
Linear-Time Suffk Parsing for Deterministic Languages

MARK-JAN NEDERHOF

Universiv of Groningen, Groningen, The Netherlands

AND

EBERHARD BERTSCH

Ruhr University, Bochum, Germany

Abstract. We present a linear-time algorithm to decide for any fixed deterministic context-free
language L and input string w whether w is a suffix of some string in L. In contrast to a previously
published technique, the decision procedure may be extended to produce syntactic structures (parses)
without an increase in time complexity. We also show how this algorithm may be applied to process
incorrect input in linear time.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors-parsing; F.4.2
[Mathematical Logic and Formal Languages]: Grammars and Other Rewriting Systems-parsing

General Terms: Languages, Theory, Verification

1. Introduction

Efficient procedures for recognition and parsing of context-free languages have
been a recurrent topic in the computer science literature for several decades.
With regard to the full language class, the fastest generally applicable recognition

algorithms exceed quadratic bounds [Valiant 19751, and the best practical
algorithms are cubic.’ Deterministic languages permit linear-time recognition
and parsing [Sippu and Soisalon-Soininen 19901.

These results presuppose that a particular input string is to be tested and
analyzed for the property of being a complete sentence of the language under
consideration. Much less is known about the complexity of testing and analysis in

cases of incomplete input [Lang 1988; 1991; Nederhof 19941.

M.-J. Nederhof was supported by the Dutch Organization for Scientific Research (NWO), under
grant 305-00-802.

Authors addresses: M.-J. Nederhof, University of Groningen, Faculty of Arts, P.O. Box 716, 9700 AS
Groningen, The Netherlands, e-mail: markjan@let.rug.al; E. Bertsch, Ruhr University, Bochum,
Germany, e-mail: eberhard.bertsch@lpi.ruhr-uni-bochum.de.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
0 1996 ACM 0004-541 l/96/0500-0524 $03.50

’ See, for example, Earley [1970], Graham et al. [1980], Leiss [19901, and Nederhof 119941.

Journal of the ACM, Vol. 43. No. 3, May 1996. pp. 524-554

Linear-Time Suft?x Parsing for Deterministic Languages 525

The problems addressed in this article refer to incomplete data. They can be

stated as follows. Given an arbitrary deterministic context-free language (defined
by an LR(k) grammar, a deterministic pushdown automaton, or otherwise) and a
terminal string of length n, determine in a linear number of steps whether that
string is a suffix of some word in the language, and if so, describe the structure of
the string in terms of parse trees or similar concepts.

The practical relevance of efficient algorithms in this area is immediately
evident from previous work on noncorrecting error recovery in compilers.’ If

errors are not to be “corrected” by modifying the input program in some way or

other. a parser must continue without dependable information on its stack.

Although there are several alternatives as to how this can be done, Richter
argues convincingly for the very general approach, called suffix analysis in his
paper: “Disregard all previous input, and examine whether the remaining input is
a syntactically permissible suffix of some program.”

While all of these publications mention the necessity of using time-efficient
algorithms for suffix analysis, the first widely accessible published result giving a
linear bound for the class of LR(1) languages appeared in 1994.

That article [Bates and Lavie 19941 provides a linear-time algorithm for suffix

rrcognition in the above sense. The requirement of suffix parsing is, however, not

met by Bates and Lavie [1994]. Furthermore, the technique presented in Bates
and Lavie [1994] is intrinsically dependent on left-to-right processing of the
input. In this regard, the new algorithm to be described in this paper is strictly
more general: Without losing linear-time efficiency of the entire task, we can
process the input string in any desired order, producing structural descriptions of
segments at arbitrary positions.

Our notational and conceptual framework is not entirely new. In particular,

the linear time complexity of our algorithms relies on the concept of tabularion of

the parsing process, which is based on Earley’s algorithm [Earley 19701 in the
case of LL(1) languages and on the dynamic programming algorithm of Lang
[Lang 1974; Billot and Lang 1989; Nederhof 1994) for all other deterministic
languages including. of course, the SLR(k) languages, the LALR(k) languages,
and so forth.

An important observation will be that essentially the same collection of parsing
steps can be used either for ordinary context-free parsing or for suffix parsing.
The data contained initially in the parsing table constitutes the only difference.

In the former case. a single table element represents the available information
that a complete parse will need to be found. In the latter case, all table elements
that could possibly be constructed by any number of parsing steps for the
unknown prefix (preceding the given suffix) are needed for proper initialization.

This paper has the following outline: We begin in the next section by defining
some notation and terminology for context-free grammars and pushdown autom-
ata. In Section 3. we discuss linear-time suffix recognition for a subset of the
deterministic languages, viz. the class of LL(1) languages. Because treatment of
LL(1) languages is very simple, this section is relatively easy to understand and
therefore prepares the reader for Section 4, which solves the full problem of

‘See. for example, Richter [19X.51. C’ormack (19891, van Deudekom and Kooiman (19931, and Gtune
and Jacobs I19901.

526 M.-J. NEDERHOF AND E. BERTSCH

linear-time suffix recognition for deterministic languages. How the special case
of LL(l) languages fits into the more general framework of deterministic
languages is explained in Section 5.

In Section 6, we discuss how the recognition procedures can be extended to

produce all parse trees for a suffix.
Section 7 explains how incorrect input can be processed by repeatedly applying

substring parsing, which is derived from suffix parsing. The practical usefulness
of our algorithms is argued in Section 8, which discusses realizations using the
recursive-descent method. That our ideas are also applicable to substrings of
general context-free languages is explained in Section 9.

In Section 10, we compare our approach to those in the existing literature,
most notably [Bates and Lavie 19941.

2. Notation

A context-free grammar G = (T, N, P, S) consists of two finite disjoint sets T
and N of terminals and nonterminals, respectively, a start symbol S E N, and a
finite set of rules P. Every rule has the form A -+ CY, where the left-hand side A
is an element from N and the right-hand side a is an element from I’*, where V
denotes (N U T). P can also be seen as a relation on N X V* .

We generally use symbols A, B, C, . . . to range over N, symbols a, b, c, . . . to
range over T, symbols CY, p, y, . . . to range over I’*, and symbols U, w, x, . . . to
range over T*. We let E denote the empty string.

The relation P is extended to a relation --, on V* X V* as usual. The reflexive

and transitive closure of + is denoted by --j*.
A pushdown automaton (PDA) operates on a stack, while reading an input

string ai . . * a,# from left to right. We assume that the endmarker # only occurs
as last symbol of the input string. A configuration of the automaton is a pair (S,
u) consisting of a stack 6 and the remaining input tr, which is a suffix of the
original input string ai . . . a,#. We will sometimes however also consider v to
be a string not ending in #, especially if we are only interested in recognition of
a part of the input. We use symbols X, Y, 2 to denote stack symbols.

The initial configuration is of the form (Xjnir a i . . * a,#), where the stack is
formed by one fixed stack symbol Xini,. The final configuration is of the form

wfim E), where the stack is formed by one fixed stack symbol Xfi,,.
We will assume that the allowable steps of a PDA are described by a finite set

of transitions of the form

where 6, and 6, represent zero or more stack symbols, and z represents the
empty string E or a single terminal a.

The application of such a transition 6, I% S2 is described as follows. If the
top-most symbols on the stack are a,, then these may be replaced by S,, provided
either z = E, or z = a and a is the first symbol of the remaining input. If z = a,
then furthermore a is removed from the remaining input.

Formally, for a fixed PDA we define the binary relation k on configurations as
the least relation satisfying (M,, V) k (66,, v) if there is a transition S, & S,,

and (S6,, a~) 1 (66,, v) if there is a transition 6, ?+ S,. The relation k
represents the steps that the PDA can make (cf. the notion “parsing step”).

Linear-Time Suffrv Parsing for Deterministic Languages 527

In the case that we consider more than one PDA at the same time, we use
symbols Z+ yl and I,.., instead of A and 1 if these refer to one particular PDA .r3.

The recognition of a certain input 71 is obtained if starting from the initial
configuration for that input we can reach the final configuration by repeated

application of transitions, or, formally, if (X;rti,, u#) I-* (X,,, E), where t*
denotes the reflexive and transitive closure of t- (and k+ denotes the transitive

closure of k). An input v that can be recognized is called a sentence. For a certain
PDA ,Ce, the set of all such sentences u is called the language accepted by d. A
PDA is called deterministic if for all possible configurations at most one
transition is applicable. The languages accepted by deterministic PDAs are called
deterministic languages.

3. Suffix Recognition for LL(I) Languages

In this section, we restrict ourselves to a relatively simple subset of the

deterministic languages. namely the LL(1) languages.
For a grammar G = (T, N, P, S), we define the lookahead set 2.7Q(A -+ (Y)

for each rule A - a as {aj3v, w, x[S# -+* zvIw# + 7rcuw# -+* ~ux]}.
We define LL(1) recognition by the construction below of pushdown automata

from context-free grammars. The PDAs use special transitions of the form
X L XY, which have the same meaning as transitions of the form X Z+ XY,
except that the a is not removed from the input; formally, a transition X GXY
gives rise to a step (6X, a 71) 1 (SXY, ~7,). The effect of such a transition can

also be described by a set of ordinary transitions as defined in Section 2, and

therefore this extension adds nothing to the descriptive power of PDAs. How-
ever, we will use these special transitions here since they allow more elegant
description of LL(1) recognizers:

Construction: LL-PDA (PDA construction of LL(1) recognizers)

Consider a context-free grammar G = (T, N, P, S). Without loss of generality,
assume that there is only one rule of the form S --+ (T. Construct the PDA with
the transitions below. The stack symbols are of the form [A - (Y l /3], where A

-+ aP E P.’ As X ,,,,, we take [S - l a], as X,, we take (S + u a].

☯A -+ a l BP] 4 ☯A +a l Bj3]☯B -+ l y] for A -c&p, B -+ y,

u ELhw-,y)

☯A -+ a l ap] b% [A -+ ffa l p] for A *crab

☯A-+a l Bfl]☯B+y l] A ☯A*d?*p] for A + olSp, B -+ y

The final configuration is to be of the form ([S + (+ l 1, #).

A grammar for which the above construction yields a deterministic PDA is said

to be LL(1). The language accepted by such a PDA is called an LL(1) language.

