Programming
Languages

J. J. Horning
Editor

Automatic Error
Recovery for LR
Parsers

M. Dennis Mickunas and John A. Modry
University of Ilinois at Urbana-Champaign

In this paper we present a scheme for detecting and
recovering from syntax errors in programs. The
scheme, which is based on LR parsing, is driven by
information which is directly and automatically
obtainable from the information that is already present
in an LR parser. The approach, which is patterned after
that of Levy and Graham and Rhodes, appears to
provide error recovery which is both simple and
powerful.

Key Words and Phrases: programming languages,
error correction, automatic correction, parsing, LR,
syntax errors, compilers

CR Categories: 4.1.2,4.4.2,5.2.3

Introduction

There are few things more frustrating than spending
a great deal of time debugging syntax errors in a pro-
gram. Often, an error causes a compiler to make an
incorrect assumption which leads to a confusing error
message as well as to the generation of many additional
error messages. The final recovery often involves the
skipping of large portions of the program. This means
that any additional errors that were skipped over will go
undetected until future runs of the program.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This work was supported by the Research Board of the University
of Illinois.

Authors’ addresses: M. Dennis Mickunas, 297 Digital Computer
Lab., Department of Computer Science, University of Illinois at Ur-
bana-Champaign, Urbana, Illinois 61801. John A. Modry, 807 7th
Ave,, S.E, Rochester, Minnesota 55901.
© 1978 ACM 0001-0782/78/0600-0459 $00.75

459

A good syntactic error recovery method should detect
and give an accurate and meaningful error message for
each error in a program. This means completely recover-
ing, and resuming the parse at the point of each error, so
as not to miss detecting any subsequent errors. The
advantages of a compiler having a good error recovery
method are obvious. The disadvantages are that it may
be either very costly to develop or very inefficient to use.
An automatically generated error recovery method solves
the first of these two problems.

In this paper we present an error recovery scheme
which is based on LR parsing [1, 9]. The mechanism is
driven by information which is directly and automati-
cally obtainable from the information that is already
present in an LR parser. The approach is motivated by
the previous work of Levy [12] and of Graham and
Rhodes [4, 5, 15].

2. Relation to Previous Work

Surprisingly little work has been done on automatic
error recovery. The first attempt was by Irons in 1963
[6]. Subsequent results have been obtained by others [11,
10, 12, 7, 14, 17, 4, 5, 15]. Of these, only [7, 10, 14, 17]
and [4, 5, 15] involved implementations. Detailed surveys
may be found in [10] and [15].

Our work was motivated by that of Graham and
Rhodes, and the present paper deals with the extension
of their technique to LR parsers. The main contribution
of Graham and Rhodes lies in the development and
implementation of a scheme which combines the sim-
plicity of [11] with the powerful correction ability of
[12]. The methods of both [11] and [4, 5, 15] are based
on the observation that once an error is detected, it is
possible to continue parsing in the vicinity of the error,
thus “condensing” contextual information which aids in
the subsequent correction attempt. The condensation
phase of the Graham-Rhodes method consists of a
“backward move” in which as many reductions as pos-
sible are made on the top elements of the parsing stack,
and a “forward move” in which the input just beyond
the errdr point is parsed. Graham and Rhodes were able
to implement their method using a simple precedence
parsing scheme [18]. With such a parsing method, the
correction phase is greatly simplified, and amounts to
little more than matching the right-parts of the produc-
tion rules against one of three patterns.

Our attempts to directly apply the Graham-Rhodes
method to LR parsers met with some problems in the
correction phase. In particular, the left end of the patterns
against which the right-parts of production rules are
matched, are clearly delineated in the simple precedence
case by the simple precedence relations, whereas no such
delineation is present in the LR case. Moreover, unlike
the simple precedence grammars, LR grammars need
not be uniquely invertible, thus allowing that more than
one production rule may match the condensed stack.

Communications June 1978
of Volume 21
the ACM Number 6

There are even subtler problems with the LR case,
including the possibility that one right-part is a prefix or
a suffix of another, and that some incorrect reductions
might have been previously performed. These and other
difficulties, together with the observation that the stacked
states of an LR parser contain more information about
the input than simply the symbols on which they were
entered, led us to abandon the pattern matching ap-
proach. Instead, our method attempts to use the infor-
mation contained in the states to directly construct a
parse whose sequence of states is “continuous” across
the error point.

