
Programming T.A. Standish
Languages Editor

Syntax-Directed Least-
Errors Analysis for
Context-Free
Languages: A Practical
Approach
Gordon Lyon
Institute for Computer Sciences and
Technology, National Bureau of Standards
U.S. Department of Commerce

useful--in translator writing systems and in relation
to on-line control languages. Other possibilities might
lie with computer-aided instruction systems and speech
recognition.

Path-at-a-time pushdown methods can theoretically
minimize errors in sentences, but at an enormous
computat ion overhead. It is easy to trick such analyses
into k n execution times for input of length n, and con-
stant k determined by a specific grammar. The al-
gorithm which is developed here- -based upon Earley's
recognizer for context-free languages--maintains n 2
storage bounds and n 3 execution bounds, which Earley,
1970 [5], established.

An earlier algorithm by the author (Lyon, 1972 [22])
used Younger 's (1967 [31]) recognizer as a framework
for time n 3 least-errors recognition. Principal draw-
backs in that method were: (i) the limited Chomsky
normal-form grammars; (ii) restricted errors (only
mutat ions-- replacement of a terminal by another
terminal--were handled); (iii) inflexible use of storage
(Younger 's algorithm is matrix oriented). The new
algorithm relaxes each above restriction.

A least-errors recognizer is developed informally
using the well-known recognizer of Earley, along with
elements of Bellman's dynamic programming. The
analyzer takes a general class of context-free gram-
mars as drivers, and any finite string as input. Recog-
nition consists of a least-errors count for a corrected
version of the input relative to the driver grammar.
The algorithm design emphasizes practical aspects
which help in programming it.

Key Words and Phrases: arbitrary input strings,
context-free grammars, parsing, dynamic program-
ming, stored subanalyses, separability, state merging,
least-errors correction

CR Categories: 4.12, 5.23, 5.42

Introduction

There are many advantages to syntax-directed con-
text-free analysis (Feldman, 1967 [10]), but in general,
error recovery and correction are not among them.
Feldman and Gries, 1968 [11], writing some years
ago in an article on translator writing systems, spe-
cifically mentioned two general areas where automatic
recovery or correction of syntax errors would be very

Copyright O 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Mental Health Re-
search Institute, University of Michigan, Ann Arbor. Author's
address: U.S. Department of Commerce, National Bureau of
Standards, A265 Tech, Washington, DC 20234.

1. Selected Prior Efforts

A brief mention of some previous approaches to
error recovery and correction is helpful in placing
results of this paper into perspective.

Failure-driven Techniques
Conway, 1963 [4], presents early arguments on a

(deterministic) parser which can indicate faulty input
easily. Bollinger, 1968 [2], discusses a metacompiler
for Conway's recursive transition diagrams; the mecha-
nism includes a facility for specifying limited error-
recovery actions.

Levy, 1971 [21], considers clusters of n or less errors
at points in sentences of deterministic languages. Using
an error-correction mode only when errors are de-
tected, his scan proceeds left-to-right, treating each
cluster independently. He shows that fiducial points
may exist in the scan; these can help in determining
the range of a cluster of errors.

Leinius, 1970 [20], presents a simple-precedence
parser which automatically generates a stack discipline
for recovering from error conflicts. The discipline
does not interfere with normal processing. LaFrance,
1970 [18] and 1971 [19], covers other stacking strategies,
paying attention to avoid severe error-induced back-
tracking. Adaptive strategies have been proposed by
James and Partridge, 1973 [15].

Somewhat distinct from other failure-driven error-
handling techniques, Eggers, 1972 [7], begins by ex-
amining regular expressions. Left-right and right-left
scans are employed. Errors show as inconsistencies in
states of the left-right and right-left analyses for a
given input point. This dual-scan correction mecha-

Communications January 1974
of Volume 17
the ACM Number 1

nism is then incorporated (Eggers, 1972 [8]) into a
system of recursive finite state automata.

Failure-driven analysis which requires serial ex-
ploration of multiple paths can get tangled easily in
combinatorics of backtracking. A left-to-right cor-
rector of Irons, 1963 [14], pursues concurrent analyses
to diminish combinatorial effects. Although more
general than most failure-driven strategies, Iron's cor-
rector still assumes that errors lie within "local toler-
ance" of the last path to fail. In conjunction with
Iron 's ideas on concurrent analyses for error handling,
Wegbreit, 1970 [29], recommends Earley's recognizer
to handle an extensible language.