Example 3.1. Consider the following LL(l) grammar, generating the lan-
guage of all palindromes over {a, b) with a center marker c.

’ Note that rules of the form A - e E P give rise to a single stack element, viz. [A -t ‘1. or written
in full.]A - l l 61.

528 M.-J. NEDERHOF AND E. BERTSCH

stack input

[S -+ l A] babcbab#/
[S + l A][A + l bAb] babcbab#
[S-t l A][A-+ 6. Ab] abcbab#
[S -+ l A][A + b l Ab](A -+ l aAa] abcbab#
[S + l A](A -i b a Ab][A + a l Au] bcbab#
(S --t l A][A ---) b l Ab][A + a l Aa][A + l bAb] bcbab#
[S-+oA][A-+boAb][A-+aoAa][A+boAb] cbab#
[S + l A][A ---) b l Ab][A -+ a. Aa][A --t b . Ab][A --) l c] cbab#
[S + l A][A --t b a Ab][A --f a l Aa][A --t b l Ab][A --+ c l] bab#
[S + l A)[A --+ b l Ab][A + a l Aa][A + bA l b] bab#
[S + l A)[A --) b l Ab][A + a l Aa)[A + bAb l] ab#
[S -t l A][A --) b l Ab][A -+ aA l a] ab#
[S -+ l A][A + b. Ab][A -+ aAa l] b#
(S ---) l A][A --) bA l b] b#
(5’ + l A][A + bAb l]
[S -+ A .] f

FIG. 1. Behavior of a PDA yielded by Construction LL-PDA.

S+A

A *aAa

A-,bAb

A-c

The PDA from Construction LL-PDA recognizes the input babcbab in the
sequence of configurations given in Figure 1.

LL(1) recognition can also be done using a tabular algorithm that is a
particular variant of Earley’s algorithm [Earley 1970; Bouckaert et al. 19751. This
tabular algorithm is given by the following.

Algorirhm: Earley (Earley’s recognizer)

Consider a context-free grammar G = (T, N, P, S). Without loss of generality,

assume that there is only one rule of the form S -+ u. Assume the input is
a, .*.a,. Let u,+~ = #. The table U is a set of items of the form (j, [A ---) IY
l p], i), where A + (YP E P and 0 5 j or i 5 n. Initialize U to be ((0, [S --,

l a], 0)). Perform one of the following steps as long as one of them is
applicable.

predictor. For some (j, [A + (Y l BP], i) E U not considered before, add (i,
[B -+ l y], i) to U (provided it is not already in U) for all B ---, y such that

ai+l E Y&q? + y).

scanner. For some (j, [A + OL l a/3], i - 1) E U not considered before, add
(j, [A + cxa l /3], i) to U, provided a = a;.

completer. For some pair (h, [A -+ (Y l B/3], j), (j, [B -+ y *I, i) E U not
considered before, add (h, [A + (YE l /3], i) to U.

The input is recognized if (0, [S + (+ *I, n) E U.

Linear- Time Suffk Parsing for Deterministic Languages 529

The invariants usually presented for Earley’s algorithm are in terms of the
grammar. Such an invariant would state, for example, that an item (j, [A * cx l

/3], i) E U implies a! -+* aj+ , . . a,. Here we are interested however in an
invariant in terms of the PDAs resulting from Construction LL-PDA. We do this

in anticipation of results in the following sections, where we will show that the

relation between PDAs resulting from Construction LL-PDA and Algorithm

Earley can be generalized.
The desired invariant now is that eventually (j, [A - LY l p], i) E U if and

only if for the PDA yielded by Construction LL-PDA:

(1) ((S - l ~1, a, .‘. a,,#) k* (6[A --;, l (YP], a,+, .’ .u,~#), for some 8, and

(2) (114 - l a/3]. a,+, . ..a.,#) f* ([A -+ ff l /3], a,,, . ..a.,#).

The table I/ in Earley’s algorithm can be partitioned according to the third

components i of items (j, [A + (Y l p], i). The subset of Ii consisting of all

such items for fixed i is called a column of the table. and consists of the items
that can be created just after reading the ith input symbol. Note that in
Algorithm Earley the initialization consists of assigning to column 0 the set ((0.
[S - l cr], 0)). and to all other columns the empty set.

For suffix recognition, we need a different initialization, namely one where
column 0 is assigned the set II:, which is defined to be the smallest set satisfying:

-(0. ☯S + l CT]. 0) E I:;.

-For each item (0, [A - LY l BP], 0) E Ii and rule B + y we have (0, [B -

l y], 0) E IFI.

-For each item (0, [A - OL l a/3], 0) E Ii we have (0, (A - cxa l p], 0) E
1;;.

-For each pair of items (0, [A + LY l BP], 0), (0, [B --, y l], 0) E I:; we
have (0, [A ---f cuB l /3]. 0) E I:.

If the grammar is reduced (i.e., for all A E N, we have 371, w, x[S -+* UAW
+* x]), then

I;; = {CO, [A + CY l p], O)(A - afi}.

By applying the rest of Algorithm Earley for computation of columns 1, 2,. . .
after the initialization of column 0 with Ii, we can decide whether the input
a, ... a,, is a suffix of a complete sentence. This can be explained as follows. For
a complete sentence ua, . . . a,, we have that ([S + l o], ua, . . . a,#) f* (6,
u, ” . a,,#) I* (IS -+ ff 01, #), some 6. By initializing U to be I{: we have a
finite representation for all possible stacks 6 that can be in some configuration of

the PDA after reading some prefix 7~. Earley’s algorithm can now simulate
computations of (8, a, . . a,,#) k* ([S + u l I. #). without having to consider

an individual 6.
After changing the initialization, Earley’s algorithm is given by the following:

Afgorithtn: Earley-Suf (Earley’s recognizer adapted to suffix recognition)

Consider a context-free grammar G = (T, N, P, S). Without loss of generality,
assume that there is only one rule of the form S -+ o. Assume the input is

a, .‘. a,,. Let R,, . , = #. Initialize table I! to be Iti. Perform one of the three

530 M.-J. NEDERHOF AND E. BERTSCH

0 1 2 3 4 5 6 7
0 S+ *A I I

.Ab]
oaAa A 4 ooAa

A- l bAb A- - ,.
3
4
5
6
;

I I
I 1
I 1

FIG. 2. The set U produced by Algorithm Earley, with input babcbab.

0 1 1 2 2 3 3 4 4 5 5 6 6
0

FIG FIG. 3. 3. The set U produced by Algorithm Earley-Suf, with input abcbah. The set U produced by Algorithm Earley-Suf, with input abcbah.

steps predictor, scanner or completer, as long as one of them is applicable. (This
is only useful for 0 < i 5 n, because only then new items may be added.)

The input is recognized as suffix if (0, [S --, u *I, rz) E U.

Note that an item (0, [A -+ (Y l p], i) computed by this algorithm represents

thefactthata-+* uat ... ai for some u, and not (Y +* a I . * . a; as was the case

for Algorithm Earley.

Example 3.2. Consider again the grammar and input from Example 3.1. The
set U produced by Algorithm Earley is given in Figure 2. An item (j, [A * (Y l
p], i) E U is indicated by an occurrence of [A --, (Y l /3] in the ith column and
jth row. Note that each item in U corresponds to some configuration in Figure 1.

If we apply Algorithm Earley-Suf to the suffix abcbab, then the set CJ given in
Figure 3 will be produced. Most of the items in Figure 3 correspond with items
in Figure 2. Of the remaining items (those marked with an asterisk) the ones in
columns 1 and 2 represent the idea that the algorithm does not have enough
information at that point to decide whether it is processing the part of a
palindrome before or after the center marker c; the ones in columns 5 and 6
represent the idea that the algorithm must consider all strings which may make a
prefix of some palindrome if they are put before the actual input up to the
current input position.

It is obvious that Algorithm Earley has a linear time complexity if the grammar
is LL(l). This is because it directly simulates the behavior of the PDA resulting

from Construction LL-PDA, which is (by definition) deterministic for an LL(1)
grammar, and deterministic PDAs process the input in linear time (provided they
terminate, which they do in this case).

Linear-Time Suffir Parsing for Deterministic Languages 531

We can however prove that also Algorithm Earley-Suf has a linear time
complexity if the grammar is LL(1). The central observation is this:

LEMMA 3.3. Let U be computed using Algorithm Earley-Suf, for an LL(l)
grammar and certain input. There can be at most one item (j. [A -+ LY l p], i) E U
fbr each j > 0 and [A -+ cz l p].

PROOF. We define the relation L between nonterminals as: B L A if and

only if A -+ c&/3 for some (Y and /3 satisfying (Y --$* E. It is well-known that L ‘,

the transitive closure of this relation, is irreflexive for LL(1) grammars. A
consequence is that for any nonempty subset N’ of the nonterminals from an
LL(1) grammar there is some A E N’ that satisfies 73B E N’[B i A]. We call
such a nonterminal A in a set N’ of nonterminals L-minimal.

Suppose that for an LL(l) grammar and certain input the resulting table lJ is
such that there are pairs (j. [A + (Y l p], i,), (j, [A --$ a . p], iz) E U with
i, f i,. Consider the set of such pairs for which j is maximal. Reduce this set to
those for which A is i-minimal. Of the resulting set, choose a pair for which the

length of U. denoted /aI, is minimal.

Stated more succinctly, we consider a pair (j, [A -+ cy l /3], i,), (j, [A --, (Y
l /3]. i2) E U with i, # i, , such that first j is maximal, then A is L-minimal, and
then lcrl is minimal.

We must have that N is of the form cx’B where (j, [A - (Y’ l B/3], h) E ZJ
for some /I such that (h, [B -+ y, *I, i,), (h, [B - yr ~1, iz) E U, for some
y, and y2. (Note that our assumption of minimality of /(YI, after maximality of j
and i-minimality of A. contradicts that (Y is of the form a’a, because then (j, [A
+ a’ l a/3]. i, - I), (j, [A -+ a’ l aP], i, - 1) E U, and Icr’\ < /cr\,)

The possibility y, = yz is contradicted by the assumption that the pair (j, [A

-Cl l PI. iI), (j, ☯A -+ a l p], i2) E lJ has been chosen with first j is

maximal and then A is L-minimal. This is because y, = y2 and the maximality of
j imply that h = j, which means that (Y’ -+* E, and thereby B i A. This is in
contradiction with subsequent i-minimality of A.

