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In this paper we present a scheme for detecting and 
recovering from syntax errors in programs. The 
scheme, which is based on LR parsing, is driven by 
information which is directly and automatically 
obtainable from the information that is already present 
in an LR parser. The approach, which is patterned after 
that of Levy and Graham and Rhodes, appears to 
provide error recovery which is both simple and 
powerful. 
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Introduction 

There are few things more frustrating than spending 
a great deal of  time debugging syntax errors in a pro- 
gram. Often, an error causes a compiler to make an 
incorrect assumption which leads to a confusing error 
message as well as to the generation of  many  additional 
error messages. The final recovery often involves the 
skipping of  large portions of  the program. This means 
that any additional errors that were skipped over will go 
undetected until future runs of  the program. 
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A good syntactic error recovery method should detect 
and give an accurate and meaningful error message for 
each error in a program. This means completely recover- 
ing, and resuming the parse at the point of  each error, so 
as not to miss detecting any subsequent errors. The 
advantages of  a compiler having a good error recovery 
method are obvious. The disadvantages are that it may 
be either very costly to develop or very inefficient to use. 
An automatically generated error recovery method solves 
the first o f  these two problems. 

In this paper  we present an error recovery scheme 
which is based on LR parsing [1, 9]. The mechanism is 
driven by information which is directly and automati-  
cally obtainable from the information that is already 
present in an LR parser. The approach is motivated by 
the previous work of  Levy [12] and of  Grah am and 
Rhodes [4, 5, 15]. 

2. Relation to Previous Work 

Surprisingly little work has been done on automatic 
error recovery. The first at tempt was by Irons in 1963 
[6]. Subsequent results have been obtained by others [11, 
10, 12, 7, 14, 17, 4, 5, 15]. Of  these, only [7, 10, 14, 17] 
and [4, 5, 15] involved implementations. Detailed surveys 
may be found in [10] and [151. 

Our work was motivated by that of  Gra h am and 
Rhodes, and the present paper  deals with the extension 
of  their technique to LR parsers. The main contribution 
of  Graham and Rhodes lies in the development and 
implementation of  a scheme which combines the sim- 
plicity of  [11] with the powerful correction ability of  
[12]. The methods of  both [11] and [4, 5, 15] are based 
on the observation that once an error is detected, it is 
possible to continue parsing in the vicinity of  the error, 
thus "condensing" contextual information which aids in 
the subsequent correction attempt. The condensation 
phase of  the Graham-Rhodes  method consists of  a 
"backward move"  in which as many  reductions as pos- 
sible are made on the top elements of  the parsing stack, 
and a "forward move"  in which the input just beyond 
the error point is parsed. G r a h a m  and Rhodes were able 
to implement their method using a simple precedence 
parsing scheme [18]. With such a parsing method, the 
correction phase is greatly simplified, and amounts to 
little more than matching the right-parts of  the produc- 
tion rules against one of  three patterns. 

Our attempts to directly apply the Graham-Rhodes  
method to LR parsers met with some problems in the 
correction phase. In particular, the left end of  the patterns 
against which the right-parts o f  production rules are 
matched, are clearly delineated in the simple precedence 
case by the simple precedence relations, whereas no such 
delineation is present in the LR case. Moreover, unlike 
the simple precedence grammars,  LR grammars  need 
not be uniquely invertible, thus allowing that more than 
one production rule may match the condensed stack. 
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There are even subtler problems with the LR case, 
including the possibility that one right-part is a prefix or 
a suffix of another, and that some incorrect reductions 
might have been previously performed. These and other 
difficulties, together with the observation that the stacked 
states of an LR parser contain more information about 
the input than simply the symbols on which they were 
entered, led us to abandon the pattern matching ap- 
proach, instead, our method attempts to use the infor- 
mation contained in the states to directly construct a 
parse whose sequence of  states is "continuous" across 
the error point. 

