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useful--in translator writing systems and in relation 
to on-line control languages. Other possibilities might 
lie with computer-aided instruction systems and speech 
recognition. 

Path-at-a-time pushdown methods can theoretically 
minimize errors in sentences, but at an enormous 
computat ion overhead. It is easy to trick such analyses 
into k n execution times for input of length n, and con- 
stant k determined by a specific grammar.  The al- 
gorithm which is developed here- -based upon Earley's 
recognizer for context-free languages--maintains  n 2 
storage bounds and n 3 execution bounds, which Earley, 
1970 [5], established. 

An earlier algorithm by the author (Lyon, 1972 [22]) 
used Younger 's  (1967 [31]) recognizer as a framework 
for time n 3 least-errors recognition. Principal draw- 
backs in that method were: (i) the limited Chomsky 
normal-form grammars;  (ii) restricted errors (only 
mutat ions-- replacement  of a terminal by another 
terminal--were handled); (iii) inflexible use of storage 
(Younger 's  algorithm is matrix oriented). The new 
algorithm relaxes each above restriction. 

A least-errors recognizer is developed informally 
using the well-known recognizer of Earley, along with 
elements of Bellman's dynamic programming. The 
analyzer takes a general class of context-free gram- 
mars as drivers, and any finite string as input. Recog- 
nition consists of a least-errors count for a corrected 
version of the input relative to the driver grammar. 
The algorithm design emphasizes practical aspects 
which help in programming it. 
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Introduction 

There are many advantages to syntax-directed con- 
text-free analysis (Feldman, 1967 [10]), but in general, 
error recovery and correction are not among them. 
Feldman and Gries, 1968 [11], writing some years 
ago in an article on translator writing systems, spe- 
cifically mentioned two general areas where automatic 
recovery or correction of syntax errors would be very 

Copyright O 1974, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

This work was supported in part by the Mental Health Re- 
search Institute, University of Michigan, Ann Arbor. Author's 
address: U.S. Department of Commerce, National Bureau of 
Standards, A265 Tech, Washington, DC 20234. 

1. Selected Prior Efforts 

A brief mention of some previous approaches to 
error recovery and correction is helpful in placing 
results of this paper into perspective. 

Failure-driven Techniques 
Conway, 1963 [4], presents early arguments on a 

(deterministic) parser which can indicate faulty input 
easily. Bollinger, 1968 [2], discusses a metacompiler 
for Conway's  recursive transition diagrams; the mecha- 
nism includes a facility for specifying limited error- 
recovery actions. 

Levy, 1971 [21], considers clusters of n or less errors 
at points in sentences of deterministic languages. Using 
an error-correction mode only when errors are de- 
tected, his scan proceeds left-to-right, treating each 
cluster independently. He shows that fiducial points 
may exist in the scan; these can help in determining 
the range of a cluster of errors. 

Leinius, 1970 [20], presents a simple-precedence 
parser which automatically generates a stack discipline 
for recovering from error conflicts. The discipline 
does not interfere with normal processing. LaFrance, 
1970 [18] and 1971 [19], covers other stacking strategies, 
paying attention to avoid severe error-induced back- 
tracking. Adaptive strategies have been proposed by 
James and Partridge, 1973 [15]. 

Somewhat distinct from other failure-driven error- 
handling techniques, Eggers, 1972 [7], begins by ex- 
amining regular expressions. Left-right and right-left 
scans are employed. Errors show as inconsistencies in 
states of the left-right and right-left analyses for a 
given input point. This dual-scan correction mecha- 
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nism is then incorporated (Eggers, 1972 [8]) into a 
system of recursive finite state automata.  

Failure-driven analysis which requires serial ex- 
ploration of multiple paths can get tangled easily in 
combinatorics of backtracking. A left-to-right cor- 
rector of  Irons, 1963 [14], pursues concurrent analyses 
to diminish combinatorial  effects. Although more 
general than most  failure-driven strategies, Iron's  cor- 
rector still assumes that errors lie within "local  toler- 
ance" of the last path to fail. In conjunction with 
Iron 's  ideas on concurrent analyses for error handling, 
Wegbreit, 1970 [29], recommends Earley's recognizer 
to handle an extensible language. 

Local error correction may not lead to a least- 
errors correction. For  example, consider a language 

= {abkefg V d b ~ x y z / k  _> 5}. Input "dbkefg ' '  has a 
good correction "ab~efg, ' '  but local corrections lead 
to "db~xyz. ' '  On the other hand, global correction can 
be extremely time-consuming if it is not approached 
carefully. 

strong similarity to error-correction problems in con- 
text-free language parsing. A picture grammar  uses 
pattern primitives and elaborates syntactic structures 
upon these basic forms. Imagine an analysis of hand- 
printed letters. Variations in printing take the form of 
disturbances on the primitives and amount  to the 
addition of noise. Thus: 

A question was asked [by Gorn] regard:ng how a graphical manip- 
ulation system interprets syntactical specifications for [pictorial[ 
objects when the syntactical specifications refer to objects that 
are not well formed, hence, that have no pictorial representation. 
•.. [Discussion summary on graphical languages. Comm. ACM 9, 
3 (Mar. 1966), 175]. 

Kovalevsky, 1968 [17], attacks this problem in 
noisy pictures. His goodness-of-fit function is separable 
into stages compatible with segments of grammatical  
analysis. As a consequence, dynamic programming 
can be used to obtain best-fits in a fairly efficient way. 

2. Preliminaries 

Hypothesis Generators 
Methods in this paper fall among techniques which 

use hypothesis generators internal to analysis mecha- 
nisms. Developing such methods, Hopcrof t  and Ull- 
man, 1966 [12], discuss the increase in difficulty of  
recognition for formal languages, as input strings 
differ in various ways from well-formed sentences: 

S The main results are that e-tuple errors, burst errors, and the type 
of errors corrected by recurrent codes preserve regular sets, con- 
text-free languages, and context-sensitive languages. However, 
deterministic context-free languages are not in general preserved 
under any of the above error types... 

Levy, 1971 [21], includes a brief discussion on ter- 
minal symbol insertion, deletion, and mutation hy- 
potheses applied to context-free analysis. Since k or 
less errors in sentences preserve context-free properties, 
Levy argues that Earley's recognizer can correct k 
or less errors in time n 3. The constructive approach in 
this paper shows that restriction to k or fewer errors 
is unnecessary-- input  may be any string over the set 
of terminal symbols T. A modified Earley's algorithm 
naturally limits execution times to n 3. 

Peterson, 1972 [25, 26], develops a theoretical 
least-errors parser using Earley's algorithm and ex- 
tended grammars.  New rules supplement an original 
g rammar  to account for insertion, deletion, and muta- 
tion errors. For example, an extended Euler g rammar  
will have quadrupled its original rules. Although 
Peterson's g rammar  extensions neatly support  least- 
errors correction, they introduce problems as one 
swings toward a practical side: space is consumed; 
execution may be slowed. 