There is yet another aspect of our method which
differs significantly from that of Graham and Rhodes.
As will become evident, the extension to LR parsing
introduces a great deal of activity on the parsing stack.
We must often “backup” the parse, thus retrieving pre-
vious, uncondensed stack configurations. This could be
accomplished by either maintaining a complete history
of the parse or keeping on hand the tokenized input
string, from which previous parse configurations may be
reconstructed. We have chosen the latter approach aug-
mented by pointers from the parsing stack to the corre-
sponding portions of the input string. This approach is
suggested by Graham and Rhodes, although the pointers
are needed only for computational efficiency.

3. Definitions and Notations

We shall be concerned with the basic activities of an
“LR parser,” [1, 9] which is a particular style of the so-
called “shift-reduce parser” [1, 2]. Informally, such an
LR parser consists of some finite set of stares, Q, together
with two finite sets of symbols, the vocabulary of nonter-
minal symbols, Vy, and the vocabulary of terminal sym-
bols, V1. Elements of Q will be denoted by ¢, ¢;, p, or p;
subsets of Q by script letters; elements of Vy by A, or as
(text); elements of ¥ = V7 U Vy by X;; elements’ of V*
by Greek letters; elements of V7 by anything other than
the above. As the parser proceeds, it “reads” the input
(which is a string of terminal symbols) symbol by symbol
(shifts), and performs certain transformations (reduc-
tions) on the symbols that have been read so far. We use
a “cursor” (1) to indicate the present position of the
parser’s “read head” and given that the parser is in some
state, g, we may schematically represent the configuration
of the parser as

X1 X, X541 -)(_,'4.1 XbXp+1 ... (1)

q

where X1 ... X;X;41 ... X+ represents the transformed
input x; ... Xx-1, and xgXz+1 ... is the input that has not
yet been read. We may omit the 1 in cases where it is
not important.

' ¥* denotes the set of all strings formed by concatenating symbols
of ¥, including the empty string which we denote by A.

460

A shift move specifies that the parser, when in a
configuration like (1), may shift the cursor past x; and
move to a new state, p. The new state, p, is a function of

both g and xs; schematically we shall write ¢ X, p, or,
using (1),

X] . Xij+1 oae 1Yj+l Xk XB4l cee

q9—=>p
For technical reasons, we shall extend the shift move to
permit shifts on nonterminal symbols as well. Moreover,

we shall write p, — p, if either @ = A and py = p,, or
a=XiXz ... Xn-1 and
X;
pi—pixn for i=12,..,n—-1
A reduce move specifies that the parser, when in a
configuration like (1), may replace the symbols Xj,; ...

X+ by a single nonterminal symbol, 4.1, and may move
to a new state, p:

X .. X,-A,-+1T

XpXE4]1 oo »

p

The new state, p, is precisely that state at which the parser
arrives by starting in its initial state, go, and performing
shifts on Xi .. X;d;11.2 We say that the parser has
performed the reduction®

Aj+1 i= Xj+1 . Xj+[.

An LR parser is a shift-reduce parser, as described
above, for which all “conflicts” in choosing which move
to make are resolvable by “looking ahead” some fixed
number of symbols in the input. For languages of prac-
tical interest, this look-ahead can usually be limited to
one symbol. Thus, with the configuration (1), the parser
need look only at its present state, ¢, and its incoming
input symbol, x;, in order to uniquely determine its next
move (either a shift on xx, or one of possibly many
reductions). The details of just when and how such
parsers may be produced are nicely explained in [1}.
Further technical details may be found in {1, 2, 3, 9].