There is yet another aspect of our method which 
differs significantly from that of  Graham and Rhodes. 
As will become evident, the extension to LR parsing 
introduces a great deal of activity on the parsing stack. 
We must often "backup" the parse, thus retrieving pre- 
viou s, uncondensed stack configurations. This could be 
accomplished by either maintaining a complete history 
of the parse or keeping on hand the tokenized input 
string, from which previous parse configurations may be 
reconstructed. We have chosen the latter approach aug- 
mented by pointers from the parsing stack to the corre- 
sponding portions of the input string. This approach is 
suggested by Graham and Rhodes, although the pointers 
are needed only for computational efficiency. 

3. Def'mitions and Notat ions 

We shall be concerned with the basic activities of an 
" L R  parser,". [1, 9] which is a particular style of the so- 
called "shift-reduce parser" [1, 2]. Informally, such an 
LR parser consists of some finite set of states, Q, together 
with two t'mite sets of symbols, the vocabulary of nonter- 
minal  symbols,  VN, and the vocabulary of  terminal sym- 
bols, Vr. Elements of Q will be denoted by q, qi, p,  orpi; 
subsets of Q by script letters; elements of  VN by Ai or as 
(text); elements of V = VT U VN by Xi; elements ~ of V* 
by Greek letters; elements of Vr by anything other than 
the above. As the parser proceeds, it "reads" the input 
(which is a string of terminal symbols~ symbol by symbol 
(shifts), and performs certain transformations (reduc- 
tions) on the symbols that have been read so far. We use 
a "cursor" (T) to indicate the present position of  the 
parser's "read head" and given that the parser is in some 
state, q, we may schetnatically represent the configuration 
of the parser as 

X l  ... X j X j + l  ... X j + l  XkXk+l ... ( 1 ) 

q 

where X1 ... X/Xy+I ... Xj+t represents the transformed 
input Xl ... Xk-~, and XkXk+~ ... is the input that has not 
yet been read. We may omit the T in cases where it is 
not important. 

V* denotes the set o f  all s t r i n g s  formed by concatenating symbols 
of  V, including the empty string which we denote by A. 
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A shift move specifies that the parser, when in a 
Configuration like (1), may shift the cursor past xk and 
move to a new state, p. The new state, p, is a function of 

x, 
both q and xk; schematically we shall write q - - -*p ,  or, 
using (1), 

X l  ...  X j X j + l  .. .  X j + l  x k  x k + l  . . . .  
q---> p 

For technical reasons, we shall extend the shift move to 
permit shifts on nonterminal symbols as well. Moreover, 

we shall write p~ -----p,, if  either a = A andpa = p , ,  or 
ot = )(1)(2 ... Xn-1 and 

xi 
pi-------- 'pi+l for i = 1, 2 . . . . .  n - 1. 

A reduce move specifies that t he  parser, when in a 
configuration like (1), may replace the symbols Xj+~ ... 
Xj+l by a single nonterminal symbol, Ay+l, and may move 
to a new state, p: 

X 1  ... X j A j + I  XkXh+I  . . . .  

P 

The new state, p ,  is precisely that state at which the parser 
arrives by starting in its initial state, q0, and performing 
shifts on )(1 ... X~Aj+~. 2 We say that the parser has 
performed the reduction 3 

A j+ l  :: = X j + l  " Xj+l .  

An LR parser is a shift'reduce parser, as described 
above, for which all "conflicts" in choosing which move 
to make are resolvable by "looking ahead" some fixed 
number of symbols in the input. For languages of  prac- 
tical interest, this look-ahead can usually be limited to 
one symbol. Thus, with the configuration (1), the parser 
need look only at its present state, q, and its incoming 
input symbol, xk, in order to uniquely determine its next 
move (either a shift on xk, or one of possibly many 
reductions). The details of just when and how such 
parsers may be produced are nicely explained in [1]. 
Further technical details may be found in [1, 2, 3, 9]. 

Given a state, q, we shall want to know precisely 
which input symbols admit a shift move, and which 
admit a reduce move. Thus, for each state, q, we define 
S ( q )  and R ( q )  to be the sets of symbols which admit, 

2 In practice, the parser "remembers" the states q0, q~ . . . .  which 
arose in arriving at configuration (i): 

x ,  ... x j  Xj+, ... X~+i ,  XkXh+l ... 

qo ~ qy • qj+l • q 

and upon performing the reduction, the parser can resume in state qj 
from the configuration 

X~ ... X.j Aj+iXhX~+j ... 

qo • q j  

3 Such a reduction corresponds exactly to a production rule of  the 
formal grammar which defines the language in question, and which 
gives rise to the LR parser itself. We ignore the technical extension 
which permits so-called A-rules, A :: ffi A. 
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respectively, the shift moves and the reduce moves for 
state q. 