Mention has been made that Younger 's  recognizer 
can be modified to correct mutation errors. Teitelbaum, 
1973 [28], provides further results which relate such 
analyses to algebraic power series• 

Work in syntax-directed pattern recognition has a 

Context-free Language Terminology 
A context-free language, CFL, is generated by a 

four-tuple G = (N, T, S, P); N is an alphabet of  
variables; T a set of terminals; and P a set of  context- 
free rules of  the usual form. S is a distinguished start 
symbol, sometimes replaced by Z in the following 
text. 

Let p be an index over rules P of g rammar  G. 
Rule p is written as L(p) = c(p,1)c(p,2) . . .  c(p, p),  

where L(p) is the left-hand side, LHS, of rule p, and 
c(p, .) are components in the right-hand side, RHS. 
Rule p defines a phrase of  variable L(p). RHS(p)  
references phrase p of variable V = L(p). 

A substitution replaces an occurrence of a rule's 
LHS with the RHS of the rule. A derivation is a se- 

quence of substitutions: I f  x ~ y ~ z, write x ~ z. 
A C F G  is grounded if, for any variable V in N, there 

exists a string w in T* and V ~ w. Only grounded 
grammars  are considered in subsequent discussion. 
String (word) w over T is a sentence in language ~ (G)  
if there is a derivation from S to w via rules of gram- 
mar  G. 

An " O r d e r "  Notation 
Given f ( x )  over domain X, function f is of order 

g(x) ,  written f = O(g(x) ) ,  if for fixed constants k 
and c, f ( x )  < k g(x)  -+- c. Let f h  denote f ( x ) h ( x ) ,  a 
product  of two functions. I f  f ( x )  = O(x) and h = 
O(x), then 

f h  < kfkhx 2 + clkhx + chklx q- QCh 

SO that f h  = O(x2). In general O(xk)O(x) = O(xk+l). 
For  funct ion f ( x ,  y, . . .; a, b, . . .), f ( x ,  . . . )  = O(g(x ) )  
provided constants k and c can be chosen to maintain 
bound k g ( x ) +  c for all parameter  and argument  
values. 
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HALT (end) marker  
set of productions for G 
error map (strings to strings) 
number of productions 
left-hand side of rule p 
component  j of rule p 's  RHS 
number of components  in rule p 

input string, length n 
indices 
error counts 
backpointer to statesets 
set of variables for G 
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stateset i, composed of states 
state, a four-tuple 
Kleene star 
"o rde r "  
a context-free grammar  
language of G 
length of input string t 
strings 
null (empty) character 
a new distinguished start symbol 

derives via grammar  G 

derives via G and error map 

Earley's Algorithm Without Lookahead 
Preparatory to discussion of the error corrector,  

details of Earley's context-free language recognizer 
are informally reviewed. 

Any context-free grammar  G with distinguished 
rule Z ~ S --t is suitable, given that halt symbol -4 
and distinguished variable Z appear  only in this first 
of productions, p = 1. Remaining rules are arbi- 
trarily ordered. 

Input  t = t(1) . . .  t(n) -4 is a member  of T*- I .  
Each position preceding and following input character 

t(i) is indexed as i and i-t-l, respectively. The index 
position falls between input characters. Location 1 
marks a locus in front of the whole input string t. 
Index n + l  falls between t(n) and -4. 

A state is a triple (p , j , f )  where p is a production 
number, j marks a position in RHS(p),  so that  1 _< j 
_< p + l . f i s  a pointer to some location in t: namely, a 

point on the left of t(f) as described above. State (p,j,f) 
isfinal provided t h a t j  = p-k- 1 ; i.e. cursor j has reached 

maximum value. Final states represent phrases which 
have had all components  recognized and have been 
recognized themselves. Final states signal certain 
substitutions which are to be discussed later. 

A stateset is a set of s ta tes--where no particular 
constraint is imposed- -o ther  than order of arrival of 
states. (The changes to accommodate  errors will in- 
clude a stronger constraint on order.) A state may be 
added to the end of the list of states of some stateset 
unless it is already on the list. Each stateset S(i) is 
uniquely associated with position i of input t. There 
are n + 2  statesets for input t(1) - - .  t(n) -4 of length 
n + l .  

States in a stateset S(q) represent partial phrases 
that are known up to point q in a left-to-right scan of 
input t. I f  (p , j , f )  is in S(q), then components c(p,1) . . .  
e(p, j - -  1) of rule p have been discovered in substring 
t ( f )  . . .  t(q--1). Backpointer f indicates where com- 
ponent c(p, 1) begins; i.e. stateset S(f)  had state (p , l , f )  
which initiated the search for L(p) represented by 

(P,J,f). 
A pictorial notation of state works well for illustra- 

tions. Backpointer f becomes a subscript to an LHS; 
cursor j, a dot in an RHS. Thus a rule V ---* abc num- 
bered p =  13, and state (13,2,3) in stateset S(8) can 
be explicitly described as in Figure 1. 

Figure 2 depicts the mechanisms of Earley's recog- 
nizer in labeled steps. To start, state Z1 ---* .S -4 is 
placed at the head (of the empty) order list for stateset 
(S1). Processing may now begin. 
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In Step 1 of Figure 2, a state is removed from the list 
of S(I) states. Only Z1 ---+ .S -~ is available. The cursor 
in this state indicates that the variable S is sought. The 
algorithm adds to S(1) all states which represent pos- 
sible searches for S. Such states have back pointers 

f = 1 and represent rules 1" such that L(r) = S. The 
dot cursor shows that no part of any RHS of any new 
state in S(1) has been matched. That is , j  = 1. 

In Step 2 of Figure 2, another selection from S(1), 
viz. $1 --~ .aS, successfully matches its " . a "  to t(1). 
$I -~ a .S  is added to S(2). A third selection from S(1) 
only exhausts the list of states for S(1). 

The first state chosen from S(2) predicts, in Step 3, 
a phrase S, and generates two new states on the list 
for S(2). The first of these is of no value, but Step 4 
puts a state into S(3). 

Only one state is available in S(3). S._, --+ b. is a final 
state with a pointer back to S(2). The algorithm returns 
to S(2) and advances into S(3) all states awaiting phrase 
S, appropriately advancing their cursors. Step 5 depicts 
this, which causes another final state to enter S(3), Step 
7 completes recognition. 

The recognizer is easily changed to a parser. With 
provision for pointers to substituted phrases, a complete 
phrase structure is available. 

The least-errors recognizer in the next section builds 
upon Earley's concepts by incorporating dynamic pro- 
gramming into recognition. This requires an augmented 
notion of state. 

Because the algorithm attempts to use storage effi- 
ciently, s ta t e se t  is redefined, as are orders and 
methods of processing states in a stateset. 

3. A Least-Errors Recognizer 

Sentences may have mutations, insertions, and de- 
letions of terminals. Any grounded context-free gram- 
mar  G is acceptable to the algorithm, provided there is 
a distinguished rule Z ~ S --t, as discussed previously. 

