (blockbody) (statement) end to (statement}. 

The backward and forward moves are an at tempt 
to summarize the context surrounding the point of 
error detection. The forward move provides, in effect, 
an unbounded lookahead. The purpose of the correc- 
tion phase is to change the condensed parsing stack so 
that the error situation is corrected and the parsing 
stack contains a sequence of symbols that could occur 
in the parse of a sentence in the language. (In fact, 
depending on the parsing method, the correction phase 
may insure only that in the vicinity of the error the 
parsing stack is legal.} 

Since we wish to use as much of the context of the 
error as can be efficiently exploited, the correction 
phase considers changes to sequences of symbols, 
rather than isolated changes to single symbols. The 

6 end cannot be followed by ) in a legal input. 
7 In the case of a tie, either some tie-breaking rule can be io- 

voked or the selection can be made arbitrarily. 

implementer can trade quality of recovery for efficiency 
in determining how this correction is done. The idea is 
to change the parsing stack, at the point of error, to an 
RHS of the grammar,  or to one or more prefixes of 
RHS's ,  which "fit in" in the sense that they can legiti- 
mately occur in the given context. 

In general, there will be more than one possible 
change that appears locally to correct the error. For  
instance, in Example 1, after the condensation phase, 
the stack has the form 

(blockbody) ? (expression) then 

and the current input symbol is K. One correction 
that  might be made would be to replace the symbols 
(expression) then by (statement) ; This change 
appears  locally to work, since 

(blockbody) (statement) ; 

is the RHS of the production, and could be followed 
by (identifier) in a legal input. Alternatively, if could 
be inserted before (expression), since if can follow 
(blockbody) and 

if (expression) then 

is the RHS of a rule. 
In order to provide helpful diagnostic information 

to the programmer,  as well as to increase the likelihood 
that, in the absence of a more global analysis, the change 
really corrects the error, it is necessary to make some 
effort to choose the "best"  correction. The way this is 
done is to determine which of the possible locally 
correct changes has the "closest fit"; that is, which 
change requires a minimum of symbol by symbol 
modification of the parsing stack. A weighted minimum 
distance measure is used. In order to compute how close 
a given RHS is to one of the candidates for change, 
two vectors I and D are used. For  each symbol in the 
grammar,  the I vector contains the cost of inserting 
that symbol anywhere in the stack and the D vector 
gives the cost of deleting that symbol anywhere in the 
stack. The closest fit is then defined to be the match 
with the minimum cost. As an example of the cost 
computation,  consider yet again Example 1. The cost 
of changing (expression) then to (statement) ; is 
D((expression)) + D(then) + /((statement))  + I(;) ,  
whereas the cost of inserting if before (expression) is 
/(if). Notice that Example 2 can be corrected at a cost 
of D((expression}). 

In Example 3, the form of the stack after the con- 
densation phase is 

¢ (blockbody) (procedure head) ? (statement} 

and the current input symbol is ")". One way to correct 
this error is to replace (statement} by (expression}, at a 
cost of D((statement)) + /((expression)). 

After the pattern matching process has determined 
the cost of the changes by using the cost vectors, the 
minimum cost change is made5 Control  then returns 
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to the parser. However, in the unlikely event that the 
minimum cost is greater than a fixed a priori maximum, 
a form of the panic mode is used. The assumption in 
that case is that the change, although locally correct, is 
so bizarre that it is probably wrong. 

Clearly, the change which is selected depends on 
the values of I and D. These cost functions, in effect, 
indicate the relative likelihood that each grammatical  
symbol is intentional if it occurs in the input text and 
is unintended if it does not occur. There are a variety 
of  heuristics which can be used in selecting the costs in 
order to improve the quality of  the recovery. For  
example, brackets (begin, end, ( , ) ,  etc.) and the non- 
terminals generating them ((blockhead), (blockbody), 
etc.) should have relatively high I and D values and 
long "reserved words" should have high deletion costs. 
Using these rules, the cost vectors can be generated 
mechanically. Alternatively, values for I and D can be 
supplied by the implementer. This allows him or her to 
incorporate language-dependent criteria about  the use 
of the implemented language and to " tune"  the recov- 
ery system to a particular user community.  

An addition to the cost computat ion which we 
found to be very useful is to include a cost function R 
which assigns costs to the replacement of one symbol 
by another. (The function values are normally lower 
than the corresponding I and D costs.) The replacement 
function can be used by the implementer for additional 
tuning and for introducing such factors as lexical 
similarity. For  example, there can be a relatively low 
replacement cost of  = by := or of certain reserved 
words by (identifier). Of  course, introducing R in the 
cost computat ion increases both the time to compute 
costs and the amount  of compiler code for recovery. 

5. Error Recovery for Precedence Parsers 

In order to explain in more detail how the recovery 
method works, it is necessary to specify, for a given 
parsing method, how errors are detected and what is 
known about  the parsing stack when an error is dis- 
covered, how the condensation phase is carried out, 
and how the set of possible changes is determined prior 
to the cost computat ion.  

We initially developed this recovery method for 
simple precedence parsing, for which it is particularly 
well suited. We now discuss more precisely the way in 
which the various aspects of the recovery are carried 
out in that parsing method. Subsequently, we consider 
the incorporation of this approach to error recovery in 
other parsing methods. 

First, we briefly review simple precedence parsing 
for the reader. 