Finally, we must introduce the notion of  "ancestral" 
states. In the case of a reduction as detailed above, where 
the parser was in state q before the reduction and in state 
p afterwards, we say that q is an ancestor ofp. Moreover, 
we wish that all of  q's ancestors be considered ancestors 
of  p, and that p be considered its own ancestor as welk 
Likewise, we say that p is a descendent of  each of  its 
ancestors. For each state q ~ Q, we compute its set of  
ancestors (descendents) and denote that set by d ( q )  
( ~ ( q ) ) .  

4. Overview of the Error Recovery Scheme 

An LR parser proceeds from configuration to config- 
uration by performing shifts and reductions while alter- 
ing its state. An error is detected in the configuration 

a xlx2 ... ( 1 ) 

q 

whenever there are no moves permitted at that point, 
i.e., whenever xl admits neither a shift nor a reduce 
move for state q (xl  EZ S (q )  IA R(q) ) .  It is at this point 
that the Error Recovery Scheme is invoked. The Error 
Recovery Scheme is provided with a copy of  the config- 
uration (1) and will return with either an indication of  
failure or a modified configuration 4 obtained from (1) 
by inserting and deleting some number of  terminal sym- 
bols and partially reparsing the altered portions. In 
addition, the total cost of  the insertions and deletions is 
returned. In case the Error Recovery Scheme fails to 
repair the error, then it is presumed that xl is a spurious 
symbol. The action then taken is to delete x~ and rein- 
voke the Error Recovery Scheme. 

The Error Recovery Scheme consists of  two phases: 
the Condensation Phase and the Correction Phase. The 
Condensation Phase is identical in spirit to that of  the 
precedence parser, viz. we simply continue parsing from 
the error point until either 1) a second error is encoun- 
tered, or 2) the parser attempts to make a reduction 
which extends past the error point on the stack. (We call 
this "reducing over the error point.") There are usually 
many ways of  condensing the configuration (1), and we 
must consider all of  them. Encountering a second error 
indicates that either 1) there are truly two errors in the 
vicinity, or 2) the attempted condensation is not the 
correct choice. The only time that we accept the possi- 
bility of  a second error is when all attempted condensa- 
tions result in error, and in such a situation, the Error 
Recovery Scheme is recursively reinvoked in an attempt 
to independently repair and the second error. However, 

4 Depending upon the kind of  LR parser being used, the new 
configuration may  or may  not be suitable for immediate resumption of  
normal  parsing. 

if  any condensation results in an attempt to reduce over 
the error point, then the corresponding configuration, 
termed a correction candidate, is passed on to the Cor- 
rection Phase. 

In the Correction Phase, we have a sequence of  states 
which lead from the initial state up to the error point as 
well as a sequence of  states resulting from the Conden- 
sation Phase which lead beyond the error point. We 
attempt to link the two together first by inserting a 
terminal symbol. If  that fails, then we attempt to backup 
the error point essentially by conceding that just prior to 
the error point some of  the parser's actions might have 
been incorrect. Little by little we force the parse to 
retreat, thus freeing symbols for consumption by an 
extension of  the sequence of  Condensation Phase states. 
After each retreat, we again attempt to link the two 
sequences together by inserting a terminal symbol. If, at 
any time after a retreat of  the parse, the sequence of  the 
Condensation Phase states cannot be back-extended to 
include the freed symbol, then that symbol is deleted. 
Failure occurs if either the parse retreats to the initial 
state or excessive deletion occurs. We present the Con- 
densation Phase as developing the correction candidates 
in parallel and subsequently passing them on to the 
Correction Phase in parallel. In practice, however, this 
is done serially. 