Recognition consists of an optimal, least-errors count 
e of errors in t, the input, t ¢ T*. The techniques are 
easily adapted to supply more details of analysis. A 
version of the algorithm has been programmed which 
gives error counts, error loci, and a count of the num- 
ber of least-errors solutions. 

No detailed proof  is given for the new algorithm. 
Readers interested in developing a proof  might find 
Jones, 1972 [16] helpful. 

The objective is to find the least-errors necessary for 
correction. Such error counting is separable, that is, 
subanalyses contribute to analysis without interactions 
(crossproducts). For example, consider a rule X --+ Y Z. 
In analysis, errors of X are the sum of those of Y and 
Z. If  Y and Z are least-errors, then the composition 
resulting in X is least-errors. 

Since the error analysis function is separable, mini- 
mizing errors in each subanalysis is an efficient ap- 

proach. A least-errors parse must have least-errors 
components. Otherwise, it is not least-errors, since 
better components could be substituted. This is actually 
a statement of Bellman's (1957 [1]) dynamic program- 
ming technique, which is based on his principle of 
optimality: 

If an objective function is separable into independent segments, 
then each segment may be individually optimized and the results 
combined into a final optimal solution. 

Dynamic programming is simple but subtle. For  
instance, it tells nothing about  how to compose a 
final solution from optimal segments. Consequently 
all possible compositions are tested; a final solution is 
chosen from alternatives. Each alternative is optimal 
for its particular composition, but some alternatives 
are usually better than others. Only a representative 
least-errors correction is returned. Such a representa- 
tive may or may not correspond to an original error-free 
sentence, depending upon which sentences in language 
£ ( G )  can be changed into the actual input in a mini- 
mum number of errors. 

If  dynamic programming is to be effective in re- 
ducing combinatorics,  a recognizer should save a 
particular optimal subanalysis of an input segment 
only once. The recognizer will develop many sub- 
analyses independently and concurrently. Subanalyses 
which result in the same variable being assigned to the 
same segment of input can be merged; a least-errors 
subanalysis is chosen as representative and used later 
with all other larger analyses which require it. 

Error-correction mechanisms (given shortly) are 
not embedded directly and simply into Earley's par- 
ticular implementation. A phrase (or subanalysis) in 
the error-free case is without uncertainty of any kind. 
With errors, a realization of a phrase may not be opti- 
mal. Any phrase used as a component  in another 
analysis should be least-errors, thereby preventing 
duplication of effort which would otherwise be neces- 
sary when an improved phrase is discovered. The new 
algorithm seeks all recognitions of a phrase over some 
segment and chooses a least-errors realization as 
representative. There must be a late binding time for 
use of phrases as components,  requiring not merely 
that phrases be found, but that they be least-errors. 
To this end much of the later discussion will cover 
definite processing constraints which do not plague 
the usual Earley algorithm. 

Along the same vein, Earley discusses various look- 
ahead cases. For purposes of this paper, lookahead 
length k is set at k = 0  since the error mapping is so 
unrestricted there is actually no information in any 
lookahead. Given constraints upon errors, it is possible 
to make some sense of k # 0. Indeed under special 
conditions Earley's O(n) execution times for determi- 
nistic grammars  are possible. This holds true only if 
errors preserve features in the grammar  necessary for 
deterministic recognition and if certain lists which 
Earley has in his implementation are included. Combi- 
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nations of g rammar  and errors which preserve determi- 
nistic parsing appear to be rather unrealistic. 

General Algorithm for Least-Errors Recognition 
Input t is taken from T*. Endmarker  -t is never 

subject to error: it always signals correctly an end of 
analysis. The notation for productions is the same as 
that used for Earley's algorithm. States have an error 
counter, and statesets a new ordering among their 
states. 

A state is a quadruple (p,j , f ,e),  where p is a produc- 
tion number, j marks a position in RHS(p) ,  so that 
1 < j _< p-f-l ,  f i s  a pointer to some location in t, and e 

the error count. Because grammar  G is grounded, there 
is some shortest sentence of length k in £(G) .  It follows 
that no input of length n has more than n + k  errors. One 
may simply assume that all of n input characters are in- 
sertions and all of k characters of a shortest sentence 
were deleted. Thus e _< n+k ,  for input of length n. 
Final state (p,p+l,f ,e) denotes recognition of phrase 

RHS(p)  with e errors. A state is depicted as in Section 
2, except that an error count follows : Zi ---* S. -t,e. 

A stateset is an ordered set of states. States within a 
stateset are ordered by ascending values of j within p 
within f ;  f takes descending values. Each stateset S(i) 
is uniquely associated with position i of the input 
string t. There are n + 2  statesets for input t(1) . . .  
t(n)-q of length n +  1. 

Adding to Statesets. In the left-to-right matching 
of input, states are added to statesets. If  state (p,j,f ,e) 
is a candidate for admission to a stateset which already 
has a similar member (p,j,f,e') and e' < e, then (p,j,f ,e) 
is rejected because of the principle of optimality. How- 
ever, if e < e', then (p,j,f,e') is replaced by (p,j,f,e). 

Processing 
The algorithm processes n + 2  statesets on ascending 

index i, doing S(1) through S(n+2) .  Each stateset S(i) 
is initialized with states (k, 1, i, 0) for k between 1 and 
tPI, where there are IPI rules in grammar  G. Thus, 
at each locus of input t, all phrases are tentatively be- 
gun. Later discussion covers a more efficient predictive 
method. For  clarity, this is omitted from early, more 
important  details. 

Processing of stateset S(i) begins after its initializa- 
tion (above). A procedure SCAN is called for each state 
in S(i). SCAN checks various correspondences of input 
token t(i) against terminal symbols in RHSs of rules. 
Only when SCAN has been called for all of stateset S(i) 
is further processing of S(i) performed. 

Once SCAN is done, COMPLETER substitutes all final 
states of S(i) into all other analyses which can use 
them as components.  COMPLETER is the difficult phase 
of this algorithm because it is intimately tied to imple- 
mentation considerations, especially space conservation. 

When the above are finished for S(i), analysis begins 
similarly for S ( i+  1). Processing terminates at stateset 
S(n+2) ,  which is treated as a special case. 

SCAN 
SCAN handles states of S(i), checking input t(i) with 

requirements of states in S(i) and various error hy- 
potheses. These SCAN actions are given and explained 
below for a state (p,j,f,e) in stateset S(i). " A d d "  has 
special meaning, as discussed previously. 
1. I f  c(p,j) = t(i) then add - - i f  pos s ib l e - - (p , j+  1,f,e) to 
S ( i +  1). This case is a pelfect match. 
2. If c(p,j) is terminal but not equal to t(i), then add 
(p , j+ 1,f ,e+ 1) to S ( i+  1) when possible. This is a muta- 
tion-error hypothesis. 
3. I fc(p,j)  is terminal, then add (p , j+ 1, f , e +  1) to S(i), 
if it is possible. This deletion hypothesis assumes that 
component  c(p,j) is not available, that it was deleted 
from the input. 
4. Add (p,j , f ,e+l) to S ( i + I )  if possible. Here assume 
that t(i) should not be in the input: an insertion hy- 
pothesis. 