For  any grammar  G = (V,2,P,S), simple precedence 
relations ~ ,  - ,  .> are defined for all (A,B) C V X Vby: 

A - B if for some o, 7r ~ V*, P contains a rule 
U --~ ~rABrr 

A < B if for some o, ~r, a ~ V*, YC N, P c o n t a i n s  
a rule U --~ aA YTr and Y ~+  Ba 

A .> B if for some(r, Tr, a, 3,~ V*, X ~  N, y ~  V, P 
contains a rule U ---:. gXYTr and X ~ +  ~,A and 
Y ~ *  Ba. 

A grammar  G = (V,F,,P,S) is a simple precedence 
grammar [19] if: (a) For  all (A,B) ~ V X V, at most 
one precedence relation is satisfied. (b) P contains no 
rule with RHS X. (c) No  two rules in P have the same 
RHS.  (d) With respect to G, there is no rightmost 
derivation S ~ +  S. 

We extend the precedence relations to the end- 
markers  ¢ and S by the rules that for every X ~ V, if 
there is some c~ C V* such that S ~ +  X~, then ¢ < X 
and if there is  some ~ ~ V* such that S ~ +  c~X, then 
X > $ .  

Initially, the parsing stack contains only ¢ . For  an 
input string which is contained in L(G), the parser 
works in the following way (excluding the output  steps, 
semantic routines, etc.) : 

Step 1. Read the next input symbol. 
Step 2. I f  the precedence relation between the symbol 

at the top of the parsing stack and the input symbol 
is < or - then stack the input symbol and go to 
Step I. 

Step 3. If  the input symbol is $ and the contents of the 
stack are ¢S then exit. 

Step 4. (Otherwise the precedence relation between the 
top stack symbol and the input symbol is ->.) Scan 
the stack f rom right to left until the first instance in 
which a symbol (call it A) and the symbol to the 
right of it in the stack have the precedence rela- 
tion < .  

Step 5. Find the rule having as RHS the sequence of 
symbols to the right of A on the parsing stack. 
Replace the symbols to the right of A by the LHS 
of that rule and go to Step 2. 

In the usual precedence parser, errors are detected 
in one of two ways. The first occurs when there is no 
precedence relation between the top of the parsing stack 
and the incoming symbol (Step 2); this situation is 
usually referred to as a character pair error. In a typical 
Algol grammar,  for instance, the string 

A : = I  J : = K ;  

would have a character pair error between the I and the 
J since an identifier can never be followed by an identifier. 

The second type of error is found when a potential 
RHS is detected using the precedence relations (Step 4), 
but it does not match any RHS of the grammar  (Step 5). 
This type of error is normally referred to as a reduction 
error. A reduction error can arise in the following 
way. The following simple precedence grammar:  

S ~ N #  
N--->D-- D 
D---> I 

generates only the one sentence 1 -- 1#. If  the parser 
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for this grammar  is given as input 1 -- 1 - 1, eventually 
Step 4 finds a potential RHS D -- D -- D, yet no rule 
of the grammar  has this RHS. 

The error detection capability of a simple precedence 
parser can be significantly improved, at the cost of a 
small increase in the running time of the parser. First, 
as suggested by Leinius [12], when a reduction is per- 
formed, a check can be made (Step 5) to see that A 
and the LHS to be stacked have precedence relation 

or - ,  otherwise a s t a c k a b i l i t y  error  occurs. 
The second error detection extension is an improve- 

ment in the detection of reduction errors. In this second 
extension, which is original as far as we know, the 
system continually checks the top of the stack for 
prefixes of RHS ' s  of rules of the grammar  before it 
puts a symbol onto the stack. This can be done, for 
example, by having the production table sorted lexico- 
graphically by RHS ' s  and having a pointer into this 
table which is advanced before each symbol of an RHS 
is stacked. All the RHS ' s  with a common prefix will 
then be grouped together. When a new RHS is begun 
(i.e. when the top symbol of the stack and the symbol 
to be stacked have precedence relation ~ ) ,  the previous 
pointer value is saved and the pointer is set to the first 
production such that the leftmost symbol of the RHS 
is the symbol to be stacked. When the prefix at the top 
of the stack is to be continued (i.e. when the top symbol 
of the stack and the symbol to be stacked have prece- 
dence relation - ), the pointer is set to the first RHS 
having that prefix followed by the symbol to be stacked. 
When the prefix at the top of the stack should be an 
RHS (i.e. when the top stack symbol and the input 
symbol have precedence relation -> ), the pointer 
should be pointing to the rule with that RHS.  

In the latter two cases, if there is no such RHS, a 
n o n v a l i d  R H S  error  is said to have occurred. Since the 
traditional parsing method must also search through 
the RHS 's  (Step 5), our method entails no increase in 
parsing time except for the inability to hash-address the 
production table in certain ways. The difference in our 
method is that it does the searching incrementally, 
whereas the usual method performs it all at one time. 

Consider again the example 1 - 1 - 1 given in the 
discussion of the usual precedence parser. In the system 
described in this paper, the parser detects a nonvalid 
RHS error on the second . . . . .  since there is no pro- 
duction whose RHS begins with D -- D - - .  Notice 
that a character pair error is just another kind of stack- 
ability error and a reduction error is one kind of non- 
valid RHS error. 

The advantage of the added detection capability for 
our error recovery method is that we can more accu- 
rately determine the likely location of the error. At the 
commencement  of the condensation phase of recovery, 
that location is assumed to be either the point at which 
no precedence relation holds (possibly after condensa- 
tion) or the point at which the previous contents of the 
stack do not form a prefix of an RHS (possibly after 
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condensation). More specifically, the error location is 
the point immediately preceding an RHS if the corre- 
sponding LHS causes a stackability error; the top of 
the stack if the corresponding LHS causes a nonvalid 
RHS error or in the case of a character-pair error. I f  
the current input symbol causes a nonvalid RHS error, 
the incoming symbol is stacked, the input is advanced, 
and the new top of the stack is designated the location 
of the error. 