5. The Error Recovery Scheme 

The Error Recovery Scheme is called whenever the 
parser, having arrived at the state q with a as the stack 
configuration, finds an error with x~x2 ... as input: 

Or. ? X 1 X 2  .. .  
, q (1) 

where xl  f~ S (q)  U g ( q )  

5.1 Condensation Phase 
Given the error configuration (1), we perform the 

following. 
CD1. Compute the set of  states which may shift on 

Xl: 

6 e = {p E Q l x l  E S(p)} 

CD2. For eachp  ~ S ~ continue the parse: 

ft. ? Xl X2. ' q  p - - - "  pl ' . . .  

For  eachp E S a, step CD2 terminates in one of  two ways. 
Case 1. An attempt is made to reduce over the error 

point, thus yielding a configuration 

~ ' , q ?  p P ' ,  (2) 

which is termed a "correction candidate." 

Case 2. Another error occurs, thus yielding a config- 
uration. 
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~. /~. ? x . . . .  ,q?p----- 'p , - i  (2') 

which is termed a "holding candidate." 
The Error Recovery Scheme continues with the Cor- 

rection Phase for each of  the correction candidates. If  
the Correction Phase succeeds in repairing any correction 
candidate(s), then the Error Recovery Scheme chooses 
the one with least cost and fewest exits. It is only if the 
Correction Phase fails to repair any of  the correction 
candidates that the holding candidates are revived. For 
each holding candidate, the Error Recovery Scheme is 
recursively reinvoked in an attempt to independently 
repair the presumed second error which has been en- 
countered. 

5.2 Correction Phase 
Each correction candidate (2) found in the Conden- 

sation Phase is passed on to the Correction Phase which 
attempts to break the ?-barrier by searching for some 

x 
terminal symbol, x, for which q ---*p. I f  such an x is 
found, then the insertion of  x in place of  ? apparently 
provides a correction. 

More generally, the correction candidate will take the 
form 5 

~'. x ? ~ / L  
,q '  q , . . .  (3) 

where ~ is a set of  states, called rightstates. Initially, 
contains on lyp  as in (2), but as backup occurs, ~ will be 
expanded. Moreover, we shall want to find more than 

x 
simply all x U Vr for which q , ~ .  For  it might be 
that a reduction of  some suffix of  a'X had been sup- 
pressed because the incoming input symbol (the first 
terminal symbol derivable from fl) did not admit the 
reduction. However, if some x will permit the reduc- 
tion, its insertion might very well provide the needed 
repair. The repaired configuration after the reduction(s) 

Ol tp. 
(of some suffix of  a'X to, say, a")  would be , q" 

x ~ /3., .... Clearly, we determine x by demanding not 

merely q x ,  ~ ,  but rather q" x ~ or, more generally, 
~ ( q )  x ~ .  

Similarly, if the insertion of  some x permits the 
x 

reduction of  some suffix of  a'Xx, we have not q , 
x 

but q , ~ ' ( ~ ) .  Recalling that each state is an ancestor 
as well as a descendent of  itself, we have the following: 
given the correction candidate (3) and the repair cost 
accumulated thus far (COST). 

x 
CRI.  Find all x E Vv for which ~ ( q )  ,~¢(~) .  

For  each such x, return a'Xxfl ... as a repair with 
associated cost, (COST + insert cost of  x). 
If  no insertion repair is found, then we attempt to backup 
the ?-barrier. It is clear how the parse retreats from q to 

Z Z 
' ~ L e t . ~ _  Q , ~ C Q ,  Z E  V. B y ~  , ~ , w e m e a n q  

for  some  q E .~.,p E .~. In a d d i t i o n  we  de f ine  d ( ~ )  = p~d(p). 
, p  

4 6 2  

q', but a number of  cases arise in attempting to backup 
the rightstates. In the first case, we attempt to backup 
over X: 

CR2. Compute ~ '  = {p E QIp x . d ( ~ ) ) .  I f ~ '  # 
~, then repeat the Correction Phase, beginning at CR 1, 
using the configuration 

,~' , q , ?  ~ '  x/3. )... (3') 

instead of  (3). 

No additional cost is incurred by such a backup. 
If, however, ~ '  = dp, i.e., none of  the rightstates can 

backup over X, then we must somehow eliminate X; the 
method depends on whether X is a terminal or a nonter- 
minal symbol. 