All SCAN actions are tried. The recognizer is making 
guesses at any point as to which action is right. To be 
correct, the recognizer covers all possibilities. No con- 
text can help cut possibilities, since with errors context 
is not reliable. It  is very crucial that Earley's algorithm 
limits combinatorics via merging and sharing of states. 

The sorted order of states in S(i) becomes important  
in SCAN'S pass. Those states which may be added to 
S(i) f rom SCAN actions on (p,j,f,e) in S(i) lie ahead of 
(p,j,f,e) since ordering is via increasing values of j. 
This insures that a single SCAN pass is adequate. 

Two Examples. Partial analyses depicted in Figures 
3 and 4 illustrate SCAN actions. States shown are repre- 
sentative of those occurring with an augmented Earley's 
recognizer. 

Figure 3 presents SCAN actions on a state represent- 
ing T --*.  a. Three paths represent three error hy- 
potheses which can hold at one time, viz. deletion 
error, insertion error, and mutat ion/match.  SCAN ap- 
plies these possibilities to each state. Error counts 
appear after each RHS of a state. 

Figure 4 partially depicts an error analysis of t(1)t(2) 
= a a using a grammar  from Figure 2. Many states 
are derived in more than one way. Some paths are dis- 
carded subsequently as nonoptimal,  while others 
create new, diminished, error counts for states. 

C O M P L E T E R  
Upon completion of the pass of SCAN over S(i), 

COMPLETER begins its run. COMPLETER handles substi- 
tution of final states in S(i). Each final state represents 
recognition of some nonterminal (phrase). Final states 
have pointers back to the stateset of their origin. In 
these originating (or prior) statesets may lie stranded 
states awaiting recognition of some nonterminal com- 
ponent. (Observe that SCAN does nothing special for 
nonterminals.) COMPLETER'S task is to search back for 
stranded states awaiting nonterminals. For  example, 
suppose Up ---* W.Va ,  e is a stranded state in S(x), and 
that COMPLETER substitutes final state Vx --~ 7. ,e' which 
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Fig. 3. 

insertion hypothesis 

mutation-match 
t h e s ~  

S(i) t(i) S(i+l) 

Rule used: T--l~a 

Input: t(i) 

Fig. 4. 

S I qm- . a S , l ~  

S1 .*~.. b ' ' l  

s(1) t(1)=a S(2) 

S 2 --~ b. ,i 

/ 
t(2)=a s(5) 

is in S(i); this results in a state Up ~ WV.a,e+e' being 
added to S(i). Notice that errors are additive. 

A problem occurs among final states in stateset S(i) 
which have a common-valued backpointer f COM- 
PLETER should not repeat substitutions, yet Figure 5 
demonstrates that unless final states are carefully se- 
lected, some COMPLETER substitutions may be wasted. 

Consider details of Figure 5. If  state Y1 --+ b.,1 in 
S(2) is first substituted back into $1 - + .  Y,0 of S(1), then 
state St ~ Y.,1 is added to S(2). This COMPLETER ac- 
tion will have to be redone, since state U1 ~ a . ,0  ,in 
S(2) is substituted back into Yx ---* .U,0 of S(1), and 
this result into Sa ~ .Y,0. In the end S~ ~ Y.,1 of S(2) 
is replaced by $1 --+ Y.,0. 

To avoid futile COMPLETER substitutions of nonopti- 
mal final states, COMPLETER first substitutes final states 
in S(2) whose errors are fewest. A least-errors final state 
of S(2) will never have its error count diminished by 
states entering S(2) via COMPLETER substitution of yet 
unselected final states in S(2). This follows because 
state s entering S(2) via COMPLETER has errors e-[-e' at 
least equal to errors e' in the final state in S(2), which 
satisfied the variable it was waiting for. 

Final State Selection Given Pointer f. A rule for 
COMPLETER'S selection of final states may be stated: 
Among yet unused final states in stateset S(i) with 
common backpointers f ,  COMPLETER selects a final 
state whose error count e does not exceed error counts 
of any other. The selected final state is removed from 
the list of unused eligibles, and substituted. Substitu- 
tions are guaranteed sound. I f  a selected final state is 
modified by any other final state, this modification 
has been accomplished already. Alternately, since a 
selected final state is least-errors among those awaiting 
substitution (having f in common),  there is no chance 
that it will be modified to fewer errors by any yet-to-be 
selected final state in S(i). 

Selecting Backpointer f. Until now discussion has 
assumed that COMPLETER selects unused final states 
from groups with common backpointers f ;  constraints 
upon values of f have been skirted. Backpointer f de- 
termines where a subanalysis began. This is very ira- 

Rules used: S ---~-a S 
S--~-b 

Input: a a 

x = blocked (not tksed) 

/ = replaced state (error diminished) 

portant  since groups of final states in S(i) can be ordered 
by their ability to influence one another across values 
ofbackpointerf Given two final states s = (p,p+ 1,re,e) 
and s' = (q,q+l,m+l,e') in S(i), it is possible for s' to 

be substituted into a state with backpointer f = m in 
stateset S ( m +  1) and thereby modify s in S(i). There is 
no possibility of s influencing s'. To do so, s would have 
to satisfy a component  in the RHS of the rule for s'. 
This is impossible since s spans more input than does s'. 

COMPLETER for S(i) works first with a group of final 
states with the highest possible backpointer ( f = i )  and 
then successively considers each group of lower-valued 
backpointers until all have been used. In this manner,  
any interaction of S(i)'s final states across backpointer 
v a l u e s f i s  kept in front of COMPLETER--it will not miss 
pertinent final state error changes in S(i) on its single 
COMPLETER pass, nor will any substitutions have to be 
redone. 

C O M P L E T E R  in Detail 
This section describes exactly how COMPLETER of 

S(i) functions on each group of final states in S(i) with 
common backpointers f =  x. Values for f are chosen in 
descending order as indicated above, ranging from f--- i  
to, finally, f =  1. Each value f =  x determines an associ- 
ated prior stateset S(x). 

Two ways that COMPLETER can substitute final states 
of S(i) into states of S(x) are: 

S1. Select final states (p,p+l,x,e) in S(i) and check 

in stateset S(x) for stranded states awaiting L(p). 
Earley's algorithm does this efficiently with the help 
of  lists which link all states in stateset S(x) awaiting a 
particular variable L(p). Least-errors substitutions 
for COMPLETER have been mentioned in this context. 
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Fig. 5. 