The condensation phase is carried out easily. For  
the backward move, it is assumed that there is a prece- 
dence relation .> between the symbol immediately pre- 
ceding and the symbol immediately following the point 
of error. Control is transferred to the parser, which 
makes all possible reductions (possibly none) preceding 
the point of error. For  the forward move, the state of 
the parser is adjusted, by stacking the current input 
symbol if necessary, so that the location of the error is 
one symbol below the top of the stack. It is assumed 
that there is a precedence relation < or - between the 
symbol immediately preceding and the symbol imme 
diately following the point of error, the nonvalid RHS 
check in the parser is turned off, and control is again 
returned to the parser. The forward move terminates 
either because of a new stackability error, or, more 
likely, because a .> is encountered, but the stack does 
not contain a valid RHS (because of the error which 
necessitated the forward move). If  necessary, a second 
backward move is done f rom the second point of error 
by again assuming .> and returning control to the 
parser. 

In the correction phase, we exploit the properties of 
the precedence relations. For  the sake of efficiency, 
possible changes are restricted to replacing a portion of 
the condensed parsing stack by the RHS of a rule (not 
by a prefix). There are three sequences of symbols that 
are considered for correction. They are the sequence of 
symbols from the nearest <~ to the left of the point of 
error up to the point of error, the sequence f rom that 
<( to the top of the stack, and the sequence from the 
point of error to the top of the stack. The restriction 
on possible replacements is not unreasonable, since it 
corresponds to the possibilities (1) that the precedence 
relation at point ? is .>, (2) that the precedence relation 
at point ? is - ,  and (3) that the precedence relation at 
point ? is ~ .  (There is also an implicit assumption that 
the precedence relation at the top of the stack is ->. In 
practice, this is very often the case. One can modify the 
correction phase so that prefixes of RHS ' s  are also 
possible replacements, but the increase in computat ion 
is significant when measured against the empirical per- 
centage of instances when such replacements are neces- 
sary.) Additionally, the possibility that any of the three 
stack sequences be deleted is considered. Thus if the 
number of rules in the grammar  is n, at most 3(n + 1) 
changes are considered. 

The next step is to reduce the set of possible changes 
to those which would enable the parser to continue; 
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that is, those which, in the immediate context, appear 
to correct the error. Essentially, a modification is 
locally correct if it does not create a stackability error 
or a nonvalid RHS error. More precisely, 

Definition. Let G = (V ,~ ,P ,S )  be a simple prece- 
dence grammar. A production X - ~  x is locally correct 
in the context s (yA,  B ) ; x , y  ~ V * ; X ~  N ; A , B C  V i f  
the following three conditions are satisfied. 
P1. A < X o r A  - X. 
P2. X <  B or X - B or X .> B. 

P3. I fA  - X a n d  X .> B, t henyAXis  the RHS of some 
rule in P; if A < X and X .> B then Xis  the RHS 
of some rule in P; otherwise, if A - X then y A X  
is a proper prefix of the RHS of some rule in P. 

The deletion of a string x is locally correct in the 
context (yA,  B); y C V*; A,B  C V if the following two 
conditions are satisfied. 
D1. A < B o r A  - B o r A  .> B. 
D2. If  A - B then y A B  is the prefix of the RHS of 

some rule in P ; i f A  .> B t h e n y A  is the RHS of 
some rule in P. 

Notice that since we consider replacing sequences 
of symbols only by RHS's,  not by prefixes of RHS's,  
the tests for local correctness can be carried out rapidly, 
since it is the set of LHS's  or nonterminals which are 
tested and the error checks are those done by the 
parser. In most cases, these tests eliminate a substantial 
portion of the possibilities (90-95 percent in our ex- 
periments). 

The cost computations are made on those possible 
changes which are locally correct, as described in 
Section 4, and the minimum cost change is then made. 

6.  E x p e r i m e n t a l  R e s u l t s  

We programmed a simple precedence parser in 
which we incorporated the described recovery tech- 
niques, together with a variety of experimental modifi- 
cations that could be independently enabled or dis- 
abled. Our test of these recovery techniques was to 
compare our recovery with that of other compilers in 
general use. We implemented both an Algol subset and 
the full syntax of PASCAL [21]. We prepared a set of test 
programs with a wide variety of syntax errors. (The 
source of most of these errors was student programs; 
a few errors were deliberately designed to challenge any 
recovery system.) We then compared the results on our 
Algol programs with the result of submitting PL/I-equiv- 
alent programs to the PL/C compiler [3, 4]. This seemed 
particularly appropriate in view of the PL/C design 
objective of providing a maximum degree of diagnostic 
assistance. Output for the PASCAL programs was com- 
pared with the results of running the same programs 
on the PASCAL compiler produced by Wirth's group 

8 In considering a candidate sequence for replacement or dele- 
tion, the left context is always the sequence of symbols starting 
with the nearest < to the left. 

(hereafter referred to as the Zurich compiler). Again 
we compared with an implementation designed to 
provide good recovery. To quote Wirth [22, p. 320], 

• . .  It was also recognized that one of the major challenges in 
developing a processing system for a language is its capability to 
meaningfully diagnose syntactic errors and to continue processing 
of subsequent text with a reasonably large probability of correct 
diagnosis. If the system is to be used successfuly in an environment 
of programming novices, this capability must be assigned no less 
than highest priority. The problem of syntax analysis thereby ob- 
tains entirely new aspects; the compiler must not only process the 
defined language, but virtually all sequences of symbols of the 
basic vocabulary . . . .  