Given a state, g, we shall want to know precisely
which input symbols admit a shift move, and which
admit a reduce move. Thus, for each state, g, we define
S(g) and R(q) to be the sets of symbols which admit,

* In practice, the parser “remembers” the states go, ¢, ... which
arose in arriving at configuration (1):

X .. X; X X,}; XpXn+1 oo

qo——"’_’qj—_’qiﬂ————"q

and upon performing the reduction, the parser can resume in state g,
from the configuration

X /‘:ll Ajr1XEXR+1 ..
go————>¢g,

% Such a reduction corresponds exactly to a production rule of the
formal grammar which defines the language in question, and which
gives rise to the LR parser itself. We ignore the technical extension
which permits so-called A-rules, 4 = A.

Communications June 1978
of Volume 21
the ACM Number 6

respectively, the shift moves and the reduce moves for
state q.

Finally, we must introduce the notion of “ancestral”
states. In the case of a reduction as detailed above, where
the parser was in state ¢ before the reduction and in state
p afterwards, we say that g is an ancestor of p. Moreover,
we wish that all of ¢’s ancestors be considered ancestors
of p, and that p be considered its own ancestor as well.
Likewise, we say that p is a descendent of each of its
ancestors. For each state ¢ € Q, we compute its set of
ancestors (descendents) and denote that set by (q)

(2(9)).

4. Overview of the Error Recovery Scheme

An LR parser proceeds from configuration to config-
uration by performing shifts and reductions while alter-
ing its state. An error is detected in the configuration

a XXz ... (1)

T
q

whenever there are no moves permitted at that point,
i.e., whenever x; admits neither a shift nor a reduce
move for state ¢ (x; & S(q) U R(q)). It is at this point
that the Error Recovery Scheme is invoked. The Error
Recovery Scheme is provided with a copy of the config-
uration (1) and will return with either an indication of
failure or a modified configuration® obtained from (1)
by inserting and deleting some number of terminal sym-
bols and partially reparsing the altered portions. In
addition, the total cost of the insertions and deletions is
returned. In case the Error Recovery Scheme fails to
repair the error, then it is presumed that x; is a spurious
symbol. The action then taken is to delete x; and rein-
voke the Error Recovery Scheme.

The Error Recovery Scheme consists of two phases:
the Condensation Phase and the Correction Phase. The
Condensation Phase is identical in spirit to that of the
precedence parser, viz. we simply continue parsing from
the error point until either 1) a second error is encoun-
tered, or 2) the parser attempts to make a reduction
which extends past the error point on the stack. (We call
this “reducing over the error point.”) There are usually
many ways of condensing the configuration (1), and we
must consider all of them. Encountering a second error
indicates that either 1) there are truly two errors in the
vicinity, or 2) the attempted condensation is not the
correct choice. The only time that we accept the possi-
bility of a second error is when all attempted condensa-
tions result in error, and in such a situation, the Error
Recovery Scheme is recursively reinvoked in an attempt
to independently repair and the second error. However,

4 Depending upon the kind of LR parser being used, the new
configuration may or may not be suitable for immediate resumption of
normal parsing.

461

if any condensation results in an attempt to reduce over
the error point, then the corresponding configuration,
termed a correction candidate, is passed on to the Cor-
rection Phase.

In the Correction Phase, we have a sequence of states
which lead from the initial state up to the error point as
well as a sequence of states resulting from the Conden-
sation Phase which lead beyond the error point. We
attempt to link the two together first by inserting a
terminal symbol. If that fails, then we attempt to backup
the error point essentially by conceding that just prior to
the error point some of the parser’s actions might have
been incorrect. Little by little we force the parse to
retreat, thus freeing symbols for consumption by an
extension of the sequence of Condensation Phase states.
After each retreat, we again attempt to link the two
sequences together by inserting a terminal symbol. If, at
any time after a retreat of the parse, the sequence of the
Condensation Phase states cannot be back-extended to
include the freed symbol, then that symbol is deleted.
Failure occurs if either the parse retreats to the initial
state or excessive deletion occurs. We present the Con-
densation Phase as developing the correction candidates
in parallel and subsequently passing them on to the
Correction Phase in parallel. In practice, however, this
is done serially.

5. The Error Recovery Scheme

The Error Recovery Scheme is called whenever the
parser, having arrived at the state ¢ with « as the stack
configuration, finds an error with x;xz ... as input:

o ?
« ! X1X2

q 1
where x1 € S(q) U R(q)

5.1 Condensation Phase

Given the error configuration (1), we perform the
following.