~ Y1 ~ . b , 0  

Y1 -w- .U,O 

U I ~ . a , 0  - , .<  
s O )  

G r m m a r :  S - - ~ y  
V - ~ - b  
Y - ~ - U  
U - ~ - a  

I n p u t :  a 

- - - - - - - - - - - - -__  ? _ _  

t ( 1 ) = a  

-.).S I ..~ ? 

%Y1  - ~  b . , 1  

~,.-U 1 --~- a .  ,0  

s ( 2 )  

$2. Search through S(x) and with each stranded 
state awaiting nonterminal W, check for final states 
(p,p+l,x,e) in S(i) such that L(p) = W. Substitute a 

least-errors final state of those available. This converse 
strategy dispenses with lists for S(x), although at a 
cost of always running in time O(nS). I f  a grammar  is 
unambiguous, Earley's linked lists allow O(n 2) execu- 
tion times. However, unrestricted errors force O(n 3) 
times anyway. $2 conserves memory otherwise used for 
pointers. 

COMPLETER strategy for substituting final states of 
S(i) into S(x) is mixed. A first Stage SI (a relaxation) 
is performed to insure that final states in S(i) have least- 
errors when substituted into S(x). Discussion on Figure 
5 contained some ideas on this matter, which will be 
amplified in detail. Stage $2 performs substitutions into 
S(x) via the second strategy. Principal motives for 
dropping Earley's algorithm here involve a desire to 
save space (no pointers in S(x)), and an at tempt to 
push much of storage into a sequential organization. 
These assumptions underlie the whole COMPLETER 
philosophy. 

Stage $1: Stabilization. Let S(x) be typical of  the i 
statesets associated with a backpointer value f = x 
for S(i). COMPLETER begins by substituting (details 
given shortly) all final states in S(i) with common 
pointers f = x into all possible stranded states in 
S(x) with pointers f = x. The result is a set of final 
states in S(i), f = x, which have minimal-error counts e. 

Let m be a state with fewest errors among yet un- 
selected final states in S(i) with pointers f=x .  Where 
possible, COMPLETER substitutes m into states (p,j,x,e) 
of S(x). Let a successful result be V~ --~ a.#,e.  COM- 
PLETER computes additional errors necessary to delete 
part  # of the RHS, that is, to map (via deletions) # 
into e. This is easily accomplished with a table NULLVR 
of least-errors counts for deletion of any variable W 

in grammar  G. Let e '  be the null cost of/3. COMPLETER 
builds final state V~ --~ afl.,e+e' and adds it to S(i), if 
possible. This stage of COMPLETER iS concerned only 
with least-errors counts in final states ( f = x )  of  S(i). 
Other possible results are deferred for $2. Stage $I has a 
finite bound since states with f = x  are limited in both 
S(i) and S(x). S1 continues until all final states ( f = x )  
in S(i) have been selected. 

Stage $2:  Substitution. Stage S1 assures that all 
final states with f = x in S(i) are of  least-errors. 
COMPLETER stage $2 then searches through stateset 
S(x) and with each stranded state awaiting non- 
terminal W, checks for final states(p, p + l ,  x, e) in 

m 

S(i) such that L(p) = W. $2 substitutes a least-errors 
final state of  those available in S(i). The result is 
added to S(i). 

Other C O M P L E T E R  Actions. SCAN is used on 
COMPLETER'S " a d d "  actions to S(i) since the scanner will 
not be called again for S(i). For  example, if COMPLETER 
Stage $2 adds a state of the form A --~ a V . c X Y  to 
S(i), then SCAN is used to process the "c" relative to 
input t(i). States for A --~ aVc.XY,  A --~ aVcX.Y,  
and A --~ aVcXY, are added to S(i). The latter two 
states are derived from SCAN of A ~ aV c .X Y  using 
table NULLVR of null string matchings (explained below). 
SCAN is applied to any state added to S(i) during COM- 
PLETER, including final states derived in stage S1. 

Matchings which span no input are represented in 
stateset S(i) by final states of  the form (p,p+l,i,.). 
Although COMPLETER could handle null-string final 
states, such null matching is duplicated work since it is 
independent of input and done identically at each 
stateset. Table NULLVR of least-errors variable deletions 
should be built prior to regular processing. With such a 
table, SCAN of S(i) can handle null-phrase cases; COM- 
PLETER of S(i) need not even consider final states in 
S(i) with p o i n t e r f = i .  SCAN'S deletion-error mechanism 
then handles all null-matched variables via a rule: I f  
possible, add (p,j+ 1,f,e+NULLVR(C(p,j))) to S(i). 

This completes discussion of a basic least-errors 
algorithm. As detailed, recognition is bottom-up. How- 
ever, table NULLVR introduces ftexibilities which can 
be exploited: By converting the algorithm into a top- 
down recognizer, one may avoid inefficiencies in 
blanket initializations of statesets. 

A Top-Down Version 
Once COMPLETER of stateset S(i) is freed from 

doing final states with pointers f=i ,  this group of 
states with f = i  can be handled at any time during 
processing of stateset S(i). Other SCAN and COMPLETER 
actions on stateset S(i) are independent of SCAN actions 
upon states in S(i) with pointers f=i:  Table NULLVR 
includes any cases which might arise. 

The recognizer runs SCAN and then COMPLETER over 
all states f # i  in S(i), adhering to the order just es- 
tablished. All variables which could be useful to states 
in S(i) become known. For  example, W is useful to 
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Y -+ a .Wb.  The recognizer marks vector location 
PRED(W) for each useful phrase W. 

Prior to parsing, the recognizer builds an I N I X 
] N I predictive matrix, where there are IN[  variables in 

g rammar  G. If  W ~ aXt3 and via errors ~ : ~ --~ ~, then 

W ~ X~. Thus W predicts (via grammar  G and errors) 
phrase X. An appropriate entry is placed in the pre- 
dictive matrix. Then during recognition, whenever 
PRED(W)~--1 is made, PRED(X)= 1 should be set also. 

Omitting states with f=i ,  the recognizer has per- 
formed SCAN and COMPLETER passes for S(i). It then 
initializes group f = i  with all requests from request 
vector PRED: I f  PRED(W)= 1, it adds states (p,l,i,0) to 
S(i), provided that L(p) = W. SCAN is then performed 
over (only) this f =  i group of states in S(i). COMPLETER 
is not necessary because, in conjunction with SCAN, 
NULLVR replaces it in this special case of f = i .  These 
initializations for group f = i  and associated SCAN 
actions constitute the PREDICTOR phase for stateset S(i). 

Only phrases which could be useful to stranded 
states in S(i) have been started in S(i). Analysis is 
"predict ive."  This PREDICTOR is very much weaker 
than usual since errors allow many more derivational 
possibilities. Discussion in Section 4 will include easy 
ad hoc constraints on the error map ~; such constraints 
allow PREDICTOR to perform rather effectively. 

The Algorithm 
State Z1 ~ .S-q,0 is added to an empty S(1). Proper 

PRED(.) entries are made using the predictive matrix on 
S. SCAN for f = i = l  is performed. Thus S(1) begins 
with PREDICTOR. Usual SCAN and COMPLETER passes 
are unnecessary for S(1). 