On the other hand, the possibility y, # y2 together with (h, [B - l y,], h).
(11. [B - l y2], /I) E U is contradicted by the fact that the grammar is LL(1).

This proves that our initial assumption is false. 0

Let /G(denote the size of grammar G, measured in the number of stack

symbols [A + (Y l p]. We can now prove

LEMMA 3.4. Algorithm Earley-Suf has a linear time complexity for LL(1)
grammars. measured in the length of the input.

PROOF. Let the input be a, . . . a,,. We investigate how many times the three
steps can be performed.

predictor. There are 0((G / * H) items of the form (0, [A -+ CK l BP], i) E U
for i > 0, and, because of Lemma 3.3, 0(]Gl * n) items of the form (j, [A -

E.
l B/3], i) E U for j > 0. Each of these items gives rise to at most one item

[B -+ l y], i) E U because the grammar is LL(l). Therefore, the

predictor step is applied fl((G(* n) times.

scu~zrzc~. The scanner step is applied t?(lGl * n) times following a similar

reasoning.

532 M.-J. NEDERHOF AND E. BERTSCH

completer. We distinguish between two cases.

-There are CS((G(* n) items of the form (j, [A -+ OL l BP], i) E U, for i > 0.

For each i > 0 and B there is only one item (i, [B + y *I, h) E U, for some
y, because of Lemma 3.3 and because there can be only one item (i, [B + l

y], i) E U since the grammar is LL(l). (The lookahead symbol a;, 1
determines which rule with left-hand side B is applied.) For this case, the
completer step is therefore applied O(]Gl * n) times.

-There are S(lG]) items of the form (0, [A -+ (Y l B/3], 0) E U. There are
S(]Gl * n) items of the form (0, [B + y 01, h) E U. For this case, the
completer step is therefore applied 6(IG(’ * n) times.

Together this yields 0(jGJ2 . n) steps. q

We conclude:

THEOREM 3.5. Sufsir recognition can be performed in linear time for ail LL(l)
languages.

The time complexity 0((Cl2 * n) we computed in the proof of Lemma 3.4 can
be improved to O(]G] * n), by applying a trivial optimization. For details see
Section 1.2.9 of Nederhof [1994].

4. Suffix Recognition for Deterministic Languages

In this section, we show that tabular suffix recognizers can be constructed not
just for the LL(1) languages, but for all deterministic languages. We will only
consider PDAs with restricted types of transition, in order to simplify the
discussion. This restriction requires that all transitions are of the form X 6+ XY,
wherez = l orz = a, or of the formXY 6 Z. It is important to realize that the
restriction does not affect the descriptive power of PDAs, that is, all context-free

languages can be described by PDAs that use only the restricted types of
transition. Again without loss of generality, we assume that there are no
transitions of the form X,, A X,,Y.

We define a subrelation kc of tC as: (6, VW) l=+ (SS’, w) if and only if (6,
VW) = (6, z,z2 * . .z,w) k (S6,, z2 . . * 2,~) 1 . . . t (S6,, w) = (66’, w), for
some m 2 1, where (6kl > 0 for all k, 1 5 k 5 m. Informally, we have (6, VW)
k=f (S’, w) if configuration (S’, w) can be reached from (6, UW) without the
bottom-most part 6 of the intermediate stacks being affected by any of the

transitions; furthermore, at least one element is pushed on top of 6. Note that
(6,X, VW) k+ (6,X6’, w) implies (6,X, VW’) b+ (6,X6’, w’) for any 8, and
any w’, since the transitions do not address the part of the stack below X, nor
read the input following U.

Below we reformulate an algorithm from Lang [1974] and Billet and Lang
[1989], which accepts a language accepted by a PDA, using a parsing table U.
This algorithm generalizes Algorithm Earley. For technical reasons, we have to
assume that the stack always consists of at least two elements. This is accom-
plished by assuming that a fresh stack symbol I occurs below the bottom of the
actual stack, and by assuming that the actual initial configuration is created by an
imaginary extra step (I, v#) k (IXini,, v#).

Algorithm: Dyna (Dynamic programming)

Lineur- Time Suffix Parsing for Deterministic Languages 533

Consider a fixed PDA. Assume the input is a, . . . a,. Let a,, + , = #. Let the set
U be I(1, 0, Xinr,, 0)). Perform one of the following two steps as long as one of
them is applicable.

push (1) Choose a pair, not considered before, consisting of a transition X +G XY and an
input position jT such that there is an item (W, h, X. j) E .!J. for some W and h.
and such that I = E v z = a,+,.

(2) If 2 = e. then let i = j. else let i = j + 1.
(3) Add item (X. j. Y, i) to I/ if it is not already there.

pop (I) Choose a triple. not considered before, consisting of a transition XY A Z and
items (W. /I. X, j), (X, j, Y, i) E Ii.

(2) Add item (W. h. Z, i) to U if it is not already there.

The input is recognized if (I, 0, Xfi,,, II + 1) E CJ.

It can be proved that Algorithm Dyna eventually adds an item (X, j. Y. i) to U
if and only if

(1) (1. a, ... a,) f * (6X, E), for some 6, and

(2) (X. a, + I * . . a,) t=+ (XY, E).

The first condition states that some configuration can be reached from the
initial configuration by reading the input up to position j. and in this configura-
tion, an element labeled X is on top of the stack.

The second condition states that, if a stack has an element labeled X on top,
then the pushdown automaton can, by reading the input between j and i and

without ever popping X, obtain a stack with one more element. labeled Y, which
is on top of X.

That eventually (I, 0, X,,,, n + 1) E U is equivalent to (I, a, . . . a,*#) 1

(OX,,,,,. u I . . . a,,#) t* w+,,, E), which proves the correctness of Algorithm
Dyna.

We can also apply the above algorithm for suffix recognition. This requires a
different initialization of the first column of the table (cf. Algorithms Earley and
Earley-Suf). For a set of items I, we define the set closure(l) as the smallest set
satisfying:

---I C closure(l)

-For each item (W, 12, X, j) E closure(Z) and transition X +S XY we have (X,
j, Y, j) E closure(Z).

-For each pair of items (W, h, X, j), (X, j, Y, i) E closure(l) and transition
XY AZ we have (W, h, Z, i) E closure(l).

The intuition behind closure is that it simulates the PDA without taking notice of
any input. If I = {(1, 0, X,,,,, O)}, then closure(l) represents in a finite way all
stacks that can be reached by the PDA from an initial configuration by reading
some input. By comparing the definition of closure with the definition of Ii for
Earley’s algorithm, one may see that closure({ (I, 0, X,,,,, 0))) is a generaliza-
tion of 111.

We have the following algorithm, which is a special case of a more general
algorithm defined in Lang [1988].

Algorithm: Dyna-Suf (Dynamic programming. adapted to suffix recognition)

534 M.-J. NEDERHOF AND E. BERTSCH

Consider a fixed PDA. Assume the input is a, . - - a,,. Let a,, 1 = #. Let the set
U be closure({ (I, 0, Xini,, 0))). Perform one of the pushing or popping steps
(as in Algorithm Dyna) as long as one of them is applicable. (The steps are only
useful for i > 0.)

The input is recognized as suffix if (I, 0, X,,, n + 1) E U.

This algorithm eventually adds an item (X, j, Y, i), j > 0, to U if and only if

(1) (1, ual .. . aj) E * (6X, E), for some u and 6, and

C2) (x9 aj+l *' . aJ t=+ (XY, E)

and an item (X, 0, Y, i) to U if and only if

(1) (I, II) t* (6X, l), for some u and 6, and

(2) (X, wal --. a;) I=+ (XY, E), for some w.

Algorithm Dyna has a linear time complexity for deterministic PDAs, for the
same reason that Algorithm Earley has a linear time complexity for LL(l)
grammars. However, for suffix recognition such a generalization is not immedi-
ately possible; that is, although Algorithm Earley-Suf has a linear time complex-
ity for LL(l) grammars, Algorithm Dyna-Suf, which is its generalization, can
have a quadratic time complexity for deterministic PDAs. This fact can be
explained as follows:

We have seen that the central observation needed to prove that Algorithm
Earley-Suf has a linear complexity is that there is at most one item (j, [A + cu l
p], i) E U for each j > 0 and [A * cr l p] (Lemma 3.3). No similar fact holds
for Algorithm Dyna-Suf: depending on the nature of the PDA, it is possible that
items (X, j, Y, i) E U are added for several i, with fixed X, j and Y. This may
happen if (I, va,*.-ajqu2...v,,,) t* (6X, uIu2~~-u,,J bf (&ICY,
v* * . . urn) and (Y, u2 . -a urn) t+ (Y, I+ . a. u,) F+ .. . t-+ (Y, vm). Such a
situation can in the most trivial case be caused by a pair of transitions X f, XY
and XY AX, the general case is more complex however.

The following definition identifies the problem with obtaining a linear com-
plexity. We define a PDA to be loop-free if (X, U) F+ (X, E) does not hold for
any X and U. The intuition is that reading some input must be reflected by a
change in the stack.

Our solution to linear-time suffix recognition for deterministic PDAs that are
not loop-free is the following: we define a transformation from one deterministic
PDA to another that accepts the same language and is loop-free. Intuitively, this
is done by pushing extra elements X on the stack so that we have (X, U) t-+ (X
X, E) instead of (X, V) t- + (X, E), where X is a special stack symbol to be
defined shortly.

As a first step we remark that for a deterministic PDA we can divide the stack
symbols into two sets PUSH and POP, defined by

PUSH = {X) there is a transition X 2+ XY}

POP = {Y (there is a transition XY 15 Z} U {X,,}.