CD1. Compute the set of states which may shift on
X1.

Z = {p € Q|x € S(p)}
CD2. For each p € ¥ continue the parse:

a, ‘7 X1 X2,
——~q p——p

For each p € &, step CD2 terminates in one of two ways.
Case 1. An attempt is made to reduce over the error
point, thus yielding a configuration

a, 7 B,
g p— (2)
which is termed a “correction candidate.”

Case 2. Another error occurs, thus yielding a config-
uration.

Communications June 1978
of Volume 21
the ACM Number 6

‘a—"q?pﬁ'pn-l?x" (2)
which is termed a “holding candidate.”

The Error Recovery Scheme continues with the Cor-
rection Phase for each of the correction candidates. If
the Correction Phase succeeds in repairing any correction
candidate(s), then the Error Recovery Scheme chooses
the one with least cost and fewest exits. It is only if the
Correction Phase fails to repair any of the correction
candidates that the holding candidates are revived. For
each holding candidate, the Error Recovery Scheme is
recursively reinvoked in an attempt to independently
repair the presumed second error which has been en-
countered.

5.2 Correction Phase

Each correction candidate (2) found in the Conden-
sation Phase is passed on to the Correction Phase which
attempts to break the ?-barrier by searching for some

terminal symbol, x, for which ¢ = p. If such an x is
found, then the insertion of x in place of ? apparently
provides a correction.

More generally, the correction candidate will take the
form®

W, X7 B
g Seg P (3)

where 2 is a set of states, called rightstates. Initially, &
contains only p as in (2), but as backup occurs, Z will be
expanded. Moreover, we shall want to find more than

simply all x € Vr for which ¢ —> 2. For it might be
that a reduction of some suffix of a’X had been sup-
pressed because the incoming input symbol (the first
terminal symbol derivable from B) did not admit the
reduction. However, if some x will permit the reduc-
tion, its insertion might very well provide the needed
repair. The repaired configuration after the reduction(s)

(of some suffix of o’X to, say, a”) would be 2, q”
* o L Clearly, we determine x by demanding not
X X
merely ¢ — 2, but rather ¢” — 2 or, more generally,
X
2(q) — 2.

Similarly, if the insertion of some x permits the
. X
reduction of some suffix of a’Xx, we have notg — &

but g X (P). Recalling that each state is an ancestor
as well as a descendent of itself, we have the following:
given the correction candidate (3) and the repair cost
accumulated thus far (COST).

CRI. Find all x € Vr for which D(g) —L(P).
For each such x, return «’XxB .. as a repair with
associated cost, (COST + insert cost of x).

If no insertion repair is found, then we attempt to backup
the ?-barrier. It is clear how the parse retreats from g to

. Z
‘Let 2C Q. PCQ, ZEV.By2—— P, we meanq—Ee P
for some ¢ € 2, p € 2. In addition we define #(#) = U A(p).
pPES

462

¢, but a number of cases arise in attempting to backup
the rightstates. In the first case, we attempt to backup &
over X.

CR2. Compute Z' = {p € Qlp ——A(P)}. If P #
®, then repeat the Correction Phase, beginning at CR1,
using the configuration
Ry - (3)
instead of (3).

No additional cost is incurred by such a backup.

If, however, ' = @, i.e., none of the rightstates can
backup over X, then we must somehow eliminate X; the
method depends on whether X is a terminal or a nonter-
minal symbol.

CR3. If X € Vr, then delete X, adding to COST the
deletion cost of X. We then have a configuration
e tp L (3")

CR3.1If 9(q) N P # ®, then return (3”) as a repair
with associated cost, COST.

CR3.2 If 9(q) N # = @, then repeat the Correction
Phase beginning at CR1, using the configuration (3”)
instead of (3).

CRA4. If X € Vy, then X resulted from the reduction
of some portion of input, say y1 ... Ym—1Vm. First reparse
Y1 . Ym—1Ym, Stopping just prior to the reduction of ... ym,
yielding the new configuration

o, q o, q Ym q”’?,@L

(3/")
Then repeat the Correction Phase, beginning at CRI,
using the configuration (3”) instead of (3).