S C A N ,  C O M P L E T E R ,  and P R E D I C T O R  a r e  performed for 
statesets S(2) through S(n+  1). 

The final result is state Z1 ~ S - t . , e  in stateset 
S(n+2) .  This corresponds to matching phrase Z to 
input t(1) . . .  t(n)-t. The actual four-tuple is (1,3,1,e), 
and e is least-errors for recognition. 

Figure 6 presents an outline of the algorithm. 
Implementation. This particular implementation 

assumes random access memory.  Each state occupies 
one word. States (p,j,f,.) are sequentially ordered in 
a stateset, j within p within f ( f  descends from i to 1). 
Each sequential block of states (p,j,f, .) with common 
backpointer f has a header node which gives the back- 
pointer value f .  This header occupies one word: No 
backpointer f is explicitly stored in any state's storage 
word. Headers serve adequately and conserve memory.  
A vector points to the origin of each stateset. Storage 
for the stateset uses ascending addresses from the vec- 
tor indication. 

A number  of practical factors influence the organi- 
zation: 

(i) Sequential blocks eliminate any need for pointers 
in states. This is quite important  when programming 
the algorithm since it does make heavy demands upon 
storage. General unrestricted errors change the problem 

10 

Fig. 6. 

i := 

C Begin ) 

t / 
Add Z 1 -~- ,S -~ ,0  to S(1) / 

Set a l l  PRED e n t r i e s  I appropriate for S 

SCAN over all. states f~i '"~.___~ 
in stateset S(i) 

x := i-I ] 
i 

l 

COMPLETER, s tage  S1 for  " 
f=x (Get mnimal  f i n a l  
s t a t e s ,  f=x, in  S ( i ) )  
Apply SCAN as needed, 

COMPLETER, s tage  $2, 
Do p r i o r  s t a t e s e t  S(x) 
looking for  s t randed 
s t a t e s ;  apply SCAN for  
each add i t ion  to S ( i )  

+ 
x := x-i I 

Use PRED to i n i t i a l i z e  I /  
f=i s t a t e s  in S(i) 

l SC~I over  f=i  s t a t e s  
in S(i) 

I i := i*l ] 

I Lmine stateset S(i+l) 
Z 1 -~ S -~ . ,e 

t 
e . . . . .  ) 

quite a bit from error-flee analysis. Pointers are necessary 
for unambiguous and deterministic cases which Earley's 
implementation can take advantage of, but unre- 
stricted errors preclude special cases. 

(ii) A large portion of s torage--O(n2)--can be put  
onto magnetic tape, leaving only a linear f rac t ion- -  
O(n)- - in  random access memory.  I f  S(i) is current, 
then it and S ( i+  1) should be in random access memory.  
Stage S1 should be done with s t a t e s f = x  of S(x) in a 
fixed size random access buffer. 

(iii) Sequential methods can be very fast. 
One theoretical consequence of using sequential 

storage organizations is that a multitape Turing 
machine is fairly easy to program for the algorithm 
(Lyon, 1972 [23]). Such an implementation runs in 
time O(n 3 log n). A log n factor arises because tape 
fields must carry error counts e which in an ordinary 
O(n 3) context-free recognition hold either 0 or 1. Error 
is O(n). Sufficient cells must exist in each tape field 
for a binary number  of similar magnitude to the error. 
Thus tapes are O(log n) longer than usual, and so are 

run times. 
States in S(i) and S ( i + I )  are addressed associa- 

tively via p, j, andf .  There is no search to find any state 
in either stateset. This is not strictly necessary for prior 
statesets S(i-- 1) • ..  S(1). 

Headers actually become useful only when a stateset 
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Fig. 7. 

Z~.-> S.-~ ,i 

Z/ -> S~. ,2 

Sl ->  .aS ,i 

- S~_ -'~ a.S ,0 

Sj[ -~ aS. ,i 

S 1 => .b ,I 

Sj. -")" b • ,1 

SK-')" .aS ,i 

SZ-) b a.S ,0 

S z -.I- aS. ,I 

S~. -~ .b ,I 

Zm -> .S@ ,0 

Za-> S, d ,i 

Z~-> Sq. ,2 

S~ -> .aS ,0 

S~ -~ a.S ,I 

S~_ - ~  aS. ,2 

S~. ~ .b ,0 

S ( 2 )  t ( 2 ) f a  

Z/-3~ .S~ ,2 

Z z --~ S.-~ ,i 

Zl -'2 Sd. ,2 

S~. ~ .aS ,2 

S~. -9' a.S ,I 

S~ -~ aS. ,I 

Sj_ - ~  .b ,2 

S I -> b. ,2 

S(1) t(1)fa S(4)* 

z~-> . s 4  ,o 

Z~-> S.-[  ,i 

Z 3 -'~ Sq,  ,2 

S 6 ~ . aS  ,0 

S 3 -)P a.S ,i 

S 3 -). aS. ,2 

S5-~ .b ,0 

s(3) t(3)ffi4 

*Only state Z1-~ $4 .,e matters for the analysis. 

INPUT : a a -1 

GRAMMAR RULES : 

z-~s4 
S - - ~ a S  
S ---) b 

NULLVR(Z)= 2 
NULLVR(S )ffi 1 

S(i) is completely processed by SCAN, COMPLETER, and 
PREDICTOR. At this point many states in S(i) are elimi- 
nated, since only those awaiting variables, "stranded," 
are worth saving. Stateset S(i) is compressed to con- 
serve storage. Contents  of  S(i) will not  change f rom 
this point forward. 

Table NULLVR gives least-errors deletion counts  for 
each variable V, as in the e r r o r / g r a m m a r  derivation 

V ~ e. Natural ly  if a rule V ~ e exists or a true gram- 

matical derivation V ~ e is possible, then NULLVR(V) 
= 0 .  

Organization Comments. The SCAN pass over S(i) 
establishes a basis for COMPLETER. I f  SCAN actions on 
some states resident in S(i) were deferred until after 
SI phases of  S(i), these Sl ' s  could be invalid because 
of  new, least-errors final states f rom SCAN. SCAN actions 
are also applied in stage $2 of  COMPLETER. However,  
any special cases which could influence S1 have been 
accounted for in S1 through use of  NULLVR. SCAN 
associated with phases S1 and $2 differs f rom usual 
SCAN. In the former cases there is a definite lower 
bound  on errors, namely, the errors of  the back- 
substituted state. States which get into S(i) through 
routes other than COMPLETER of S(i) are not  so easily 
assigned lower error bounds.  Consequent ly  a SCAN 
pass occurs prior to COMPLETER SO that  these cases 
are removed as a problem to COMPLETER. 