It is straightforward to see that determinism of the PDA requires that PUSH and
POP are disjoint. We may further assume that each stack symbol belongs to

Linear-Time Sufjk Parsing for Deterministic Languages 535

either PUSH or POP, provided we assume that the PDA is reduced, meaning that
there are no transitions which are useless for obtaining the final configuration
from an initial configuration.4

Construction: T (Transformation to loop-free PDAs)

Consider a deterministic PDA Sz of which the stack symbols are partitioned into
PUSH and POP, as explained above. From this PDA, a new PDA T(s~) is
constructed, of which the stack symbols are those of & plus stack symbols of the
form X, with X E PUSH. The transitions of r(a) are given by

XY k.;,, 2 for XY A~?1 2 with 2 E POP

XY +,:,J, 2 for XYA’,, Z with Z E PUSH

x kc.,,, xx for X E PUSH

XY +J++) Y for X E PUSH, Y E POP

x q,,,, XY for X A,d XY

The special stack symbols Xi,,,, and Xr,, for I are the same as those for .&.

Example 4.1. Let T be a set of terminals. For a string I) E T* and a terminal
a E T, let 71,, denote the number of occurrences of a in 71. Consider the language

L ={uw/uEL,AwEL2}

where

L, = {uE {a, b}+lu, = uhA

for all nonempty proper prefixes U’ of 2~

we have V: > vh}

L: = {&I}*

A deterministic PDA .A accepting this language L is given in Figure 4, together
with the transformed PDA I. For .SS we have

PUSH = 0” ,,,,, , a, x,,,,,.,, 4

POP= {h, c, e, #, X,,}.

Consider the string aahhhh E L; note that aabb E L, and bb E L,. Figure
5 demonstrates how .A and 7(d) recognize this string.

We now set out to prove that T has the required properties.

LEMMA 4.2. If .@I is a deterministic PDA, then r(d) is deterministic.

PROOF. This can be proved easily by comparing the transitions in PI and ~(32).

Note that for each symbol X on top of the stack exactly one pushing transition

‘Note that each PDA may be turned into a reduced PDA accepting the same language hy just
omitting the usclcss transitions.

536 M.-J. NEDERHOF AND E. BERTSCH

s4

Xinit l-5 Xi& a

a A aa

a A ab

ab Gt c

ac Aa

Xintt c +A X,nter

Xinter z+ Xinter d

d A de
de Ad

d I% d#

d# A#

x tnier # z+ Xjn

a)
ditto
ditto

ditto
ditto

A,

c Z+ Xinter

ditto

ditto
de AL,

ditto
ditto
ditto

w t-5 XX for all X E PUSH

XY ~5 Y for all X E PUSH, Y E POP

FIG. 4. The transformation 7 applied to a deterministic PDA d. For T(&) only those transitions are
given which differ from corresponding transitions of .?1.

may be applied, while for each pair of symbols n on top of the stack, with Y E
POP, exactly one popping transition may be applied. 0

LEMMA 4.3. If sfl is a deterministic PDA, then SQ and T(J~) accept the same

language.

PROOF. We first prove that for all stack symbols X,, . . . , X,,, from Sp we have
(Xiflip u, I> (xl ’ ’ *X,, E) if and only if (Xini,, U) 1TC3a) (a,X,a, ... (Y,J~, E) -- -
where for all i, 1 5 i or m, we have (Y~ = Y,,, Yi,* . . . Y,,, for some ri 2 0.

“only if”. The proof is given by induction on the number of steps used in

(Xinir, u, t> (xl . “xm, E).

(1) If zero steps are involved, then we have (Xini,, E) t $ (Xi,,il, E). By definition,
we have also (Xillir, E) F:(Zi) (Xini,, E).

(2) Suppose that the last step is a push, then we have (X,,,, U) t:

(Xl .* .Xm-,r 2) frd w, . . *xrn, El, where the last transition used is
x,-, z+ ,X,,, _ ,X,.The induction hypothesis informs us that (Xinit, u)1 zCylJ

z). Because also X,,-, A 7C.dFm -IX, we have
g;::; ‘;f,;;&*:; . . * am-lxm-~xm, E).

(3) Suppose that the last step is a pop, then we have (Xinir, V) 12

(Xl *. -xm-,-cnxm+,, c) t.!d (X, *. . X, - lXm, E), where the last transi-
tion used is XLX,,,, , Ad X,,,. The induction hypothesis informs us that

Winit, v) t;(d) (~lXl~2 0.. GG,~,+J,+~, ~1, with a,,1 = q--.F;,
for some r > 0. We first have (cY~X~CY~ . * * CY,X~F. +. Y, Xm+lr E) I,(,)

(G,% * *. cG?xrl~ * ._y,-Jm+b E) kT(&d). *. t,(d) (c+Iq *. * c%?xnxn,l,
E), using the transitions Y/x,+, A,&) X,,,+l,15jjlr, which exist since Xm+l E
POP. Subsequently, there are two possibilities:

Linear- Time Suffrv Parsing for Deterministic Languages 537

I .d
X rntt
X d a
xrnit Q a
X h a (1 b
X rntf (7 c
X tnrt *

X tntt a b
X rn1f c

X znier

X d rnter
X rnter de
X d Inter

X triter de
X d rnter

X triter d #
x Inter #

Xfin

, zabbbb#
abbbb#

bbbb#
bbb#
bbb#
bbb#

bb#
bb#

bb#

bb#
b#
b#

#”

+Q
X ml

Xanil a

Xlnrt a 0
X tnrt a a b

X tntt a c
x ii md
X :nrt z a
X mrt E a b

X inrt a C

X ml c

X enter
X enter Xinier

x Inter Xmter d

X rnter Xinter d e

x tnier Xinter ;i
X Inter Xmter 2 d

X anter Xmter 2 d e --
X rnter Xmter d d

Xinter Xinter 2 2 d

x Inter Xinter 2 2 d # --
X anter Xinter d d #

x triter Xrnfer ;i #

x rnfer Xrnfer #
X rnier Xfin
xfin

aabbbb#
a bbbb#

bbbb#
bbb#
bbb#
bbb#
bbb#
bb#
bb#
bb#
bb#
bb#
bb#

b#
b#
b#

%

c

FIG;. 5. The sequences of configurations for input aahhhh. using 1 and ~(::l)

--If X,,, E PUSH then XLX,,,+, L7,T(..,+T and (cIY,X,(Y~ .. . cr,,,X:,X,,,+ ,, E)
k T(,.j) hX,+ .~,A,, 4 L(.:.,) &f,~z . . . ~,,,x,,,X,,,, 4. In the last
configuration, (Y,,,X,,, is a sequence of “barred” symbols as desired.

--If X,,, E POP, then X&X,,,+, A7r(,,il,X,,, and (cu,X,a2 .. . a,,,XkX,,,+,, E)
t i(d) (~,XI~? . . ~,J,,,. 6).

“if’. Analogously to the “only if” part, the proof is given by induction on the
number of steps used in (X, ,,,,, U) I- :C,,,I, ((Y,X,(Y~ . . . a,,,X,,,, E). Below we only
give the most interesting cases.

(1) Suppose the last transition used was x,,, A 7(.JIGX,,I. then we have (X,,,,, 1~)

;&:,2, a2
(a,X,az -~XmLa~XY, E) kT(cd) (cx1X,(Y~ -xmm,a;X,, E) kT(.d)

. . . X, ._ , cr&XnlXm, E), where (Y, = CY;,~, and the second-last
transition used was XY Z+ T,,,4j c for some X and Y. The induction
hypothesis informs us that (X ,,,,,, U) k:,, (X, . . X,,, ,XY, E). From

xy A s(d) x,,l we conclude the existence of XY A,,,, X,. Therefore.
(X, . ..x. ,xy, E) b/.4 (X, *. Xm-,Xm, E).

(2) Suppose the last transition used was TX,,, &= TC.lil F,,,, then we have (Xinrrt u)
k& (a,X,az . . . a,X,X,, E) kTc:A, (a,X,a, . . . a,,X,,. E). Since
o,,,X,, is a sequence of barred symbols, the induction hypothesis informs us
that (Xl,,;,, 71) IT:, (X, . . . X ,,,, E).

538 M.-J. NEDERHOF AND E. BERTSCH

From the “if” part we conclude that (Xini,, V) b:c:J) (X,,, E) implies (Xi,,,, 21)

1 :A CXfi,~ E). From the “only if’ part we conclude that (X,,,,,, U) k:,, (Xfi,,, E)

implies W,,li,r ~1 1 Ted, (aXfirlr
the transitions TXfi” ts+

E) kt(,V,, (X,,, E), for some (Y = F . . . r, using
T(Td)Xfi,,, 1 sjsr, which exist since X,;,, E POP.

This proves the equivalence of the two accepted languages. q

LEMMA 4.4. If d is a deterministic PDA, then r(d) is loop-flee.

PROOF. Consider the set of stack symbols of T(&!). We define an ordering <
on these symbols as the least ordering satisfying:

X<Y for all X E POP, Y E PUSH

Y<Z for all Y, Z E PUSH

x<z for all X E POP, Z E PUSH.

Note that this relation is transitive and irreflexive. Below we prove that if (X, U)
1 &, (Z, E) then Z < X. This is sufficient to prove that 7(d) is loop-free,
since < is irreflexive.

Consider (X, U) +G:,,, (XY, E) l-r(z4J (Z, E), using some transition XYL.,,,d,
2 for the last step. It is obvious that X $ POP since otherwise Y could not have
been on top of X. There are two remaining cases:

-If X E PUSH, then either Z E POP or 2 is of the form z’, with Z’ E PUSH,
according to the definition of T. Therefore, in either case, Z < X.

-
--If X is of the form X’, with X’ E PUSH, then the transition XY A r(54:J) Z must -

be of the form X’Y Af5(:11J Y, with Y = Z E POP. Therefore, Z < X.

Since each sequence (X, U) k:,,.,,) (Z, E) can be split up into smaller sequences
(in this case at most two, leading from a symbol in PUSH to a barred symbol and
then to a symbol in POP) of the form (X, U) +z(,,d, (XY, E) I-T(,i4) (Z, E), and
since < is transitive, the required result follows. 0

From the above, we conclude:

COROLLARY 4.5. Any deterministic language is accepted by some deterministic
and loop-free PDA.

We now return to the issue of the time complexity of tabular suffix recognition.
We start with a minor result, which is a generalization of Lemma 3.3.

LEMMA 4.6. Let U be computed using Algorithm Dyna-Suf, for a deterministic
and loop-free PDA and certain input. There can be at most one item of the form (X,

j, Y,i) E UforeachX, Yandj > 0.