6. Implementation and Examples

The Error Recovery Scheme was implemented with
an LR(1) parser for a small language whose partial
syntax, G1, is given in Appendix A. The parser has 356
states. The sample programs were all run with a constant
cost of 2 for the insertion or deletion of any terminal
symbol. The threshold for insertions and deletions was
set to 5.

In the remainder of this section, we briefly summarize
some examples. The examples are illustrative of the
behavior of the Error Recovery Scheme and demonstrate
its powerful correction ability. We discuss the examples
further in the succeeding section. Additional examples
and details may be found in [12].

Example 1. The program
... READ 4 B[20] WRITE 4; GOTO ...
is indicated in the configuration.
... READ (input-list) (identifier) [{expression)]
? WRITE 4; GOTO ...

Communications June 1978
of Volume 21
the ACM Number 6

The Condensation Phase produces the correction can-
didate

... READ (input-list) (identifier)[(expression)] ()
? (statement); GOTO ...

on account of the attempted reductions

(statement) ::= (identifier):(statement)
and
(statement-list) 1= (statement-list) (statement);

In the first case, the Correction Phase proceeds: CR1,
CR2, CR3 (delete], COST = 2), CR3.2, CR1, CR2, CR4
(expand (expression) to 20), CR1, CR2, CR3 (delete 20,
COST = 4), CR3.2, CR1, CR2, CR3 (delete [, COST =
6), resulting in failure due to excessive deletion. In the
second case, the Correction Phase proceeds CR1 (insert
;» COST = 2) providing the repaired configuration

... READ (input-list) (identifier)[{expression)];
(statement); GOTO ...

Example 2. The program segment
.. X:= Y THEN GOTO L ELSE Z := |; GOTO ...

is indicated in the configuration

... {statement-list) (leftpart) (identifier)
? THEN GOTO L ELSE Z = I; GOTO ...

The Condensation Phase develops the correction candi-
date

... {statement-list) (leftpart) (identifier)

? THEN (statement) ELSE (statement); GOTO ...

on account of the attempted reduction

(statement) = IF (boolean-expr)
-THEN (statement) ELSE (statement)

The Correction Phase proceeds: CR1, CR2 (backup over
(identifier)), CR1, CR2, CR4 (expand (leftpart) to
(identifier) :=), CR1, CR2 (backup over =), CR1, CR2,
CR3 (delete :;, COST = 2), CR3.2, CRI, CR2 (backup
over (identifier)), CR1 (insert IF, COST = 4) providing
the repaired configuration

... {statement-list) I1F (identifier)
= (identifier) THEN (statement) ELSE (statement); GOTO ...
Example 3. The program segment
..BEGIN X=7Y;, Y =2, WRITE X ¥;.
is indicated in the configuration
... (statement-list) BEGIN (statement-list) (statement); ?.
The Condensation Phase attempts the reduction
(program) ::= (declaration-list) (statement-list}).

yielding a correction candidate. The Correction Phase
proceeds: CR1 (the insertion of END is insufficient, since
the pair END; is needed), CR2 (backup over ;), CR1,
CR2 (backup over (statement)), CR1, CR2 (backup

463

over (statement-list)), CR1, CR2, CR3 (delete BEGIN,
COST = 2), CR3.1, providing the repaired configuration

... {statement-list) (statement-list) (statement);.

Example 4. The program segment
..X=Y:.A = B;GOTO ...
is indicated in the configuration

... {statement-list) (leftpart) (identifier):? 4 = B; GOTO ...

The Condensation Phase produces the correction can-
didate

... {statement-list) (leftpart) (identifier):? {assignment); GOTO ...
on account of the attempted reduction
(assignment) ::= (leftpart) (assignment)
as well as the correction candidate
... {statement-list) (leftpart) (identifier):? (statement); GOTO ...
on account of the attempted reductions
(statement) ::= IF (boolean-expr)
THEN (statement) ELSE (statement)
and
(statement) ::= (identifier):(statement)

In the first case, the Correction Phase proceeds: CR1
(insert =, COST = 2) providing the repaired configura-
tion
... (statement-list) (leftpart) (identifier) = (assignment); GOTO ...