CR3. If  X E Vr, then delete X, adding to COST the 
deletion cost of  X. We then have a configuration 

~'. ~ t~. (3")  , q ' ~  ... 

CR3.1 If  ~ ( q )  O ~ # ~, then return (3") as a repair 
with associated cost, COST. 

CR3.2 If  9 ( q )  n ~ = ~, then repeat the Correction 
Phase beginning at CRI,  using the configuration (3") 
instead of  (3). 

CR4. I f  X E VN, then X resulted from the reduction 
of  some portion of  input, say yl ... y,,-lym. First reparse 
yl ... ym-lym, stopping just prior to the reduction of  ... ym, 
yielding the new configuration 

~'..q, a"..q,, ym.q,,,? ~ B..... ( 3 " )  

Then repeat the Correction Phase, beginning at CR1, 
using the configuration (3")  instead of  (3). 

6. Implementation and Examples 

The Error Recovery Scheme was implemented with 
an LR(I)  parser for a small language whose partial 
syntax, G 1, is given in Appendix A. The parser has 356 
states. The sample programs were all run with a constant 
cost of  2 for the insertion or deletion of  any terminal 
symbol. The threshold for insertions and deletions was 
set to 5. 

In the remainder of  this section, we briefly summarize 
some examples. The examples are illustrative of  the 
behavior of  the Error Recovery Scheme and demonstrate 
its powerful correction ability. We discuss the examples 
further in the succeeding section. Additional examples 
and details may be found in [12]. 

Example 1. The program 

... R E A D  A B[201 W R I T E  A; G O T O  ... 

is indicated in the configuration. 

... R E A D  ( inpu t - l i s t )  ( i d e n t i f i e r ) [ ( e x p r e s s i o n ) ]  

? W R I T E  A; G O T O  ... 
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The Condensation Phase produces the correction can- 
didate 

... R E A D  ( i n p u t - l i s t ) ( i d e n t i f i e r ) [ ( e x p r e s s i o n ) ]  
(1) 

? ( s t a t e m e n t ) ;  G O T O  ... 

on account of the attempted reductions 

( s t a t e m e n t )  : : =  ( i d e n t i f i e r ) : ( s t a t e m e n t )  

and 

( s t a t e m e n t - l i s t )  :: = ( s t a t e m e n t - l i s t )  ( s t a t e m e n t ) ;  

In the first case, the Correction Phase proceeds: CRI, 
CR2, CR3 (delete ], COST = 2), CR3.2, CRI,  CR2, CR4 
(expand (expression) to 20), CRI,  CR2, CR3 (delete 20, 
COST = 4), CR3.2, CR 1, CR2, CR3 (delete [, COST --- 
6), resulting in failure due to excessive deletion. In the 
second case, the Correction Phase proceeds CR 1 (insert 
;, COST = 2) providing the repaired configuration 

... R E A D  ( i n p u t - l i s t ) ( i d e n t i f i e r ) [ ( e x p r e s s i o n ) ] ;  

( s t a t e m e n t )  ; G O T O  ... 

Example 2. The program segment 

... X : =  Y T H E N  G O T O  L E L S E  Z : =  1; G O T O  ... 

is indicated in the configuration 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r )  

? T H E N  G O T O  L E L S E  Z := 1; G O T O  ... 

The Condensation Phase develops the correction candi- 
date 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r )  

? T H E N  ( s t a t e m e n t )  E L S E  ( s t a t e m e n t ) ;  G O T O  ... 

on account of the attempted reduction 

( s t a t e m e n t )  : :=  I F  ( b o o l e a n - e x p r )  

- T H E N  ( s t a t e m e n t )  E L S E  ( s t a t e m e n t )  

The Correction Phase proceeds: CRI, CR2 (backup over 
(identifier)), CR1, CR2, CR4 (expand (leftpart) to 
(identifier) :=), CR1, CR2 (backup over =), CRI,  CR2, 
CR3 (delete :, COST = 2), CR3.2, CRI,  CR2 (backup 
over (identifier)), CRI (insert IF, COST = 4) providing 
the repaired configuration 

... ( s t a t e m e n t - l i s t )  I F  ( i d e n t i f i e r )  

= ( i d e n t i f i e r )  T H E N  ( s t a t e m e n t )  E L S E  ( s t a t e m e n t ) ;  G O T O  ... 