PROOF. The existence of an item (X, j, Y, i) E U requires that (X,
ai+, .*. a;) k+ (XV, E). In the case that the PDA is deterministic, the existence
of two items (X, j, Y, i,), (X, j, Y, i2) E U (say i, < i2) requires that (X,

ajtl . . . ai,) I=+ (XV, c) and (Y, a;,+, . . . a,,) k+ (Y, E), because of the
definition of b+. However, (Y, a,,+, . . . a,?) l-’ (Y, 6) is not possible if the
PDA is loop-free. Cl

Lineur- Time SuffZx Parsing for Deterministic Languages 539

LEMMA 4.7. For u deterministic and loop-free PDA ~$1, Algorithm Dyna-Suf has
N lirwur time compkC&, measured in the length of the input.

PROOF. Let the input be a, . . a,,. Let /.d/ denote the number of stack
symbols of PDA ~21. We investigate how many steps are applied.

push Since the PDA is dctcrministic. there arc C(l.dl . n) combinations of a stack symbol
X and an input position i > 0 such that there is a transition XL XY with z = E \J
z = ~1,. Thercforc. the pushing step is applied C(l.dl . n) times.

pop We distinguish hctwccn two cases.

--There are C (154 1’ . n) items of the form (W, h, X, j) E U, for j > 0, because of
Lemma 3.6. For each of these. there are CI([.~[) items of the form (X, j. Y. i) E U,
again hecause of Lemma 4.6. For this case, the popping step is therefore applied
f (I.d(‘ . n) times.

-There are C (/,ti/‘) items of the form (W, 0, X, 0) E U, and for each of these there are
C (Id/ * n) items of the form (X, 0, Y, i) E U. For this case, the popping step is
therefore applied C ((:d / ’ . ,I) times.

Together. this yields C;(I.d13 * n) steps. Cl

We can now prove the main result of this section.

THEOKF.M 4.8. Suffiw recognition can be performed in linear time for all
determirristic langu flges.

PROOF. This follows directly from Lemma 4.7 and Corollary 4.5. J

It is important to realize that the time complexity we computed in the proof of
Lemma 4.7 is rather pessimistic. First, Lemma 4.6 states that for deterministic
and loop-free PDAs, Algorithm Dyna-Suf can add at most one item of the form
(X. j. Y. i) to U for each X, Y and j > 0. If however the PDA results from
transformation 7. then Algorithm Dyna-Suf can add at most three items of the
form (X, j. Y, i) to 0’ for each X and j > 0, because of the relation < from
Lemma 4.4, which does not allow any sequences Y, < Y, < . . . < Y,,, with m >
3. This means that there are (?(lzzI/ . n) items of the form (W, h, X, j) E U, for
/I > 0, and for each of these. there are O(1) items of the form (X, j, Y, i) E U.
Therefore there arc only Ci(1~11 * n) applications of popping transitions, for h >
0. For h = 0 it is important to note that the number of triples W. X, Y such that
(W, 71) b’ (WX. E) and (X, W) k ’ (XY, E), for some 71 and W, is much less
than (::/I’ for typical PDAs.

E.~amplc 4.9. Consider the PDAs from Example 4.1. It is clear that :A is not
loop-free: we have (of, h) b (de, E) I- (d, E).

Consider some input 71 E {b} *. Let h, . . . b,, = U. For any prefix h, . . . b, of
71, we have (1, ~b, . . h,) t* (Xinrer, E), for some w: if j # 0. take u’ E {a} +
such that /1+1 = j and if j = 0 take w = ab; then wh, . . . h, E L,.

540 M.-J. NEDERHOF AND E. BERTSCH

We further have

w,,,,r 3 bj+lb,+&,+3 . . . b,) t-

Hinter d 7 bj+lb,+&,+3 . . . b,) 1

(X,,,, d e J bj+?b,+j * . . bi) t

W,,,,, d 3 bj+&j+x . . . bt) 1

(Xinrer d e , bj+x . * . b;) t

Winrcv d e 3 El I-

(Xinrrr d , E)

or in other words, (Xinterr bj+l + . . bi) l=+ (Xinter d, E), for all i such that j 5 i 5
n. Relying on the discussion we gave just after Algorithm Dyna-Suf, we conclude
that Algorithm Dyna-Suf will add one item (Xin~~er, j, d, i) for each combination
of j and i such that 0 I j II i 5 n. In other words, Algorithm Dyna-Suf adds at
least 0(n2) items to U, which demonstrates the quadratic behavior for PDAs
that are not loop-free.

The transformed automaton r(Oe) however is loop-free and therefore the
quadratic behavior does not occur. We demonstrate this by giving the relevant
items in U produced by Algorithm Dyna-Suf, both for Op and for ~(94). For
presentational reasons, we give the set of items in a pictorial form, called a
graph-structured stack [Tomita 1986; Nederhof 19941. A graph-structured stack is
a graph with n + 2 sets of nodes (assuming the input has length n as usual), each
set containing one node for each stack symbol. An arrow from a node represent-
ing symbol Y in the ith set to a node representing symbol X in the jth set then
represents an item (X, j, Y, i) E U.

A selection of the arrows in the graph-structured stacks for input bbb is given
in Figure 6. Note the quadratic number of arrows (items) in the case of SB, where
r(d) gives rise to only a linear number of arrows.

5. The Special Case of LL(1) Languages

At this point, it may be clarifying to investigate how the algorithms from Section
3 fit into the more general framework of Section 4. Two observations are in
place. First, the special transitions of the form X 4 XY add nothing to the
descriptive power of PDAs and can be encoded as transitions of the forms used
in Section 4. Since a PDA for LL(1) recognition which then results is loop-free,
the transformation T is not needed in order to obtain a linear-time suffix
recognition algorithm. Typically, PDAs realizing LR parsing or left-corner
parsing for left-recursive grammars are not loop-free, and therefore require a
solution similar to the application of T in order to allow linear-time suffix
recognition.

Second, in Section 3, we used 3-tuple items (j, [A --f (Y l p], i), instead of the
4-tuple items ([B -+ y l 61, j, [A + (Y l p], i) that one may expect from
Section 4. The reason that the first component of such a 4-tuple can be omitted
is that the PDAs resulting from Construction LL-PDA satisfy a special property

Linear- Time Suffi Parsing for Deterministic Languages 541

Graph-structured stack for automaton T(&):

0 1 2 3

: I

FIG. h. Some of the rclcvant items for .d and for T(X). given in graph-structural stacks.
hhh in both CBSCS.

The input is

called contempt-independence. Most naturally occurring PDAs satisfy this property.
For more details, see Nederhof [19941.

6. Producing Parse Trees

We have shown that suffix recognition can be done efficiently, especially for
deterministic languages. The next step is to investigate how the recognition
algorithms can be extended to be parsing algorithms. The approach to parsing in
Lang [19741 and Billot and Lang [1989] is to start with pushdown transducers
instead of with pushdown automata. A pushdown transducer can be seen as a
PDA of which the transitions produce certain output symbols when they are
applied. The ourput string, which is a list of all output symbols which are
produced while successfully recognizing a sentence, is then seen as a representa-
tion of the parse.

We will use the notation 6, ti 6, to indicate a transition of some pushdown
transducer, where t is E or some output symbol b which is produced when the
transition is applied, and where 6,, 6,. z are as before. Configurations are now
triples consisting of a stack, a remaining input and the preliminary output string.
We may define the new binary relation I- on these configurations as the least
relation satisfying (6S,, 2’11, w) t (86,. U, wr) if there is a transition 6, ti SZ.

542 M.-J. NEDERHOF AND E. BERTSCH

If such pushdown transducers are to be realized using a tabular algorithm such
as Algorithm Dyna then we may apply the following to compute all output strings
without deteriorating the time complexity of the recognition algorithm. The idea
is that a context-free grammar, the oufput grammar, is constructed as a side-effect
of recognition. For each item (X, j, Y, i) added to the table the grammar
contains a nonterminal Acx,j,r,i,. This nonterminal is to generate all lists of
output symbols w which the pushdown transducer produces while computing (X,

a,+1 . . . ai, E) I=+ (XY, E, w). The rules of the output grammar are created
when items are computed from others. For example, if we compute an item (W,
h, 2, i) from two items (W, h, X, j), (X, j, Y, i) E I/, using a popping
transition XY ti 2 which produces output symbol b, then the output grammar
is extended with rule ACW,h,z,i) + ACW,h,X,j) ACX,j,y,ij b. The start symbol of the

output grammar is A (I ,o,x,,,n + l). The language generated by the output gram-
mar consists of all output strings that may be produced by the pushdown
transducer while successfully recognizing the input.

An output grammar is a particular representation of all parse trees for a
certain input, and is therefore sometimes called a parse forest. For more details
see Lang [1974; 19881, Billot and Lang [1989], and Nederhof [1994]. Some
additional remarks concerning the form of parse forests in the context of
incomplete input can be found in Rekers and Koorn [1991].

Transformation T from Section 4 can be extended to work on deterministic
pushdown transducers, in such a way that the output strings are not affected. A
consequence is that the complexity results from the previous sections hold for
suffix recognition as well as for suffix parsing.

For a pushdown transducer SB, the transitions of I are given by:

XY %(d) z for XY 5 sp Z with Z E POP

XY &,(a) z for XY fi 3p Z with Z E PUSH

x +
--T(d) 33 for XE PUSH

3% $(&) Y for X E PUSH, Y E POP

X 41
-r(d) for X q$ XY.

By straightforwardly adapting the proofs from Section 4, it can be shown that this
extended transformation T not only preserves the language accepted by an
automaton, but also preserves the output string generated for each input that is
recognized.

It is important to realize that the method described here for producing parse
forests can be refined if a particular structured representation of all parses is
required, or if parsing consists in evaluation of attributes in the case of attribute
grammars. The method above is however the most straightforward way to yield
all parses of a sentence without deteriorating the time complexities of the
recognition algorithms.

7. Parsing of Incorrect Input

A natural property for PDAs is that they do not read past the first incorrect
character of the input, which is called the correct-prefrrproperty. Formally, a PDA

Lineur- Time Suffi Parsing for Deterministic Languages 543

satisfies the correct-prefix property if for all 6 and 11 such that (Xlnir, U) t * (6, E)
we have some string w (VW ends in #) such that (X,,,,, VW) k* (X,,,, E).