In the second case, the Correction Phase quickly
exceeds the threshold cost with deletions.

In the third case, the Correction Phase proceeds:
CR1, CR2 (backup over :), CR1, CR2 (backup over
(identifier)), CR1l, CR2, CR4 (expand (leftpart) to
(identifier) =), CR1, CR2, CR3 (delete =, COST = 2),
CR3.1, providing the repaired configuration

... (statement-list) (identifier):(identifier):(statement); GOTO ...

Example 5. The program segment
~READA X =Y ..
is indicated in the configuration

... {statement-list) READ (input-list) (identifier) ? = Y ...

The Condensation Phase considers this a correction can-
didate on account of the attempted reductions

(leftpart) ::= (identifier) =
and
(leftpart) ::= (subscripted-var) =

The second alternative quickly dies out, but the first
proceeds: CR1, CR2 (backup over (identifier)), CR1
(insert ;, COST = 2) providing the repaired configuration

... (statement-list) READ ({input-list); (identifier) = Y ...

Communications June 1978
of Volume 21
the ACM Number 6

7. Discussion

The Error Recovery Scheme has been presented in a
generalized form for the sake of notational clarity, with
little attention paid to details of the space and time
required. But, with so much condensation and reparsing
indicated, it is natural to wonder whether the scheme
requires, for example, additional pushdown stacks, ad-
ditional copies of the remaining input, or additional
copies of the existing stack. It is clear that since the
Correction Phase, given (2), may destroy a,° it will be
necessary to save a copy of a for subsequent Correction
Phase attempts. (Note that « is the same for all Correc-
tion Candidates.) All we need do to provide such a
backup is duplicate « on the parsing stack. Next, we
notice that it is not really necessary to pass the entire
correction candidate (2) on to the Correction Phase, but

only ——a‘—>q ? p. Similarly, the only identification
needed for holding candidate (2) is p, from which (2)
can be reconstructed, if needed. This results in some
duplicate parsing in case it becomes necessary to revive
the holding candidates, but the hope is that such revival
will be unnecessary. These observations suggest that the
strategy should be to continue each of the indicated
parses in turn, and record not the resulting configurations
(2) or (2), but merely which p € ¥ led to correction
candidates and which led to holding candidates. The
parsing can be done using the existing stack, and no
extra copies of the remaining input are needed. The
resulting recording of each p € % requires slight addi-
tional space (which can be sharply bounded by a constant
function of the LR parser). We have found it useful to
prioritize the correction candidates based on the number
of terminal symbols consumed. The expectation is that
the parse which successfully consumes many symbols
before becoming a correction candidate is likely to pro-
vide a low-cost repair, thus bounding the cost of subse-
quent repair attempts. In the same way, we prioritize the
holding candidates, expecting that the holding candi-
dates whose second errors occur very close to the first
are probably the result of incorrect condensation at-
tempts and should be the last ones considered as appar-
ent multiple error configurations.

An interesting part of the algorithm is the expansion
and reparsing that occurs in step CR4. A natural question
is why stop the reparse just prior to reducing the terminal
symbol yn., rather than just prior to the reduction to X.
The reason is that if X were expanded to a string which
ended in a nonterminal symbol, ¥, it is possible that
backup across Y could not be accomplished, and that
CR4 would then find it necessary to expand Y. This
repeated expansion of the rightmost nonterminal would
continue until either a nonterminal is obtained which
admits backup, or the final nonterminal is expanded to
... ym (yielding exactly the configuration (3”) of CR4).

S We remind the reader that in practice the stack does not really

. . o
contain a, but the sequence of states go, ... , ¢ for which go—— g.

464

We make the following observations. If there is some
intermediate string, y, between X and a”yn. (which of
necessity ends in a nonterminal) which admits backup,
then the string a”y,, will also admit backup. Since a”ym
may be longer than y, backup through y may proceed
faster than backup through a”y,. If it were possible to
directly expand X by one step, then the alternate ap-
proach would indeed be quite attractive. However, there
may be many choices for expanding X, and although
examination of y; ... y» might narrow the possibilities,’
we must generally start with y; ... y» and work backwards
to X. The disadvantage of the approach is that if y is
derived from X in k steps, then the steps “CR1, CR2,
CR4 (expand one step by reparsing)” are repeated k
times before y is obtained. Moreover, if the correct repair
involves the deletion of y., then clearly much time is
wasted in examining the strings at each step from X to
o”ym. These problems are, of course, aggravated in the
case of an SLR parser, in which many incorrect reduc-
tions may have to be undone.