Example 3. The program segment 

... B E G I N  X := Y; Y := Z ;  W R I T E  X Y;. 

is indicated in the configuration 

... ( s t a t e m e n t - l i s t )  B E G I N  ( s t a t e m e n t - l i s t ) ( s t a t e m e n t ) ;  ?. 

The Condensation Phase attempts the reduction 

( p r o g r a m )  : : =  ( d e c l a r a t i o n - l i s t ) ( s t a t e m e n t - l i s t ) .  

yielding a correction candidate. The Correction Phase 
proceeds: CR 1 (the insertion of END is insufficient, since 
the pair END; is needed), CR2 (backup over ;), CRI,  
CR2 (backup over (statement)), CRI,  CR2 (backup 

over (statement-list)), CRI,  CR2, CR3 (delete BEGIN, 
COST = 2), CR3. l, providing the repaired configuration 

... ( s t a t e m e n t - l i s t )  ( s t a t e m e n t - l i s t )  ( s t a t e m e n t )  ;. 

Example 4. The program segment 

... X := Y:A  := B; G O T O  ... 

is indicated in the configuration 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r ) : ?  .4 :=  B; G O T O  ... 

The Condensation Phase produces the correction can- 
didate 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r ) : ?  ( a s s i g n m e n t ) ;  G O T O  ... 

on account of the attempted reduction 

( a s s i g n m e n t )  : :=  ( l e f t p a r t ) ( a s s i g n m e n t )  

as well as the correction candidate 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r )  :? ( s t a t e m e n t ) ;  G O T O  ... 

on account of the attempted reductions 

( s t a t e m e n t )  : :=  I F  ( b o o l e a n - e x p r )  

T H E N  ( s t a t e m e n t )  E L S E  ( s t a t e m e n t )  

and 

( s t a t e m e n t )  : :=  ( i d e n t i f i e r ) : ( s t a t e m e n t )  

In the first case, the Correction Phase proceeds: CRI 
(insert =, COST = 2) providing the repaired configura- 
tion 

... ( s t a t e m e n t - l i s t )  ( l e f t p a r t )  ( i d e n t i f i e r )  := ( a s s i g n m e n t ) ;  G O T O  ... 

In the second case, the Correction Phase quickly 
exceeds the threshold cost with deletions. 

In the third case, the Correction Phase proceeds: 
CRI,  CR2 (backup over :), CRI, CR2 (backup over 
(identifier)), CRI,  CR2, CR4 (expand (leftpart) to 
(identifier) :=), CRI,  CR2, CR3 (delete =, COST = 2), 
CR3.1, providing the repaired configuration 

... ( s t a t e m e n t - l i s t )  ( i d e n t i f i e r )  : ( i d e n t i f i e r )  : ( s t a t e m e n t )  ; G O T O  ... 

Example 5. The program segment 

... R E A D  A X : =  Y. . .  

is indicated in the configuration 

... ( s t a t e m e n t - l i s t )  R E A D  ( i n p u t - l i s t ) ( i d e n t i f i e r )  ? .= Y ... 

The Condensation Phase considers this a correction can- 
didate on account of  the attempted reductions 

( l e f t p a r t )  : :=  ( i d e n t i f i e r )  := 

and 

( l e f t p a r t )  : :=  ( s u b s c r i p t e d - v a t )  := 

The second alternative quickly dies out, but the first 
proceeds: CRI,  CR2 (backup over (identifier)), CRI 
(insert ;, COST = 2) providing the repaired configuration 

... ( s t a t e m e n t - l i s t )  R E A D  ( i n p u t - l i s t )  ; ( i d e n t i f i e r )  ~ Y ... 
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7. Discussion 