Let us investigate more closely the pushing step of Algorithms Dyna and

Dyna-Suf:

push (1) Choose a pair. not considered before, consisting of a transition X Z+ XY and an
input positionj, such that there is an item (W, h, X, j) E U, for some W and h,
andsuchthatz = EVZ = a,,,.

(7) If t = E, then let i = j, else let i = j + 1.
(3) Add item (X, j, Y. i) to U, if it is not already there.

This step causes a left-to-right dependency on the processing of input, or in other

words, first some entries of column i have to be present in the table before any
entries in column (i + 1) can be computed. This left-to-right dependency is
avoided by simplifying this step to

push (I) Choose a pair, not considered before, consisting of a transition X +% XY and an
input position j, such that z = E v z = a,+ ,.

(2) If i = E, then let i = j, else let i = j + 1.
(3) Add item (X. j. Y. i) to U, if it is not already there.

The version of Algorithm Dyna that then results is reminiscent of an algorithm in
Aho et al. [19681, which predates the dynamic programming algorithm from Lang
[1974].

With the above simplification, both Algorithm Dyna and Algorithm Dyna-Suf
eventually add an item (X, j, Y, i), j > 0, to I/ if and only if5

(1) (X. a,+, . *.a;) I=+ (XV. E).

This means that the simplified algorithms add more entries to the table, which
makes them less efficient. It is surprising that the (worst-case) time complexity as
computed in Lemma 4.7 is not affected. The simplification has a disadvantage
however which is unrelated to the time complexity: without the simplification we
have that Algorithm Dyna-Suf may only add an item (X, j, Y, i), j > 0, to iJ if
(1. IMI , . a,) b* (6X. II,+, ‘.. a,) I* (SXY, E), for some 71 and 6. This means
that the existence of an item (X, j, Y, i) indicates that the input up to position i
may be the prefix of a suffix of a sentence. In fact, the least i 5 n such that no
entries (X, j. Y, i) are added to U (if such an i exists) indicates that i is maximal
such that u, . .. u, , is a prefix of a suffix of a sentence, provided we may
assume the correct-prefix property.

For applications in parsing of incorrect input, this idea is useful for finding

multiple errors in an input string. First, Algorithm Dyna is started on the
complete input a i . . a,. Suppose that column i, is the first one in the table to
remain empty. Position i, must be seen as the first error in the input. Then we
take the suffix ai, . . . a,, of the complete input and we try to parse this new input
using Algorithm Dyna-Suf. Suppose that column i- , is now the first to remain
empty (we number the columns starting from i, - 1 instead of starting from 0).
Position i, can now hc seen as the second error in the input. Algorithm Dyna-Suf
is then repeated with input a,> . . a,,, etc. This method not only works for
deterministic PDAs, but for any PDA. It provides us with good heuristics how to
locate the errors in an incorrect input.

- For , 0 the following discussion is equally relevant.

544 M.-J. NEDERHOF AND E. BERTSCH

All these possibilities are lost when Dyna and Dyna-Suf are simplified as
described above, because then all columns will contain some items, so that
emptyness of columns is no longer a criterion for locating errors.

A more sophisticated way to parse incorrect input is described below. It is
called subsequence recognition, since here the input is not a presumed suffix of a
sentence, but a subsequence.

First note that algorithms such as Earley’s algorithm and the dynamic pro-
gramming algorithm are usually implemented as synchronous algorithms, which
means that the columns of the table are computed strictly from left to right; first
column 0, then column 1, etc.

The difference between Algorithms Dyna and Dyna-Suf can for synchronous
computation be described as follows. Algorithm Dyna initializes column 0 with

{ (1) 09 XIIIIIT 0) } and then computes columns 0, 1, . . . , n + 1. Algorithm
Dyna-Suf does the same, except that it replaces the first column by its closure
before computing columns 1, . . . , n + 1. The application of closure on column
0 has the effect that Algorithm Dyna-Suf simulates processing of all prefixes of
sentences by the PDA.

We can generalize this idea by applying closure on any other column except
column 0. This means that first columns 0, 1, . . . , i, for some i, are computed as
usual; then column i is replaced by its closure, and then columns i + 1, i +
2 . . 7 n + 1 are computed as usual. The result is that the input is recognized
(;.e., eventually (I, 0, Xfin, n + 1) E U) if and only if a, . . . a;vu;+, . . . a, 1s
a sentence, for some U. This idea can be generalized to application of closure to
any number of columns of U. If we apply closure to every column before
computing the next column, then the input is recognized if and only if
v(p,vj --. v,-ranv~ is a sentence for some vOvl . . . v,.

An important application of this idea is known as inserr-only error recovery
[Fischer and Manney 19921: if we know that the input itself is not a sentence and
if we conjecture that the error consists in some missing substrings, then this
assumption may be verified by applying the above method.6

The algorithm in Lang [1988] for parsing incomplete input, from which our
Algorithm Dyna-Suf is derived, assumes that the input is annotated with markers
indicating where closure is to be applied.

Regrettably, linear-time subsequence recognition is not always possible for
deterministic languages, even if the number of applications of closure is bounded.

8. Recursive-Descent Parsing

Tabular algorithms such as Earley’s algorithm operate by manipulating tables U.
These algorithms are therefore “interpretative”: they are driven by the data in
the table instead of by code of a program. One may argue that the time
complexity suffers from the interpretative nature of the tabular algorithms, and
that it is therefore better to change the structure of the algorithms so that some
control information is put into a program.

6 Treating the input as a subsequence of a sentence is one extreme. The other extreme is to find the
subsequences of the input which are sentences; see, for example, Lavie and Tomita (19931 and
Nederhof] 19941.

Linear-Time Suffix Parsing for Deterministic Languages 545

For top-down parsing, this is accomplished by using the recursive-descent

method [Leermakers 19921. The idea is that one procedure (or function) is
assigned to each nonterminal, each rule or each “dotted rule” [A + (Y l p]. In
order to stress the similarity to Earley’s algorithm, we will give an example where
each procedure corresponds to a dotted rule.

Construction: Func-LL (Functional LL(1) recognition)

Consider an LL(l) grammar G = (T, N, P, S). Without loss of generality,
assume that the grammar is reduced and that there is only one rule of the form S
- cr. Assume the input is a, . . . a,. Let a,,+, = #. For each [A + (Y l 131,
where A ---f a/3 E P, we construct one procedure. The procedures have two
arguments, which are input positions, and yield a result that is again an input
position, or the value “failure” to indicate failure of recognition. For the
definition of the procedures we distinguish between three cases:’

(A - cy l Bp](j, i): if there is no B + y with a,,, E L?ti(f? -+ y)
then return “failure”
else let B + y be such that a, + , E 2.~4(B + y);

let h = [B + l y](i, i);
if h = “failure”
then return “failure”
else return [A --, CXB l /3](j, h)
end

end.

☯A - a l up](j, i): if a = u,, 1
then return [A + aa l p](j, i + 1)
else return “failure”
end.

☯A - a l](j, i): return i.

The main procedure is:

main: if [S + l cr](O, 0) = n
then report “success: input is sentence”
fi.

The correspondence between the program resulting from the above construction
and Algorithm Earley is that (j, [A -+ (Y l /3], i) E U if and only if there is a
call [A -+ a l p](j, i).

Algorithm Earley starts the parsing process by adding an item (0. [S + l 01,
0) to U. In the same way, the program constructed above has all its control
emanating from the call [S -+ l u](O, 0). This poses some difficulty when we try
to realize Algorithm Earley-Suf, for suffix parsing, using the recursive-descent
method. The reason is that in 1:: there is no single item from which the control
emanates. In particular, there may be cyclic dependencies among the items in 1:.
Such cyclic dependencies cannot be realized using the recursive-descent method
and therefore the items (0, [A -+ a! l p], i) still need to be computed by an
interpretative method:

’ The definitions of the procedures can be much simplified. For example, the first arguments can be
removed since they arc redundant, and the tail recursion can be turned into a loop. All this is
however beyond the scope of this paper.

546 M.-J. NEDERHOF AND E. BERTSCH

Construction: Func-LL-Suf (Functional LL(1) suffix recognition)

Consider an LL(l) grammar as before, and construct the procedures [A + (Y l
p] as in Construction Func-LL. Assume the input is a, . . . a,, n > O.* Let a,,,
= #. The main procedure is now given by:

main: let W = {([A + au l /3], 1) 1 A -+ aa/3 E P A a = a,);

for all ([A -+ a l p], i) E W not considered before
do let h = [A - (x l /3](0, i);

if h # “failure”
then let W = W U {([C + yB l 61, h) 1 c --, $36 E P A B = A);

ifA=SAh=n
then report “success: input is suffix”
end

end
end.

That the behavior of procedure main is similar to the behavior of Algorithm
Earley-Suf is witnessed by the fact that for i > 0, (j, [A + a l /3], i) E U if
and only if there is a call [A + (Y l j3](i, i). In fact, if the procedures are
implemented as memo functions, the behavior of the program is almost identical
to the behavior of Algorithm Earley-Suf.

Without going into details, we just mention that the above recognition
procedures can easily be extended to be parsing procedures.

The procedure main can be considered to represent a finite state automaton
over the set of grammar symbols V. Bertsch [I9941 proposes to determinize this
automaton to obtain a better run-time efficiency, although this increases the size
of the parser.

For LR parsing, procedures similar to the ones above can be constructed
according to the recursive-ascent method [Leermakers 19921.

9. Generalizations to Nondeterministic Automata

Algorithms Earley, Earley-Suf, Dyna, and Dyna-Suf all derive from general
context-free parsing algorithms. In fact, they correctly simulate deterministic as
well as nondeterministic PDAs. This means that the techniques from this paper
can be used also for suffix parsing and parsing of incorrect input for arbitrary
context-free languages, although here a linear time complexity is not guaranteed.

This is a useful property for error recovery in compilers: Often programming
languages are “not quite” LL(k) or LR(L) and the nondeterminism during
normal parsing is circumvented by special conflict resolvers. When a syntactic
error occurs, these conflict resolvers may not be available for some reason. The
applicability of our algorithms to recovery of the error, however, is not hindered
by the nondeterminism that may then ensue.