Although our technique thus far appears promising,
there still remain a number of questions to be answered.
For example, it is clear that in step CR1, locating x € Vr

for which 2(q) SN/ (#) can be implemented (au-
tomatically) by expanding the so-called GOTO table of
an LR parser. But the resulting table is quite large, and
we wonder whether it can be compressed using standard
techniques. We suspect that Joliat’s technique [8] will
yield good results.

Examination of Example 4 from the previous section
provides another interesting question. Should the re-
paired program read

. X=Y=A4=B,GOTO ..

or
.. X:Y:A = B, GOTO ...?

With the given insertion/deletion costs, each repair has
COST = 2. The example indicates that semantic infor-
mation can be usefully employed in choosing the repair.
For example, if either X or Y were “declared variables,”
then the first repair might have been chosen. However,
if either X or Y had previously appeared in a GOTO
statement, then the second repair would be correct.

Example 5 raises an interesting question concerning
when the Error Recovery Scheme should be halted. In
the example, the scheme halts after having provided one
correction:

. READA; X=7Y ..

However, were it allowed to search for another solution,
it would proceed: CR1, CR2 (backup over (identifier)),
CR1, and after presenting the above solution, continue:
CR4 (expand (input-list) to A), CR1 (insert [, providing
the repaired configuration

... (statement-list) READ A[X =Y ...

7 For example, if the grammar possessed an LL-like property.

Communications June 1978
of Volume 21
the ACM Number 6

Clearly, if the next input symbol is], this second repair
is correct, whereas the first is not. It is interesting to
follow the actions of the Error Recovery Scheme when
the wrong repair is initially chosen. In one case, the
Error Recovery Scheme retreats and undoes its wrong
repair; in the other, it attempts to coverup its first error
by making a second wrong repair. This coverup effect
can be elided in a very interesting way. We can simply
distinguish between programmer-supplied terminal sym-
bols and Error Recovery Scheme-supplied terminal sym-
bols.

Whereas the deletion costs for the former are positive,
those for the latter would be negative, i.e., the scheme
would encourage deletion of previously inserted symbols.
We do not know whether the coverup effect is serious
enough or widespread enough to justify such an ap-
proach. Note that in the present example, choice of the
first repair may lead to coverup, whereas choice of the
second repair will never lead to coverup. Thus, the
potential coverup can be avoided in this case by assigning
to [an insertion cost that is lower than that for ;. The
determination of insertion and deletion costs is some-
times aided by considerations such as avoiding coverup.
But there remains the more general problem of devel-
oping reliable guidelines for determining insertion and
deletion costs.

Finally, we have noted that the repaired configura-
tion may not be suitable for immediate resumption of
normal parsing. Indeed, the resulting configuration is
almost never a so-called canonical sentential form (ob-
tainable in a strictly left-to-right parse). However, it is
often a noncanonical sentential form. In such cases, the
use of noncanonical parsing [16] would permit immedi-
ate resumption of normal operation. There are, however,
cases in which the repaired configuration is not a senten-
tial form at all (as ... (statement-list) (statement-list)
(statement);. of Example 3). We are attempting to de-
velop techniques for characterizing such forms, and hope
to report on those developments soon.

Appendix A: A Grammar, G1, for a minilanguage
(program) = (declaration-list) (statement-list).
(declaration-list) = (identifier)
== (identifier)[(digits]
= (declaration-list) (identifier)
== (declaration-list) (identifier) [(digits)]
(statement);
(statement-list) (statement);
GOTO (identifier)
== READ (input-list)
= WRITE (output-list)
i=IF (boolean-expr) THEN (statement)
ELSE (statement)
= (identifier):(statement)
= BEGIN (statement-list) END

(statement-list)

(statement)

= (assignment)
(input-list) ;= (variable)

:= (input-list) (variable)
(output-list) ::= (variable)

= (character)

(output-list) (variable)
== (output-list) (character)

465

(boolean-expr)
(relational-op)

(expression) (relational-op) (expression)
<

(assignment)

I

(left-part) (assignment)
= (left-part) (expression)
::= (identifier) =
(subscripted-var) =
(identifier){{expression)}]
u= (identifier)[(assignment)]
= (identifier)

1= (subscripted-var)

(left-part)

(subscripted-var)

(variable)

Acknowledgments. We are grateful to the referees for
their helpful comments.