Part  SI of  COMPLETER is actually a relaxation 
method.  Each selected final state m sets a minimal error  
count  for results of  substitutions which use m. Since 
each selected final state m has at least as many  errors 
as any prior selections o f  Sl,  m cannot  influence them. 
Fur thermore ,  only final states enter S(i) via actions of  
S1; S1 only stabilizes error counts  for final states in S(i). 
Other  $2 actions could be taken, but are deferred until 
$2. 

$2 uses least-errors final states in S(i) to  perform 
substitutions. Supplementary  SCAN actions add to S(i) 
and S(iq-1) those states which a SCAN pass failed to 
provide because the necessary seed state was not  in 
S(i). 

Example. Figure 7 presents a full analysis of  the 
input and g rammar  shown in partial detail in Figure 4. 
For  input " a  a - t "  and g rammar  Z --+ S - I ,  S --~ aS, 
S --+ b, there are two corrections possible. One is " a b  - t "  
with one muta t ion-er ror  assumed and the other 
" a a b  - I " ,  which assumes that  a " b "  was deleted. These 

two solutions share a state l a b e l e d ~ Y ) i n  S(2) and are 

completed by either s t a t e s @  o r @ i n  S (3). 

An Upper-Bound on Storage 
Each state (p,j,f,e) has bounded  parameters p, j, f ,  

and e. For  fixed values of  p, j, and f ,  only one state 
exists in stateset S(i). Parameter  f ranges f rom 1 to i 
in S(i). G r a m m a r  G determines finite parameters  p and 
j. Storage for S(i) is thus O(i). It follows that, for n + 2  
statesets of  a complete analysis, total  storage is O(n2). 

A Bound on Execution 
For  any stateset S(i), the SCAN pass runs over O(i) 

states. There are i--  1 COMPLETER S1 stages, each taking 
time propor t ional  to [ P 12 , where I P ]  is the number  of  
product ions in G. COMPLETER for S(i) also passes over 
i--1 prior statesets, S( i - -1)  th rough  S(1). Each prior 
stateset S(j)  has O( j )  members,  and each " s t r a n d e d "  
state in S(j)  may  require a bounded  number  of  compu-  
ta{ions in the substitution process. Thus COMPLETER for 
S(i) executes in O(i2). Total  COMPLETER time for all 
analysis is O(n3). COMPLETER limits recognition speed. 

4. Practical Constraints 

There are ad hoc limitations which can be at tached 
easily to the error hypothesis mechanism. 

Local and Global Limits. Errors  which involve 
components  of  RHSs  which are terminals are called 
local errors. For  example, muta t ion errors are always 
local, because they involve a terminal in an R H S  of  a 
rule which a state represents. Counter  e in (p,j,f,e) is a 
global error count,  e is a total  accumulat ion of  errors. 
Define a supplemented state (p,j,f,L,e), where all but  
L are as before. Local  error L is incremented to L +  1 
if and only if e :=  e-t-1 via a muta t ion  or character  
deletion hypothesis. A state representing X ~ V can 
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Fig. 8. 
INPUT: "v" = ( "vc" * "vc" + + ) 

GRAMMAR: Z -~ [PG] 
[PG] -) [PG] ; [ST] 
[PG] -~ [ST] 
[FC l -) [TM] 
[FC] -+ [FC] * [TM] 
[AE] -5 [FC] 
[AE] -~ lag]  + [FCI 
[ASI -~ "v" = [AE] 
[UC] -~ [AS] 
[UU] -5 goto "L" 
[UC] -) "L" : [UC] 
[10] -) if "be" then 
[ i s ]  -~ [ic1 [uc] 
I t s ]  - ~  [ i s ]  
[CS] -5  [1S] e l s e  [ST I 
[US] -~ "L" ; [CS] 
[ST] -+ [UC] 
[ST] -) [CS] 
[TM] -> "vc" 
[TM] -5  ( [ ~ 1  ) 

PERFORMANCE: Local errors States Time (seconds) 

6 2800 17.3 
5 2690 16.6 
4 2531 14.8 
3 2337 13.9 
2 2062 11.8 
1 1300 6.1 
0 -- 0.6 

Fig. 9. 
INPUT : LABL : 

GRAMMAR : 

PERFORMANCE: 

BEGN DCLR ; DCLR ; Db~4Y ; END 

Z -~ PRGM -~ 
PRGM -~ BLOK 
PRGM -~ CMST 
UBST -SASGN 
UBST -> GOTO 
UBST -) DMMY 
UBST -~ PROC 
BCST -) UBST 
BCST -) LABL : BCST 
UNCL -~ BCST 
UNCL -~ CMST 
UNCL -~ BLOK 
STILT -~ UNCL 
STMT -~ CNDL 
TAlL -> STMT END 
STMT -~ FORS 
TAlL -~ STMT ; TAlL 
BKHD -~ BKHD DCLR 
BKHD -> BEGN DCLR 
ULCD -~ BEGN TAIL 
uL~ -, ~K~ ; TAlL 

CMST -> ULCD 
CMST -> LABL : CMST 

BLOK -~ ULBK 
BLOK ~> LABL : BLOK 

Fiducials (no errors) States Time (seconds) 

--- 2295 13.3 
• 1567 9.3 

; DCLR 984 5,7 
; DCLR : 730 4.5 

CONSTRAINTS: Local error cutoff = 2 
Global error cutoff = 5 

have no local errors. Clearly L < e for any state. 
Limits can be set upon how many local and global 

errors a state can have. An at tempt to add a state which 
exceeds a local or global error l imit--called a cutoff - -  
results in a failure. Whatever analysis the state repre- 
sents is lost. 

Cutoffs for local and global errors thin numbers of 
states generated at any stage of analysis. Justifications 
for cutoffs arise from observation of actual practice. 
If  a programmer  meant to write a conditional state- 
ment, it is unlikely that he would omit IF, THEN, and 
ELSE. Consequently, a local cutoff of L <_ 2 is not un- 
reasonable for a rule 

conditional :: = IF boolean THEN statement ELSE statement 

Any action which serves to limit states will augment 
efficiency. Figure 8 demonstrates that changes in num- 
bers of states linearly influence execution times, which 
is hardly surprising, given the way COMPLETER works. 
Global  errors in Figure 8 are set to e _< 32. Six runs 
were made with L _< r, and r = 1 , . . . ,  6. An addi- 
tional run established a time and state census for a 
correct input with no local errors. The first admission 
of errors entails a ten-fold increase in execution time 
for that particular grammar.  

Fidueial Characters. Another  practical approach 
reserves certain terminals as privileged. There are four 
areas of concern: the range and the domain of muta- 
tion hypotheses, the range of insertion errors, and the 
domain of deletion mappings. By restricting terminals 
which can occur in these areas, some characters become 
fiducial (error-free) markers. The result is to partition 
analysis into much smaller pieces. 

Fiducials are fairly commonplace.  FORTRAN is an 
example of a card oriented language where end-of-state- 

12 

ment coincides with the end of a card. Figure 9 presents 
experimental results with an ALGOL-like grammar  and 
sets of fiducials. Fiducials indicated in the table are 
prohibited f rom entering any errors whatsoever. Re- 
sults are fairly predictable: As input characters are 
constrained performance improves, quickly at first. 
Common  separators such as " ; "  in ALGOL have the 
most fiducial value. 