The PDA transformation T requires special attention when we allow nondeter-
minism. On the one hand, application of 7 can without many consequences be
omitted in this case, since its only use was to ensure a linear time complexity for
tabular simulation of deterministic PDAs, whereas a linear time complexity
cannot be ensured for nondeterministic PDAs, regardless of any language-
preserving PDA transformation.

‘Without loss of generality, we restrict ourselves to nonempty input.

Linear-Time Suffix Parsing for Deterministic Languages 547

On the other hand, it seems reasonable to suggest that PDAs that are “almost”
deterministic may be simulated by Algorithm Dyna-Suf in “almost” linear time,
provided some generalized transformation T is applied first.

Not much effort is needed to generalize the definition of T to nondetermin-
istic PDAs. In fact, the proof that it preserves the language accepted by a
deterministic PDA (see Lemma 4.3) does not even make use of the determin-
ism. Therefore, 7 may also be applied to nondeterministic PDAs without
affecting the accepted language. Regrettably, for nondeterministic PDAs, the
sets PUSH and POP may not be disjoint, which causes T to produce spurious
nondeterminism. This problem is avoided by marking stack symbols if they
should be interpreted as an element in POP, blocking any transition that
would push an element on top of it. The result is the following:

Construction: 7’ (Generalized transformation to loop-free PDAs)

Consider a PDA ~1. We define these two sets which are not necessarily
disjoint:

PUSH = {X 1 there is a transition X A,.., XV}

POP = {Y) there is a transition XY A:,, Z} U {AT,,,).

Without loss of generality we assume that Xl,,;, $ POP. A new PDA ?‘(A) is
constructed. of which the stack symbols are those in PUSH plus stack symbols of
the form X, with X E PUSH, plus stack symbols of the form 2, with X E POP.
The transitions of I’ are given by

XP %(.d, i for XY A.:, Z with Z E POP

XP %,.l) z for XY .& :j Z with Z E PUSH

X i-;;,,,, xx for X E PUSH

XP A,,;,, P for X E PUSH, Y E POP

x -r(:,, A+- c+ for X A,, XY with YE POP

x +.(.:g) xy for XA.i XY with YE PUSH.

The initial and final stack symbols for I’ are X,,,,, and Xi,,, respectively.

Note that if the PDA :d is deterministic and therefore PUSH and POP are
disjoint. then T’ simplifies to 7, apart from the renaming of stack symbols X E
POP in T(.vI) to stack symbols /? in T’(&).

That the time complexity of Algorithm Dyna-Suf is “almost” linear for PDAs
that are “almost” deterministic and that have been transformed by +(:A) can
obviously not be proved by formal arguments. This raises the question whether 7’
may also have a detrimental effect on the time complexity. The answer,

548 M.-J. NEDERHOF AND E. BERTSCH

regrettably, is affirmative. For example, consider a nondeterministic PDA having
(among others) the following transitions:

Q 15 QX

X A XY XY 29 x

X I& XZ XZ I% R

QR A R

Let us consider the time complexity of simulation of these transitions by
Algorithm Dyna-Suf if we assume Q occurs on top of the stack at a single input
position, say position 1, and if the input is a, . . . a,, with ai = a, for 1 5 i I n.
We have sequences of configurations of the form

(Q , a1aza3.. . a,> t-
(QX , ~J~uZQ~ *** a,,) I- (QXY, 412123 .*-u,) t

<Qx 9 a2a3. . . a”) b

(QX y aiai+l * . * a,) t- (Qm, ai+l . . * an> t
<QX > a,+1 * . * u,) t- (QXZ, ai+l . . ’ a,) t

(QR , ai+l ’ ’ . an> l-

W 3 ai+l * . * a”)

for different i, with 1 5 i I n. Of such a sequence, only the last three steps are
unique and are not simulated together with steps in other sequences by Algo-
rithm Dyna-Suf. This means that Algorithm Dyna-Suf simulates these o(n)
sequences in linear time.

For the transformed automaton we have

<Q , ala2a3 *. * an) t

(Qx , a,aza3*’ . a,) k (Qfi , a2a3 . . . a,) 1 (Qx, u2a3 . * . a,) k

(QTX > u2u3 *.* a,) t

Lincur-Time .%4sf~ Parsing for Deternzinisric Languages 549

Algorithm Dyna-Suf does not simulate the final i + 2 steps of such a sequence
together with steps in other such sequences. In other words. O(n) steps are
simulated individually for each of the O’(n) sequences of the form above, which
implies that Algorithm Dyna-Suf has a quadratic time complexity in this case.

We conclude that T’ is not useful in genera1 for improving the time complexity
of Algorithm Dyna-Suf for nondeterministic PDAs.

10. Related Research for LR Recognitiorl

The class of deterministic languages is equal to the class of LR(1) languages.
Correspondingly, some algorithms from the existing literature which perform
suffix recognition or suffix parsing based on the LR technique are comparable to
the algorithms in this paper.

The algorithm in Rekers and Koorn [1991], for example, is very similar to
Algorithm Dyna-Suf for a PDA realizing LR parsing. A superficial difference is
that the closure operation is realized implicitly (as in Construction Func-LL-Suf),
which has practical advantages but little theoretical significance.

The bidirectional LR parsing algorithm in Saito [1990] is also related: LR
parsing may start at any input position i, and process the input from i to the
right. The difference with Rekers and Koorn [19Yl] is that simultaneously also
the input from i to the left is processed by a reverse LR algorithm. Both parsing
processes, one working from i to the right and the other from i to the left,
co-operate to compute nonterminals that generate substrings of the input
including the position i. Further generalizations described in Saito [1990] allow
parsing processes to start from a number of input positions simultaneously; this is
beyond the scope of this paper however.

Neither of the algorithms in Rekers and Koorn [1991] and Saito [1990] is
linear in the length of the input for all LR grammars. The explanation is that LR
automata are not loop-free for left-recursive grammars (for the reverse LR
automata from Saito [1991], the obstacle is of course right recursion).

The solution presented in Bates and Lavie [19941, developed independently
from our own, can he described as follows. In Section 4. we argued that a
nonlinear time complexity may result if there is no linear bound on the number
of items (X, j, Y. i) E U for fixed X and Y. We solved this problem by
transforming the PDAs such that only one such item can exist for each j. The
alternative solution in Bates and Lavie [1994] is to alter the tabular algorithm
itself, so that different items (X, j. Y, i) E U for fixed X. Y and i are
represented by a single object in the parsing table. Shared representation of such
items for different j is made possible by choosing a kind of parsing table that
allows the distinction between different input positions to he partly neglected.
Such a data structure is the concept of graph-structured stacks mentioned in
Example 1.0. with the difference that nodes do not have to be uniquely related to
input positions. This variant of a graph-structured stack is called a ,forest-
structured stack.

We take a closer look at the relationship to our approach. For Algorithm
Dyna-Suf. a list of items in the table U of the form (X,,, i,,, X,. i,), (X,, i,, X2,
i,). . . . (X,,, ,, i,,, ,, X,,,, i,,), with i,, = 0, indicates the existence of a stack

fix&x, . . x,,,, some fi, which results from an initial configuration by reading
some unknown prefix followed by the input symbols up to position i,,. Such lists

550 M-J. NEDERHOF AND E. BERTSCH

of items correspond to paths in the graph-structured stack, which at this point is
just a pictorial representation for the set of items I/. Such a path consists of
nodes s,, . . . , so labeled X,,,, . . . , X0, respectively, and arrows connecting Sk to
sk- i, 0 < k II m. The nodes are divided into subsets according to the input
position where they are created, that is, node sk belongs to the i,th set.

The approach in Bates and Lavie [1994] relies on the fact that for a tabular
realization of deterministic PDAs the input positions in the paths are not
essential, and consequently the nodes in the paths do not need to be divided into
subsets according to input positions. In fact, some paths starting at the same
node may be partly merged if they have some labels in common in an initial
subpath, even if the corresponding input positions are different.

In order to explain the difference between our Algorithm Dyna-Suf and the
algorithm in Bates and Lavie [1994], we consider again the quadratic behavior
that we have discussed in Section 4. We do this by taking a collection of PDA
transitions similar to the one we presented in Figure 4:

P APPQ Q Z+ QX

X AXY XYAX

X &= X2 XZ t& R

QR A R

In the worst case, Algorithm Dyna-Suf simulates 0(n) sequences of transitions
(P, aj . * . a,#) t* (PR, E), for different j. For three of these sequences, viz. for
j=n-3,n - 2, n - 1, the subsets of U relevant to simulation of these
sequences are given as separate subgraphs of the graph-structured stack in
Figure 7(a). Items of the form (X, j, Y, i) and (X, j, Z, i) have been omitted to
simplify the pictures. The latent quadratic behavior reminiscent of Example 4.9 is
also present in this case: we may have quadratically many items of the form (Q,
j, X, i); linearly many for each subset of U simulating one of the linearly many
sequences of transitions (P, Uj . . . a,,#) I-* (PR, l), for different j.

Figure 7(b) gives the corresponding three subsets of U resulting after the PDA
is transformed by T. The quadratic behavior disappears. Note that, for example,
the item (x, n, R, IZ + 1) occurs in both the first and the second subgraph. The
three subgraphs are given together in Figure 7(c).

Figure 7(d) shows how the algorithm in Bates and Lavie [1994] achieves a
linear time complexity. The dashed lines indicate arrows in the graph that are at
some point in time constructed but later merged with other arrows. For example,
at some point there will be two paths from the node labeled X created at position
n - 1. One is along the node labeled Q created at n - 3, and the node labeled
P created at n - 4. The other path is also along two nodes with the labels Q and
P, in this order, but these two nodes were created at positions n - 2 and n - 3,
respectively. The algorithm merges this latter path with the former, thus avoiding
quadratically many arrows from nodes labeled X to nodes labeled Q. Merging of
paths takes place recursively: first the two nodes labeled Q at n - 3 and n - 2
are merged together with the two incoming arrows from the node labeled X at
n - 1. Then the two nodes both labeled P further down the two paths are
merged, together with the two connecting arrows. This process continues further

Linear- Time Suffur Parsing for Deterministic Languages 551

(a) : (b)

_.__.________-_-_-______________________
Cd)

tmput positions where nodes are firs creared:)
n-4 n-3 n-2 n-l n It+/

FIG. 7. Two different ways of achieving a linear time complexity.
(a) Pictorial representation (parse forest) for items in U, distinguished according to three

scqucnccs of configurations simulated by Algorithm Dyna-Suf. The total number of items (Q.
1, X. i) grows quadratically with n.