Received October, 1976; revised June, 1977

References

1. Aho, AV, and Johnson, S.C. LR parsing. Computing Surveys 6,
2 (June 1974), 99-124.

2. Aho, AV, and Ullman, J.D. The Theory of Parsing Translation
and Compiling, Vol. 1: Parsing. Prentice-Hall, Englewood Cliffs, N.J.,
1972.

3. DeRemer, F.L. Simple LR(k) Grammars. Comm. ACM 14,7
(July 1971), 453-460.

4. Graham, S.L., and Rhodes, S.P. Practical syntactic error recovery
in compilers. Conf. Rec. ACM Symp. on the Principles of
Programming Languages, Boston, Mass., Oct. 1973, pp. 53-58.

5. Graham, S.L., and Rhodes, S.P. Practical syntactic error
recovery. Comm. ACM 18, (Nov. 1975), 639-650.

6. Irons, E.T. An error-correcting parse algorithm. Comm. ACM 6,
11 (Nov. 1963), 660-673.

7. James, L.R. A syntax directed error recovery method. Master’s
Th., Tech. Rep. CSRG-13, Comptr. Syst. Res. Group, U. of Toronto,
Toronto, Ont., Canada, May 1972,

8. Joliat, M.L. On the reduced matrix representation of LR(k)
parser tables. Ph.D. Th. Tech. Rep. CSRG-28, Comptr. Syst. Res.
Group, U. of Toronto, Toronto, Ont., Canada, Oct. 1973.

9. Knuth, D.E. On the translation of languages from left to right.
Inform. and Control 8 (1965), 607-639.

10. LaFrance, J.E. Syntax-directed error recovery for compilers.
Ph.D. Th. ILLTAC IV Doc. No. 249, Dept. Comptr. Sci., U. of
Illinois, Urbana, Ill., 1971.

11. Leinius, R. Error detection and recovery for syntax directed
compiler systems. Ph.D. Th., Comptr. Sci. Dept., U. of Wisconsin,
Madison, Wis., 1970.

12. Levy, J.P. Automatic correction of syntax errors in programming
languages. Ph.D. Th., Tech. Rep. TR71-116, Comptr. Sci. Dept.,
Cornell U,, Ithaca, N.Y., 1971.

13. Modry, J.A. Syntactic error recovery for LR parsers. Master’s Th.
UIUCDCS-R-76-388, Dept. Comptr. Sci., U. of Illinois, Urbana, IlL.,
1976.

14. Partridge, D. Heuristic methods in the analysis of program
statements. Ph.D. Th., Dept. of Comptng. and Control, U. of
London, London, England, Aug. 1972.

15. Rhodes S.P. Practical syntactic error recovery for programming
languages. Ph.D. Th,, Tech. Rep. No. 15, Comptr. Sci. Dept., U. of
California, Berkeley, Calif., June 1973,

16. Szymanski, T.G., and Williams, J.H. Non-canonical parsing.
Proc. 14th Annual Symp. on Switching and Automata Theory, Oct.
1973, pp. 122-129.

17. Tindall, M.H. An Interactive Compile-Time Diagnostic System,
Ph.D. Thesis, UTUCDCS-R-75-748, Dept. Comptr. Sci., U. of
Illinois, Urbana, Ill., Oct. 1975.

18. Wirth, N., and Weber, H. EULER, A generalization of ALGOL,
and its formal definition, Pt I., Comm. ACM 9, 1 (Jan. 1966), 13-23;
Pt 1L, 9, 2 (Feb. 1966), 89-99.

Communications June 1978
of Volume 21
the ACM Number 6