The Error Recovery Scheme has been presented in a 
generalized form for the sake of notational clarity, with 
little attention paid to details of the space and time 
required. But, with so much condensation and reparsing 
indicated, it is natural to wonder whether the scheme 
requires, for example, additional pushdown stacks, ad- 
ditional copies of  the remaining input, or additional 
copies of the existing stack. It is clear that since the 
Correction Phase, given (2), may destroy a, 6 it will be 
necessary to save a copy of a for subsequent Correction 
Phase attempts. (Note that a is the same for all Correc- 
tion Candidates.) All we need do to provide such a 
backup is duplicate a on the parsing stack. Next, we 
notice that it is not really necessary to pass the entire 
correction candidate (2) on to the Correction Phase, but 

only ~* ? ,q  p. Similarly, the only identification 
needed for holding candidate (2') is p, from which (2') 
can be reconstructed, if needed. This results in some 
duplicate parsing in case it becomes necessary to revive 
the holding candidates, but the hope is that such revival 
will be unnecessary. These observations suggest that the 
strategy should be to continue each of the indicated 
parses in turn, and record not the resulting configurations 
(2) or (2'), but merely which p E S e led to correction 
candidates and which led to holding candidates. The 
parsing can be done using the existing stack, and no 
extra copies of  the remaining input are needed. The 
resulting recording of each p E S ~ requires slight addi- 
tional space (which can be sharply bounded by a constant 
function of  the LR parser). We have found it useful to 
prioritize the correction candidates based on the number 
of terminal symbols consumed. The expectation is that 
the parse which successfully consumes many symbols 
before becoming a correction candidate is likely to pro- 
vide a low-cost repair, thus bounding the cost of subse- 
quent repair attempts. In the same way, we prioritize the 
holding candidates, expecting that the holding candi- 
dates whose second errors occur very close to the first 
are probably the result of  incorrect condensation at- 
tempts and should be the last ones considered as appar- 
ent multiple error configurations. 

An interesting part of the algorithm is the expansion 
and reparsing that occurs in step CR4. A natural question 
is why stop the reparse just prior to reducing the terminal 
symbol ym, rather than just prior to the reduction to X. 
The reason is that if X were expanded to a string which 
ended in a nonterminal symbol, Y, it is possible that 
backup across Y could not be accomplished, and that 
CR4 would then find it necessary to expand Y. This 
repeated expansion of the rightmost nonterminal would 
continue until either a nonterminal is obtained which 
admits backup, or the final nonterminal is expanded to 
• ...ym (yielding exactly the configuration (3") of CR4). 

6 W e  r e m i n d  the r eader  tha t  in pract ice  the stack does not  really 

contain  a,  but  the sequence  o f  states qo, . . . ,  q for which  qo a , q. 
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We make the following observations. If  there is some 
intermediate string, y, between X and a"y,,, (which of 
necessity ends in a nonterminaI) which admits backup, 
then the string a"y,,, will also admit backup. Since a"ym 
may be longer than y, backup through 7 may proceed 
faster than backup through a"ym. If  it were possible to 
directly expand X by one step, then the alternate ap- 
proach would indeed be quite attractive. However, there 
may be many choices for expanding X, and although 
examination of yl ... ym might narrow the possibilities, 7 
we must generally start withy1 ... ym and work backwards 
to X. The disadvantage of the approach is that if 3' is 
derived from X in k steps, then the steps "CR1, CR2, 
CR4 (expand one step by reparsing)" are repeated k 
times before 3' is obtained. Moreover, if the correct repair 
involves the deletion of ym, then clearly much time is 
wasted in examining the strings at each step from X to 
a"ym. These problems are, of course, aggravated in the 
case of an SLR parser, in which many incorrect reduc- 
tions may have to be undone. 

Although our technique thus far appears promising, 
there still remain a number of  questions to be answered. 
For example, it is clear that in step CR 1, locating x E Vr 

x 
for which 2 ( q )  , ~¢(~)  can be implemented (au- 
tomatically) by expanding the so-called GOTO table of 
an LR parser. But the resulting table is quite large, and 
we wonder whether it can be compressed using standard 
techniques. We suspect that Joliat's technique [8] will 
yield good results. 

Examination of Example 4 from the previous section 
provides another interesting question. Should the re- 
paired program read 

... X := Y := A := B; G O T O  ... 

o r  

... X: Y:A := B; G O T O  ... ? 