Such comparisons are necessarily somewhat sub- 
jective. However, it appears that our error recovery 
techniques are qualitatively better than those of the 
Zurich and PL/C implementations. The errors which 
those compilers handle well are also dealt with appro- 
priately by our recovery scheme. In addition, we handle 
well a variety of errors that are improperly dealt with 
in the other compilers. The PASCAL compiler tends to 
find only the first of a set of dense errors and to skip 
arbitrarily large portions of text in getting "back on 
the track." (In one of our tests, an error in a declara- 
tion caused the PASCAL compiler to skip all of the sub- 
sequent declarations, causing a plethora of undefined 
symbols in the remainder of the program.) The PL/C 
compiler treats errors substantially more locally, thereby 
detecting more errors than the PASCAL compiler, al- 
though fewer than our programs find. However, the 
PL/C compiler can sometimes correct too locally, 
thereby failing to use context information. Additionally, 
it tends to have a left-to-right bias (that is, it assumes 
that any text already parsed must have been parsed 
correctly) and an inflexibility with regard to misuse of 
key words. 

For lack of space we present only a representative 
example. Figure 1 contains a program run on our Algol 
recovery parser; Figure 2 contains a PL/c-equivalent 
program run on the PL/C compiler; Figure 3 contains a 
PASCAL-equivalent program run on our PASCAL recovery 
parser; and Figure 4 contains the same PASCAL program 
run on the PASCAL compiler produced in Zurich. 

[In the research reported here, we were concerned 
primarily with the recovery actions taken by the com- 
piler. Little emphasis was placed on the wording of the 
messages. The first author has subsequently considered 
this problem; the examples shown represent a transi- 
tional stage in improving the wording.] 

In the first declaration of each program, the comma 
in the bounds list of the array declaration has been 
omitted. Both the PL/C compiler and our Algol parser 
recover by inserting the comma. Our PASCAL parser 
recovers by deleting the subrange 1..10. This is an 
equally good recovery action but is less likely to corre- 
spond to the programmer's intention. Notice that since 
the recovery actions are based on the form of the gram- 
mars, the Algol and PASCAL parsers do not necessarily 
take the same action. The lack of lookahead in the 
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Fig. 1. Algol subset recovery parser. 

[ L G O L W S U B S E T C O M P I L E R - S E P T  1 9 7 3  V E R B  I D N 

I ~ F G I N  
2 INTEGER ARRAY A , B I I . * 5  I . . t O l ;  

t 
o 

* * * * E R R O R I O ,  5 C A N N O T  ~ E  F O L L O W E D  BY 1 
- ~ECOVffRy ACTION WAS TO CHANGE: INTEGER A R R A Y . , . ( * . .  I . ,  5 

T O :  I N T E G E R  A R R A Y . , . ( . , ,  1 . .  5 , 

3 |NTEGER I I J ~ K I L ;  
4 ~ o :  I t J • K ÷ L = 4 T H E N  G~ L |  E L S E  K I S  2 ;  

2 3 ~  
* * = * E R R O R ( I )  ~ E G I N o .  C ~ N N O T  BE  F O L L O ~ E B  BY I 

-- R E C n V F R y  A C T I O N  WAS ¢ 0  C H A N G F :  I + J > K + L = ~ T H E N  
T O :  I F  I + J > K + L t 4 THEN 

l t t t E R R O R ( ~ )  GO CANNOT BF FOLLOWEO BY L I  
- ~ECOVERy ACTION l & S  TO CHANGE: GO L I  t ~ :  GD TO L |  

~ $ t ~ E R R O R I 3 )  V A R I A B L E  I S  H A S  NOT R E E N  O E C L A R E O  

$ $ ~ I E ~ O ~ ( I ~  K C A N N O T  B~  F O L L O M E O  BY I S  
-- R E C O V E R Y  A C T I O N  WAS TO C H A N G E :  I S  T O :  : =  

5 A 1 1 2  : =  ~ ( 3  i ( I e *  I J $ / K )  
+ t t 

5 6 ? e 
* * * $ E R P D . ( 5 )  A C A N N O T  q E  F O L L O W E D  BY I 

-- R E C O V E R Y  A C T I O N  WAS TO CHANGE= A T O :  A ( 

* * * * E R P O R ( f i )  2 C A N N O T  ~C F O L L O W E ~  BY : =  
- m E C n V E R Y  A C T I O N  WAS T 0  C H A N G E :  < A R m A Y  I m E N T I F I E m > I . . .  2 

T 0 :  < A ~ A y  I O E N T t F I E R > ( . . *  2 I 

* $ * * E R R O R ( 7 )  [ 1 + 4  C I N N O T  RR F O L L O W S D  BY I 
-- RECOVeRy ACTION WAS T O  CHANGE: ( 1 + ~  TO: [ 1 + 4  ) 

* t e l E R g O R ( 9  ) * C A N N O T  ~E  F O L L O W E D  By  / 
-- R E C O V E . Y  A C T I O N  WAS TO C H A N G E :  J t T O :  J t ( F A E I O ~ >  

6 I F  I : i I H E N  T H E N  GO ¢ 0  U ~ ;  
t t 
9 0 

$ ~ $ ~ E R R O R I 9 )  ) C A N N O T  RE  F O L L O I E D  ~Y  i F  
- R E C O V E R Y  A C T I O N  WAS TO C H A N G E :  B E G I N * . .  < S T A T E M E N T >  

T ~ :  3 E G I N o . o  < S T A T E M E N I >  ; 

I ~ I ~ E R R 0 ~ ( 0 )  I F  I = I T H E N  C A N N O T  ~E  F O L L O W E D  BY T H E N  
- ~ F C O V E m Y  A C T I O N  WAS TO O E L E T E :  T H F N  

7 L E :  E N D °  

I 
$$=$ERRDR( I )  END C } N N O T  ~E F O L L O W E D  BY • 

- R E C O V E R Y  ACTION WAS TO D E L E T E :  . 