(b) The items corresponding to those in (a) in the case of r(.$). Certain items are shared between
the three simulated sequences of configurations.

(c) The items from (h) represented together. The number of items grows linearly with n (cf. Figure
6).

(d) Forest-structured stack according to Bates and Lavie 119941. The dashed arrows represent
parts of paths that are merged into other paths, without regard to input positions.

down the paths (from the two arrows in our picture labeled 1 and 2) until the
paths differ with regard to the labels at the nodes.

Let us now investigate the advantages of our approach over the one in Bates
and Lavie [19941.

A superficial advantage of our approach is that we allow suffix parsing to be
based on any parsing technique, be it top-down, left-corner or LR parsing,
whereas Bates and Lavie [19941 only treats LR parsing. This is not a significant
difference however, since the method to obtain a linear time complexity from
Bates and Lavie [1994] can be generalized to other parsing techniques besides

-

552 M.-J. NEDERHOF AND E. BERTSCH

LR parsing. In discussing the example above, we tacitly assumed that this kind of
generalization had already taken place.

A more substantial advantage is the conceptual simplicity of our approach.
This is achieved by separating the PDA transformation 7 from the tabular
algorithm (Algorithm Dyna-Suf). Taking into account that the tabular algorithm
is based on the well-established algorithm by Earley [1970], the remaining proof
obligations involve no more than a simple PDA transformation. These proof
obligations have been fulfilled by straightforward deductions in Section 4.

Our modular approach results in increased flexibility. In particular, we may
safely omit the PDA transformation or take different variants for the tabular
algorithm.

An example of when it may be preferable to omit the PDA transformation T
occurs when the original PDA is not deterministic, as explained in Section 9. We
cannot use the algorithm in Bates and Lavie [1994] in this case, however: when
the PDA is nondeterministic, each node in the forest-structured stack may have
multiple incoming arrows which are reachable from some node which represents
the top of some stack. When such a node is merged with an older node, then
some of these incoming arrows become “dangling references”, causing loss of
completeness of the recognition algorithm.

Different variants for our tabular Algorithm Dyna-Suf are, for example,
synchronous and asynchronous ones, with or without left-to-right order of
processing (see Section 7). Since in Bates and Lavie [1994] the process of
merging paths is deeply integrated into the tabular algorithm, such variants
cannot be defined without also adapting this process. The approach in Bates and
Lavie (19941 is therefore less flexible.

The most important property that distinguishes the algorithm in Bates and
Lavie [1994] from our own is that the former is intrinsically a recognition
algorithm, as opposed to a pursing algorithm. The reason that it cannot be
augmented to be a parsing algorithm is because the unique identification of items
in the parsing table with input positions is essential for the construction of parse
forests as explained in Section 6.

To illustrate the problem, consider in the running example the two arrows
from the node labeled X at n - 1 to the two nodes labeled Q at n - 3 and n -
2. These two arrows may be identified with two subparses, one parsing input
from position n - 3 up to n - 1, the other from n - 2 to n - 1. After these
two arrows have been merged, the correct identification of the two subparses is
lost, and defective parses result when these are combined with other subparses of
preceding or following input.

For the same reason, the algorithm cannot be augmented to handle attribute
grammars nor related kinds of formalism. However, none of these difficulties
occur for our approach, since the PDA transformation can be adapted to take
the construction of parse forests or the evaluation of attributes into account, as
we have shown in Section 6.

11. Conclusions

The purpose of this paper is to lay a theoretically attractive foundation for
efficient noncorrecting error recovery.

Linear- Time SuffZx Parsing for Deterministic Languages 553

The core of our discussion has been the observation that recognition or
rejection of a string as a suffix of a sentence can be done in linear time for
deterministic languages (Section 4, and Section 3 for the special case of LL(I)
languages). In case the string is rejected as suffix, the algorithm indicates the
longest prefix of the string which is a substring of some sentence, provided we
may assume the correct-prefix property. By repeating this at each input position
where the algorithm has stopped during the previous iteration, an incorrect input
is partitioned into pieces each of which is a substring of some sentence (Section
7). This results in a linear-time recognition algorithm for incorrect input, which
can be extended to be a parsing algorithm, producing parse trees for each correct
substring separately (Section 6). In Section 7, we also discussed subsequence
recognition, which however does not have a linear time complexity in the general
case.

In order to argue the practical value of these ideas, we have shown that the
tabular techniques can also be cast into a functional form, which avoids some
interpretative processing and allows compilation of the grammar into parsing
procedures. We then rely on memoization for maintaining a linear time complex-
ity (Section 8).

ACKNOWLEDGMENTS. Holger Streit and Martin Tenhaven helped us to find a
flaw in an earlier version of the paper. An anonymous referee provided us with
valuable comments that we have used to improve the readability of the text. We
thank Kees Koster for proofreading.

REFERENCES

Atto. A. V., HOPCKOFT. J. E., .~ND ULLMAN, J. D. 1968. Time and tape complexity of pushdown
automaton languages. 1n.j Cont. 13. 186-206.

i3~Ws. J.. 4NI) LAVlt-. A. 19Y4. Recognizing suhstrings of LR(k) languages in linear time. ACM
Tram. frog Lang. .Syxr. lb. 3 (May), 1051-1077.

BhHrh(.tt. E. 1994. An asymptotically optimal algorithm for noncorrecting LL(I) error recovery.
Bcricht Nr. 17b, Fakultat ftir Mathematik, Ruhr-Univcrsittit Bochum.

bl 107, s., ANI) L.\N(r, B. 1989. The structure of shared forests in ambiguous parsing. In
Proc~cc,drnq.s of thr -77/h .4nnua/ Mrrrirq of the .4ssociarion for Computational I~ingui.~ric.~, (Vancouver,
British C;,lumhia. Canada. June). pp. 143-151.

Bo~l(.~:\t~Kl-. M.. PtKor-1.1.. A.. ANI) SN~I I.IN(;, M. 1975. Efficient parsing algorithms for general
contcul-free parsers. Inf. Sci. 8. l-26.

(‘(lKhl(h. (i. v. IOXY. An LR suhstring parser for noncorrecting syntax error recovery. SIGPLAN

.Yo/rw\ 24. 7. 161-If>‘).
E;IKI t \I. J. 1970. An cfficicnt context-free parsing algorithm. Commu,~. ACM 13. 2 (Fch.). 94-102.
F~sc III K, C. N.. AND M4t Nt:Y, J. 1902. A simple, fast, and effective LL(I) error repair algorithm.

.‘tcfa I,$ 29. I I)9 - 121).
(;R UIAM. S. I... HAKKISON. M. A.. AND Rl:zzo, W. L. 1980. An improved context-fret recognizer.

.4(‘.21 Trunr. Prog Long. Sy/. 2. 3 (July), 415-462.

GKI P;I . D.. j~?r> JA(.OHS. C. J. H. 1990. Porsin~ Techniques. A Practical Gurdr. Ellis Horwood.
(‘hichcstcr. England.

LAN,;. B. lY74. Deterministic techniques for efficient non-deterministic parsers. In Au~omatrr,

f,trnguug~~~ und Prty~rmrning, 2nd Co[/oquium. Lecture Notes in Computer Science. vol. 14.
Springer-Vrrlag, New York, pp. 255-269.

L<\N(,. B. 1988. Parsing incomplete sentences. In frocerding.~ of the /2th Itrtrrnarionuf Conferencr

011 Comp~~rc~rional I.m@sfics. vol. 1, (Budapest, Hungary. Aug.). pp. 365-371.
LAN(~. B. I9Yl. Towards a uniform formal framework for parsing. In Clcrrent lsruec in Pursrng

7i,~./rmr/oq~ chapter t 1, M. Tomita, ed. Kluwer Academic Publishers, pp. 153-171. < 1

554 M.-J. NEDERHOF AND E. BERTSCH

LAVIE, A., AND TOMITA, M. 1993. GLR*-An efficient noise-skipping parsing algorithm for
context free grammars. In Proceedings of the 3rd International Workshop on Parsing Technologies.
Tilburg (The Netherlands) and Durbuy (Belgium). pp. 123-134.

LEERMAKERS, R. 1992. Recursive ascent parsing: From Earley to Marcus. Theoret. Comput. Sci.
104, 299-312.

LEISS, H. 1990. On Kilbuty’s modification of Earley’s algorithm. ACM Trans. Prog. Lang. Syst. 12,
4 (Oct.). 610-640.

NEDERHOF, M. J. 1994. Linguistic parsing and program transformations. Ph.D dissertation. Univ.
Nijmegen.

REKERS, J., AND KOORN, W. 1991. Substring parsing for arbitrary context-free grammars. SIGPLAN
Notices 26, 5, 59-66.

RICHTER, H. 1985. Noncorrecting syntax error recovery. ACM Trans. Prog. Lang. Syst. 7, 3 (July)
478-489.

SAITO, H. 1990. Bi-directional LR parsing from an anchor word for speech recognition. In Papers
presented to the 13th International Conference on Computational Linguistics, vol. 3. pp. 237-242.

SIPPU, S., AND SOISALON~OININEN, E. 1990. Parsing Theory, Vol. II: L/?(k) and LL(k) Parsing. In
EA TCS Monographs on Theoretical Computer Science, vol. 20. Springer-Verlag, New York.

TOMITA, M. 1986. Eficient Parsing for Natural Language. Kluwer Academic Publishers, Dordrecht,
The Netherlands.

VALIANT, L. G. 1975. General context-free recognition in less than cubic time. J. Compur. Syst. Sci.
IO, 308-315.

VAN DEUDEKOM, B., AND KOOIMAN, P. 1993. Top-down non-correcting error recovery in LLgen.
Report IR-338. Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

RECEIVED NOVEMBER 1994; REVISED SEPTEMBER 1995; ACCEPTED DECEMBER 1995

Journalofthe ACM. Vol. 43, No. 3, May 1996.