5. Observations 

With reasonable constraints upon errors, the recog- 
nizer might serve as a diagnostic scanner. First, a very 
fast syntactic analyzer would be called to test for cor- 
rectness. Upon  discovery of discrepancies, input would 
be passed for a least-errors analysis. Corrected text 
would be returned as output. 

The algorithm has been programmed.  Error loci 
are saved in bit strings which are carried with each 
state. COMPLETER actions include the oRing of a final 
state's bit string into the string associated with a 
stranded state. This simple arrangement works well for 
short inputs. Unlike a system of pointers to components,  
the bit strings are complete upon reaching stateset 
S(n-f-2). Error loci are available without backtracking 
along pointer paths. 

One can speed things up. For  instance, in any S1 
relaxation final states ( p , p + l , x , e )  and (p ' , p '+ l , x , e ' )  

such that L(p) = L(p ' )  and e' < e can be collapsed into 
one final state (p' ,p'-f-l ,x,e') .  This reduces relaxation 

effort f rom O(I P [2) to O(I N [2). 
Counting solutions requires attention to yet finer 

details. A counter a is inserted into each state, so the 
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Fig. 10. 
Grammar 
rules 

z - ~  s .-.t 
~ -  xCD 

S ~ - u G  
C I,- EsA 
D~-F 
G I~ EsK 
E l~Ec 
E~-c 
A ~ fgh 
F J~bF 
F~'by 
K ~'BL 
B ~- ghk 
L ~PbL 
L ~bz 

Input and representative Total Possible 
error loci(underscore) errors analyses 

cs by ~ 4 i 

xc2sfghb2y~ 0 i 

~e2sghkb2z~ 1 1 

xc2sgh~b2y ~ 2 7 

Fig. 11. 
Z 

X e c s g h kb ~ y 

Z 

/ A 
x C c s ~ g  h k b b y 

Z 

/ i l / .  

x c c s g k b 15 ~ .  

form is (p,j,f,e,a). If a state (p,j,f,e,a) is to be added to 
S(i) which has (p,j,f,e,a'), the result is (p,j , f ,e,a+a').  
Since this changes the rule of adding (normal adding 
would reject), care must be exercised during Stage 
$2 ( f=x)  of any COMPLETER that no final states with 
f = x  are generated since these states have been ac- 
counted for already in Stage S1. 

Counts of components of a state are multiplied to 
get the state's ambiguity. Null phrases (NULLVR) must 
have a table NULL# which gives their ambiguity, or 
count. Naturally no cyclic variables A ~ B ---+ C --+ A 
can be allowed; otherwise ambiguities could be un- 
bounded. This prohibition is used in the algorithm: 
In an S1 relaxation, among unselected least-error final 
states with f =  x, there will be at least one which cannot 
be influenced by the others. This final state is selected, 
since its ambiguity counter a will not change. 

Here is an example. Suppose there is a rule A ~ B. 
Let As --~ B.,e,a and Bj --+ abc. ,e,a '  be final states in 
S(i). Let S(j) contain state As -+ .B,0,1. In S(i), state 
Bj --~ abc. ,e,a '  cannot be influenced by As --~ B.,e,a, 
so the former is selected first even though error counts 
e are the same. The end result is a final state As --+ 
B. ,e ,a+a '  in S(i). If  chosen in the other order, im- 
proper counts for phrase A would result. 

As an example of an analysis, consider the LR(1) 
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grammar and results in Figure 10. Leinius, 1970 [20J, 
devotes some attention to recovery from errors with 
this grammar, which is also simple precedence. Sen- 
tences in Figure 10 should have a form xc"sfghbmy or 
uc-sghkbmz. Error loci are marked via underline. A 
locus may contain more than one error. 

Analyses for input xc2sghkb2y are interesting and 
varied. Figure I1 depicts seven interpretations. First, 
one assumes that an " f "  has been deleted and a " b "  
changed into "k" .  Next, assume an " f "  deletion and 
the " k "  to be inserted. The " k "  can associate to five 
different phrases, given interpretations shown in the 
center tree of Figure 11. And last, the pair "x  . . .  y"  
could be wrong, i.e. mutations of the correct set 
"U • • • Z". 

No grammars larger than those which appear in 
text examples have been tested. With longer inputs and 
larger grammars both memory and execution times 
grow uncomfortably. A compiled version--tailored to a 
specific grammar--might  provide further efficiencies. 
Earley suggests such an approach. 

This research has shed some light on attempts to 
fashion recovery and correction strategies for syntactic 
scanners. Experience with the programmed algorithm 
indicates that ALGOL-like phrase structures are ex- 
tremely fragile. A least-errors global correction is often 
worse in reconstructing an original sentence than a 
correction constrained as in Section 4. This suggests 
that distances between ALGOL sentences are not great. 
Least-errors recognition then implies whole new sen- 
tences, rather than reconstruction of originals. "Robus t "  
grammars might gracefully sustain syntactic damage in 
sentences without bizarre disintegration of structure; 
the problem is to find robust features while preserving 
usefulness. 
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M a t h e m a t i c s  E d i t o r  

A Fast Method for 
Solving a Class of 
Tridiagonal Linear 
Systems 
Michael A. Malcolm 
University of Waterloo 
and 
John Palmer 
Stanford University 

The solution of linear systems having real, symmetric, 
diagonally dominant, tridiagonal coefficient matrices 
with constant diagonals is considered. It is proved that 
the diagonals of the LU decomposition of the coefficient 
matrix rapidly converge to full floating-point precision. 
It is also proved that the computed L U decomposition 
converges when floating-point arithmetic is used and 
that the limits of the LU diagonals using floating point 
are roughly within machine precision of the limits using 
real arithmetic. This fact is exploited to reduce the 
number of floating-point operations required to solve 
a linear system from 8n -- 7 to 5 n  -t- 2k  - -  3, where  k 

is much less than  n ,  the order of the matrix. If the 
e lements  of the subdiagnals and superd iagona l s  

are 1, then only  4 n  q- 2k  - -  3 opera t ions  a re  needed.  

The ent i re  L U  decomposition takes k words of s to rage ,  

and cons iderable  sav ings  in array subscripting are 
achieved. Upper and lower bounds on k a r e  ob ta ined  in 

t e rms  of the ratio of the coefficient matrix d i a g o n a l  

constants and parameters of the  f l oa t ing -po in t  number  

system. 
Various generalizations of these  resul ts  a r e  discussed. 
K e y  W o r d s  and P h r a s e s :  numer i ca l  l inear  a lgeb ra ,  

l inear  sys tems ,  Toep l i t z  mat r ices ,  t r i d i a g o n a l  matrices 
C R  C a t e g o r i e s :  5, 5.1, 5.11, 5.14, 5.17 
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