Fig. 2. PL/C compiler. 
T E S T ;  PROCEDURE 0 P T I O N S ( M A I N ) ;  P L / C - R S . 6 0 0 0  

STMT LEVEL  N E S T  BLOCK SOURCE STATEMENT 

T E S T :  PROCEDURE O P T I O N S ( H A , N ) /  
1 1 D E C L A R E ( A , B )  ( 1 : 5  1 : 1 0 )  F I X E D ;  

N 2 ERROR BY0{ MISSING COMMA 
P L / E  USES DECLARE ( A . B )  ( 1 :  5 . 1 :  l O )  F I X E D ;  

3 I I DECLARE ( I , J , K , L )  F IXED~ 

~1 1 1 U P :  I ÷ J > X + k * ~  T H E N  GO L1  ELSE K IS L 2 ;  
IN ~ ERROR S Y I (  [HPROPER ELEMENT 
I R  ~ ERROR SY3k IMPROPER THEN OR ELSE 
IN  W ERROR SYOF H I S S I N G  KEYWORD 
IN ~ ERROR SY08  M I S S I N G  S E M I - C O L O R  
P L / C  USES U P :  GOTO L 1 ;  

IN 5 ERROR S Y O t  IMPROPER T H E N  OR ELSE 
[N 5 ERROR SY27  M U L T I P L E  D E C L A R A T I O N  
fN 5 ERROR SYOE M I S S I N G  : 
IN 5 ERROR B Y 0 0  M I S S P E L L E D  KEYNORD 
IN 5 ERROR BY07  EXTRA S E M I - C O L O N  
P L / C  USES $ L 0 0 1 5 :  IF  L2  

I I A 1 ,2  = B ( 3 * ( l + ~ ,  J * / K )  
IN ERROR SY27  M U L T I P L E  D E C L A R A T I O N  
IN ERROR B Y 0 0  M I S S I N G  : 
IN ERROR SYIE IMPROPER ELEMENT 
IPI 6 ERROR BY10 IHCOMPLETE EXPRESSION 
IH 6 ERROR SYED COMMENT RUNS ACROSS CARD BOUNDARY 
IN S ERROR B Y 1 0  INCOMPLETE E X P R E S S I O N  
P L / C  USES T H E N  $ L 0 0 2 5 :  IF  1 -1  

1 1 IF  I = 1 T I tEN TILER G0  TO UP;  
I~1 ERROR SY~S I t÷PROPER P R E F I X  ORDER 

1 1 L 2 :  END;  
IN ERROR BYE5 I L L E G A L  USE OF COLUMN 1 ON CARD 
P L / C  USES L E :  END;  

IN STMY ~ ERROR Sr.~ 1 ~IRONG T Y P E  FOR E X P R E S S I O H  
P L / C  USES U P :  GOTO S U L A B E L ;  

IN STMT S ERROR S l ~  1 URONG TYPE FOR E X P R E S S I O N  
P L / C  USES $ L 0 0 1 5 :  IF  ' I ~ B  

Zurich compiler and its predictive parsing algorithm 
cause it to choose  "]" instead of "," as the expected 
symbol. 

In the first executable statement, the symbol if is 
missing, following the label. The statement following 
then is a mutilated branch statement; the statement 
fol lowing else is perhaps an assignment. Both of  our 
parsers insert the if and recover locally from each con- 
ditionally executed statement, although again the ac- 

Fig. 3. PASCAL recovery parser. 

= A S C A L C O M P I L E R 1 6  S E ~ T | q 7 3 V E R S I O N  

I V~R & t f l : A R R A y [ I . . 5  | . . 1 0 )  OF I N T E G E R ;  
+ 

• ~ t e E R R 0 ~ ( O I  5 C A N N O T  ~E  E O L L O W E D  BY | 
- REC~IVERY A C T I O N  WAS TO O E L E T E :  < T Y P E )  

2 l ~ J f K I L :  I N T E G E R ;  
R F G I N  

4 ] :  , ÷ J > K 4" L ~l 4 T H E N  GrJ | E L S E  K IS  2 ;  
• t t t +  
I 2 3 ~s  

$ * $ * E R ~ O R I I )  B E G I M  3 :  C A N N O T  BE F O L L O W E D  By  I 
- R E C O V E R  Y A C T I O N  WAS TO CHANGE."  I + J > K + L * 4~ T H F N  

T O :  I F I • J ) K + k $ 4 T H E N  

$ t t / i E R P O R ( E )  V A R I A B L E  GO HAS NnT B E E N  O E C L A R F O  

= ~ $ E p R n R { 3 )  GO CANNOT RE FOLLOWED By 1 
- R E C O V E R Y  A C T I O N  WAS TO C H A N G E I  GO | T O :  GO : =  i 

• * $ $ E , , O ~ ( ~ )  VAr IAbLE IS HAS NOT R F E N  D E C L A R E D  

I I k t t E ~ R D R I 5 }  K C & N N n T  P~E F O L L O W E D  Fly I S  
- RECOVERY A C T I O N  WAS TO C H A N G E :  IS T O :  : :  

5 A 1 1 2  I :  R [ 3 • I I + ~ J ~ ' / K }  
t t t 

$ * t * E f l R O q ( ~ )  A CANNOT ~ F O L L O ~ E ~  BY 
-- R E C O V E R y  A C T I O N  WAS TO C H A N G F :  A I ~  T O :  < I D E N T I F I F R )  