With the given insertion/deletion costs, each repair has 
COST = 2. The example indicates that semantic infor- 
mation can be usefully employed in choosing the repair. 
For example, if either X or Y were "declared variables," 
then the first repair might have been chosen. However, 
if either X or Y had previously appeared in a GOTO 
statement, then the second repair would be correct. 

Example 5 raises an interesting question concerning 
when the Error Recovery Scheme should be halted. In 
the example, the scheme halts after having provided one 
correction: 

... R E A D  A; X : =  Y.. .  

However, were it allowed to search for another solution, 
it would proceed: CR1, CR2 (backup over (identifier)), 
CR1, and after presenting the above solution, continue: 
CR4 (expand (input-list) to A), CR 1 (insert [, providing 
the repaired configuration 

... ( s ta tement- l i s t )  R E A D  A [ X  := Y ... 

7 For  example ,  i f  the g r a m m a r  possessed an  LL-l ike  proper ty .  
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Clearly, if the next input symbol is ], this second repair 
is correct, whereas the first is not. It is interesting to 
follow the actions of the Error Recovery Scheme when 
the wrong repair is initially chosen. In one case, the 
Error Recovery Scheme retreats and undoes its wrong 
repair; in the other, it attempts to coverup its first error 
by making a second wrong repair. This coverup effect 
can be elided in a very interesting way. We can simply 
distinguish between programmer-supplied terminal sym- 
bols and Error Recovery Scheme-supplied terminal sym- 
bols. 

Whereas the deletion costs for the former are positive, 
those for the latter would be negative, i.e., the scheme 
would encourage deletion of  previously inserted symbols. 
We do not know whether the coverup effect is serious 
enough or widespread enough to justify such an ap- 
proach. Note that in the present example, choice of the 
first repair may lead to coverup, whereas choice of the 
second repair will never lead to coverup. Thus, the 
potential coverup can be avoided in this case by assigning 
to [ an insertion cost that is lower than that for ;. The 
determination of  insertion and deletion costs is some- 
times aided by considerations such as avoiding coverup. 
But there remains the more general problem of devel- 
oping reliable guidelines for determining insertion and 
deletion costs. 

Finally, we have noted that the repaired configura- 
tion may not be suitable for immediate resumption of 
normal parsing. Indeed, the resulting configuration is 
almost never a so-called canonical sentential form (ob- 
tainable in a strictly left-to-right parse). However, it is 
often a noncanonical sentential form. In such cases, the 
use of  noncanonical parsing [ 16] would permit immedi- 
ate resumption of normal operation. There are, however, 
cases in which the repaired configuration is not a senten- 
tial form at all (as ... (statement-list)(statement-list) 
(statement);. of Example 3). We are attempting to de- 
velop techniques for characterizing such forms, and hope 
to report on those developments soon. 

Appendix A: A Grammar, GI, for a minilanguage 
(program) ::= (declaration-list) ( statement-list). 
(declaration-list) ::= (identifier) 

::= (identifier) [ (digits] 
::= (declaration-list) (identifier) 
::= (declaration-list) (identifier) [(digits) ] 

(statement-list) ::= (statement); 
::= (statement-list) (statement); 

(statement) ::= GOTO (identifier) 
::= READ (input-list) 
::= WRITE (output-list) 
::= IF (boolean-expr) THEN (statement) 

ELSE (statement) 
::= (identifier): (statement) 
::= BEGIN (statement-list) END 
::= (assignment) 

(input-list) ::= (variable) 
::= (input-list) (variable) 

(output-list) ::= (variable) 
::= (character) 
::= (output-list) (variable) 
::= (output-list) (character) 

(boolean-expr) 
(relational-op) 

(assignment) 

(left-part) 

(subscripted-var) 

(variable) 

::= (expression) (relational-op) (expression) 

- - m  = 

::= (left-part) (assignment) 
::= (left-part) (expression) 
::= (identifier) := 
::= (subscripted-vat) := 
::= (identifier) [(expression) ] 
::= (identifier) [(assignment )] 
::= (identifier) 
::= (subscripted-var) 
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