• **SERMOn(71 ( I+4  CANNOT RE FOLL~dEO BY t 
- R F C n V E R  Y A C T I O N  WAS TO C H A N G E :  ( 1 4 4  T O :  ( I ÷ 4  ) 

• ~ * * E R R ~ ( H ,  * C*~NNrJT ~E  FOLLOWEr3 ~ y  / 
-- M E C O V E R Y  A C T I O N  WAS TO C ~ A N G E :  / K T O :  K 

6 I F  I = 1  T H ~ N  T H E N  GOTO 3 ;  
+ + 

o 
• t ~ * * E R R O ~ ( 9 )  ] CANNOT B~ F O L L O t l I E D  ~y IF  

- RFCOVERY ACTION WAS TO CH&NGE~ BEGIN , , .  <STATEWENT> 
T 0 :  B F G I N  * . .  < S T A T E M E N T >  ; 

t * ¢ * ~ . P ( } R ( 0 )  IF  { = |  THEN CANNOT BE FOLLOWED OY THEN 
- R E C O V E R Y  ~ C T I O N  ~ t S  TO D E L E T E :  I H E N  

7 2 :  E N D °  
. 

Fig. 4. Zurich PASCHAL compiler. 
005001 VA. A , ~ : A ~ R A Y I I . . 5  l * . I O ]  0~ INTEGER; 

0 0 5 0 0 1  I , J I K , L :  INTEGER; 
O050O5  B E G I N 3 "  I J 
0 6 5 0 7 1  • + > K + L • 4 T H E N  G0  l E L S E  K I $  E ;  
• * * *  t t + ~P  ~ 4  5 Z  

0 0 5 0 7 1  A I t 2  : =  a { 3 * ( I + 4 ~ j * / K }  
• * * *  + ~ 4 ~  4 2  
0 0 5 0 7 1  1 c i = l  T H E N  T H ~ N  G O T O  3 ;  
• * * *  + + t 5 R  5 4  5~  

0 0 5 0 7 7  P :  E N ~ .  

C O M P I L F ~  E R ~  M E S S A G E S :  

~ ? :  ~ ] ~  F X P C C T F D .  
4 ~ :  I L L S G A L  5 Y M g ( I L  I N  E X O R F S S I O N .  
4 R :  ~ ) E  F X P E C T F O .  
52 :  E : = ~  F X P E C T E I ) .  
5 4 :  I L L E G A L  S Y M B O L  I N  S T A T ~ M F N T .  
5 R :  E ; ~  F X P F C T E ~ .  

tions may or may not conform to the programmer's 
intentions. ( lf  the branch were backward and the label 
already "seen," the recovery might well be different.) 
Both the PL/C compiler and the Zurich compiler 
exhibit a left-to-right bias, thereby failing to insert the 
if, causing subsequent error messages concerning the 
structure of  the statement. PL/C reconstructs the branch 
statement but converts "is" to if. The Zurich compiler 
never detects the error following then, but it signals a 
missing := . 

In the assignment statement, the brackets around 
the subscripts of  A are missing and the subscripts of  B 
are mutilated expressions. There is also a missing ";" 
following the statement. Our parsers recover satisfac- 
torily from all these errors, although not always in the 
same way. PL/C is unable to analyze the statement at 
all. The Zurich compiler skips forward to the := in an 
attempt to fix the previous error. It then inserts the 
missing ")" and ";" 
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The if statement contains an extra then. Both our 
parsers delete the then and analyze the rest of the state- 
ment. The PL/C compiler gives an unintelligible message 
for the entire statement. The Zurich compiler objects 
to the second then and skips to the ";" 

In our empirical studies, we tried a number of 
optional features, some more successfully than others. 
We found, for example, that one could reduce the 
amount  of computat ion in the correction phase and get 
satisfactory, although lower quality, recovery. One 
could consider additional replacements for candidate 
substr ings--for  instance, replacement by any non- 
terminal in the grammar  (rather than only RHS's) .  Our 
studies on these variations are, for the most part, in- 
conclusive. (Most  of these experiments are described 
in [17].) 

7. Discussion 

A distinction can be made between those error- 
handling schemes which concentrate solely on getting 
the parser "back  on the t rack"  and those which trans- 
form incorrect input sequences into syntactically correct 
programs? The work of Leinius is an example of the 
first approach;  Levy's work exemplifies the second. 
Our methods lie somewhere in between. Our weighted 
minimum distance correction phase is an at tempt to 
determine a probable explanation for the error, not 
only as a more powerful and more local method than 
Leinius' for choosing among locally correct changes 
but also as an aid to the programmer  in correcting his 
program. However, we do not at tempt to produce a 
"corrected" program text. It  seems likely that our 
approach could be extended in this way at the cost of 
some compile-time overhead for correct programs (at 
the very least, retaining the input text and keeping track 
of the correspondence between elements of the parsing 
stack and locations in the input text). Additionally 
there are some instances in which the recovery actions 
taken clearly do not correspond to the programmer ' s  
intention. Consider again Example 2 of Section 4, in 
which 

. . . X : = !  J; 

is parsed as 

¢ (blockbody) 'statement) ? (expression) 

with current input symbol " ;" .  The recovery action is 
to delete (expression); namely J. The same parsing 
stack and subsequent action would ensue if the errone- 
ous statement were 

X : =  I J-t- K.L; 

9 Levy refers to the former approach as "recovery" and the 
latter as "correction." As our remarks in the introduction indicate, 
we find this terminology inappropriate. 

10 The first author is experimenting with a technique that solves 
this problem. 
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although it seems clear that some binary operator 
is missing between I and j.10 However,  notice that 
the expression following I is analyzed, thereby discover- 
ing and recovering f rom subsequent errors in the 
expression. 

It  appears that certain aspects of our approach to 
error recovery are easily incorporated in other 
bot tom-up parsing methods. For  example, the use of 
weightings in choosing among alternatives is a general 
technique. (Interestingly enough, a probabilistic ap- 
proach was used for spelling correction in coRc [5] 
more than ten years ago.) Many  of the error recovery 
techniques in use suffer f rom a left-to-right bias; namely, 
it is assumed that the text prior to the point at which 
an error is discovered must be correct because it can be 
parsed. This bias can prevent insertion of missing if's, 
begin's, and the like. In some instances this bias is 
simply myopia on the part of the implementer. As 
Peterson points out [16], this left-to-right bias can be 
avoided in LR parsing by considering changes to entries 
further back in the parsing stack, rather than restricting 
consideration to the element at the top. A change below 
the top of the LR parsing stack requires recomputing 
all the elements above the one that is changed; this 
computat ion can be bounded by the depth of the stack 
at which changes are considered, and, in any case, is 
substantially smaller than reparsing the input text. 

However, correct prefix parsing methods appear  to 
be at a disadvantage when it comes to using context to 
determine recovery actions. Left context information is 
available in abundance. In fact, it is one of the strong 
points of LR parsing that much important  structural 
information about  the text already parsed is contained 
on the parsing stack. However, that strength becomes 
a weakness when it comes to analyzing the right context 
of an error detection point. The fact that the next move 
of' the parser can depend on the entire correct prefix 
already analyzed makes it difficult or impossible to 
start up the parser after the error point. On the other 
hand, it is quite straightforward to extend the context 
analysis to other more local parsing methods, such as 
the wide variety of mixed strategy and bounded right 
context methods. 

Although our approach to error recovery appears 
very promising, there are still many issues to be investi- 
gated. Details need to be worked out for the extension 
to other parsing methods and the techniques should be 
implemented and tested. It  may turn out that  if parsing 
methods are used which put weaker constraints on 
grammar  form, more computat ion will be required in 
the correction phase. A related question is in what 
ways the characteristics of a grammar  affect the quality 
of  recovery. 

As the reader can observe, a number  of heuristics 
have been used in order to impose rather stringent 
efficiency constraints. It  would be interesting to know 
what the tradeoffs are. How much better might the 
recovery be if more context were used? What  if the 
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recovery  
integri ty ,  
they can 
move.  

cor rec t ion  phase  were made  " smar t e r " ?  
A n o t h e r  issue of  impor tance ,  pa r t i cu la r ly  for those 

interested in p roduc ing  "co r r ec t ed"  source text, is the 
i nco rpo ra t i on  in the recovery me thod  of  language-  
dependen t  n fea tures  and of  in fo rmat ion  f rom other  
par t s  of  the compi l ing  process.  In  the me thod  descr ibed,  
l anguage -dependen t  i n fo rma t ion  is in t roduced  by the 
implemente r  only  in the fo rm of  modi f ica t ions  to the 
cost  funct ions.  If, as is usual ,  the lexical analysis  is a 
separa te  compi le r  phase  which p roduces  tokens  or 
symbols  for the parser ,  i nco rpo ra t i on  of  lexically based  
recovery  can be achieved by  the add i t ion  of  M o r g a n -  
style spell ing cor rec t ion  [15] whenever  a de tec ted  er ror  
involves an identif ier  and  lexically de te rmined  low-cos t  
r ep lacements  (such as " ;"  for " : " ) .  Since our  emphas i s  
was ini t ial ly on au tomat i ca l ly  genera ted  er ror  recovery 
techniques,  we have no t  explored  the in t roduc t ion  of  
semant ics  (in the compi le r  sense, thereby  inc luding  
non-context - f ree  syntax issues) into the recovery  pro-  
cess. F o r  instance,  when it is de te rmined  tha t  an identi-  
fier is to be inserted,  no a t t empt  is made  to infer which 

identifier.  A t  p resen t  we know of  no a l te rna t ive  to 
h a n d - c o d e d  recovery  rout ines  to handle  this par t i cu la r  
p rob lem.  On the o ther  hand ,  if the cor rec t ion  phase  of  
recovery  succeeds in replac ing  par t  of  the sentential  
fo rm by the R H S  of  a - ru le ,  the compi le r  could  then 
execute the semant ics  associa ted  with tha t  rule, al- 
t hough  it might  also be necessary to do semant ic  e r ror  

in tha t  case. In o rder  to preserve semant ic  
the semant ic  rules mus t  also be designed so 
be executed " o u t  of  o r d e r "  by the fo rward  

Other  aspects  of  the er ror  recovery  p rob l em which 
we are present ly  s tudying  include the genera t ion  of  
e r ror  messages,  the effect of  recovery cons idera t ions  on 
p r o g r a m m i n g  language  design, and  more  sophis t ica ted  
cost  funct ion de te rmina t ion .  Some of  these topics  are 
discussed fur ther  in [17]. 

Despi te  the cur ren t  act ivi ty  in other  areas  of  soft-  
ware deve lopment ,  we see a con t inu ing  need for e r ror  
recovery  techniques.  M o s t  syntax  errors  and  many  
semant ic  e r rors  resul t  f rom incomple te  knowledge  of  
the p r o g r a m m i n g  language  being used, t r ansc r ip t ion  
errors ,  and  carelessness.  These er rors  will cont inue  to 
be in evidence.  Our  con t r ibu t ion  is an a t t empt  to  p ro-  
vide recovery  techniques  tha t  a id  bo th  the implemente r  
and  the users of  his or  her  implementa t ion .  
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n By "language-dependent" we really mean "not formally 
specified"; that is, knowledge of the language that must be explicitly 
incorporated by the implementer. 
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A p p e n d i x :  S y n t a x  o f  A l g o l  S u b s e t  

( p r o g r a m )  : : = E N D M A R K E R  ( b l o c k )  E N D M A R K E R  

( b l o c k )  : : = ( b l o c k b o d y )  end 
: : = ( b l o c k b o d y )  ( s t a t e m e n t )  end 

( b l o c k b o d y )  : :  = ( b l o c k h e a d )  

: : = ( b l o c k b o d y )  ( l a b e l - d e f i n i t i o n )  

: :  = ( b l o c k b o d y )  ( s t a t e m e n t )  ; 

: :  = ( b l o c k b o d y )  ; 

( b l o c k h e a d )  : : = b e g i n  

: :  = ( b l o c k h e a d )  ( d e c l a r a t i o n )  ; 

( d e c l a r a t i o n )  : :  = ( s i m p l e - d e c l a r a t i o n )  

: : = { a r r a y - d e c l a r a t i o n )  

( s i m p l e - d e c l a r a t i o n ) :  : = i n t e g e r  { i d e n t i f i e r )  

: :  = ( s i m p l e - d e c l a r a t i o n ) ,  { i den t i f i e r )  

( a r r a y - d e c l a r a t i o n )  : :  = ( b o u n d s l i s t )  { e x p r e s s i o n )  .. ( e x p r e s s i o n ) )  

( b o u n d s l i s t )  : :  = ( a r r a y h e a d )  ( 

: :  = ( b o u n d s l i s t )  ( e x p r e s s i o n )  .. ( e x p r e s s i o n ) ,  

( a r r a y h e a d )  : : = i n t e g e r  a r r a y  { i d e n t i f i e r )  

: :  = ( a r r a y h e a d ) ,  ( i d e n t i f i e r )  

( l a b e l - d e f i n i t i o n )  : :  = ( i d e n t i f i e r )  : 

{ s t a t e m e n t  : :  = ( s i m p l e s t a t e m e n t )  

: : = ( i f - t h e n - c l )  { s t a t e m e n t )  

: :  = ( i f - t h e n - c l )  ( e l s e c l a u s e )  ( s t a t e m e n t )  

( e l s e c l a u s e )  : :  = ( s i m p l e s t a t e m e n t )  e l s e  

( i f - t h e n - c l )  : : = i f  ( e x p r e s s i o n )  t h e n  

( s i m p l e s t a t e m e n t )  : :  = g o  t o  ( i d e n t i f i e r )  

: :  = ( b l o c k )  

: :  = ( v a r i a b l e )  : =  ( e x p r e s s i o n )  
: : = ( p r o c e d u r e - h e a d )  ( e x p r e s s i o n ) )  

: : = stop 

( p r o c e d u r e - h e a d )  : :  = ( p r o c e d u r e - i d e n t i f i e r )  ( 

: :  = ( p r o c e d u r e - h e a d )  ( e x p r e s s i o n ) ,  

( e x p r e s s i o n )  : :  = ( e x p r )  

: :  = { e x p r )  ( r e l a t i o n o p )  ( e x p r )  

( e x p r )  : :  = ( t e r m )  

: : =  + ( t e r m )  

: :  = - ( t e r m )  

: :  = ( e x p r )  + ( t e r m )  

: :  = ( e x p r )  - ( t e r m )  

: :  = ( e x p r )  V ( t e r m )  

( t e r m )  : :  = ( f a c t o r )  

: :  = ( t e r m )  * ( f a c t o r )  

: :  = ( t e r m  / ( f a c t o r )  

: :  = ( t e r m )  A ( f a c t o r )  

( f a c t o r )  : :  = ( s e c o n d a r y )  

: • = ~ ( f a c t o r )  

( s e c o n d a r y )  : :  = ( p r i m a r y )  

: : = ( s e c o n d a r y  ** { p r i m a r y )  

( p r i m a r y )  : :  = ( n u m b e r )  

: :  = ( v a r i a b l e )  

: :  = ( ( e x p r e s s i o n ) )  

( v a r i a b l e )  : : = ( s i m p l e - v a r i a b l e )  

: :  = ( a r r a y n a m e )  ( e x p r e s s i o n ) )  

( s i m p l e - v a r i a b l e )  : :  = { i d e n t i f i e r )  

( a r r a y n a m e )  : :  = ( a r r a y - i d e n t i f i e r )  ( 

: :  = ( a r r a y n a m e )  ( e x p r e s s i o n )  , 

T h e  s y m b o l s  ( i d e n t i f i e r ) ,  ( n u m b e r ) ,  ( a r r a y - i d e n t i f i e r ) ,  ( p r o c e d u r e - i d e n t i f i e r ) ,  a n d  ( r e l a t i o n o p )  a r e  h a n d l e d  b y  t h e  l e x i c a l  s c a n n e r .  

( a r r a y - i d e n t i f i e r )  : : = ( i d e n t i f i e r )  

( p r o c e d u r e - i d e n t i f i e r )  : :  = R E A D  

: : = W R I T E  

( r e l a t i o n o p )  : :  = < 

: ' =  > 

: : = ( i d e n t i f i e r )  

6 5 0  C o m m u n i c a t i o n s  
o f  
t h e  A C M  

N o v e m b e r  1 9 7 5  
V o l u m e  18 
N u m b e r  11 