Local error correction may not lead to a least-
errors correction. For example, consider a language

= {abkefg V d b ~ x y z / k _> 5}. Input "dbkefg ' ' has a
good correction "ab~efg, ' ' but local corrections lead
to "db~xyz. ' ' On the other hand, global correction can
be extremely time-consuming if it is not approached
carefully.

strong similarity to error-correction problems in con-
text-free language parsing. A picture grammar uses
pattern primitives and elaborates syntactic structures
upon these basic forms. Imagine an analysis of hand-
printed letters. Variations in printing take the form of
disturbances on the primitives and amount to the
addition of noise. Thus:

A question was asked [by Gorn] regard:ng how a graphical manip-
ulation system interprets syntactical specifications for [pictorial[
objects when the syntactical specifications refer to objects that
are not well formed, hence, that have no pictorial representation.
•.. [Discussion summary on graphical languages. Comm. ACM 9,
3 (Mar. 1966), 175].

Kovalevsky, 1968 [17], attacks this problem in
noisy pictures. His goodness-of-fit function is separable
into stages compatible with segments of grammatical
analysis. As a consequence, dynamic programming
can be used to obtain best-fits in a fairly efficient way.

2. Preliminaries

Hypothesis Generators
Methods in this paper fall among techniques which

use hypothesis generators internal to analysis mecha-
nisms. Developing such methods, Hopcrof t and Ull-
man, 1966 [12], discuss the increase in difficulty of
recognition for formal languages, as input strings
differ in various ways from well-formed sentences:

S The main results are that e-tuple errors, burst errors, and the type
of errors corrected by recurrent codes preserve regular sets, con-
text-free languages, and context-sensitive languages. However,
deterministic context-free languages are not in general preserved
under any of the above error types...

Levy, 1971 [21], includes a brief discussion on ter-
minal symbol insertion, deletion, and mutation hy-
potheses applied to context-free analysis. Since k or
less errors in sentences preserve context-free properties,
Levy argues that Earley's recognizer can correct k
or less errors in time n 3. The constructive approach in
this paper shows that restriction to k or fewer errors
is unnecessary-- input may be any string over the set
of terminal symbols T. A modified Earley's algorithm
naturally limits execution times to n 3.

Peterson, 1972 [25, 26], develops a theoretical
least-errors parser using Earley's algorithm and ex-
tended grammars. New rules supplement an original
g rammar to account for insertion, deletion, and muta-
tion errors. For example, an extended Euler g rammar
will have quadrupled its original rules. Although
Peterson's g rammar extensions neatly support least-
errors correction, they introduce problems as one
swings toward a practical side: space is consumed;
execution may be slowed.

Mention has been made that Younger 's recognizer
can be modified to correct mutation errors. Teitelbaum,
1973 [28], provides further results which relate such
analyses to algebraic power series•

Work in syntax-directed pattern recognition has a

Context-free Language Terminology
A context-free language, CFL, is generated by a

four-tuple G = (N, T, S, P); N is an alphabet of
variables; T a set of terminals; and P a set of context-
free rules of the usual form. S is a distinguished start
symbol, sometimes replaced by Z in the following
text.

Let p be an index over rules P of g rammar G.
Rule p is written as L(p) = c(p,1)c(p,2) . . . c(p, p),

where L(p) is the left-hand side, LHS, of rule p, and
c(p, .) are components in the right-hand side, RHS.
Rule p defines a phrase of variable L(p). RHS(p)
references phrase p of variable V = L(p).

A substitution replaces an occurrence of a rule's
LHS with the RHS of the rule. A derivation is a se-

quence of substitutions: I f x ~ y ~ z, write x ~ z.
A C F G is grounded if, for any variable V in N, there

exists a string w in T* and V ~ w. Only grounded
grammars are considered in subsequent discussion.
String (word) w over T is a sentence in language ~ (G)
if there is a derivation from S to w via rules of gram-
mar G.

An " O r d e r " Notation
Given f (x) over domain X, function f is of order

g(x) , written f = O(g(x)) , if for fixed constants k
and c, f (x) < k g(x) -+- c. Let f h denote f (x) h (x) , a
product of two functions. I f f (x) = O(x) and h =
O(x), then

f h < kfkhx 2 + clkhx + chklx q- QCh

SO that f h = O(x2). In general O(xk)O(x) = O(xk+l).
For funct ion f (x , y, . . .; a, b, . . .), f (x , . . .) = O(g(x))
provided constants k and c can be chosen to maintain
bound k g (x) + c for all parameter and argument
values.

Communications January 1974
of Volume 17
the ACM Number 1

Fig. 1.

t (1)

s (8)

. . . . t (n) --4

Fig. 2.

6

7

S(1) t (1) = a S(2) t (2)=b 8(3) " t S(4)

Grar~ar : Z -~- 8 --t Input : a b - t
S - ~ a S
S - I ~ b

Text symbols
-q

P

IPI
L(p)
c(p, j)
P
t = t (1) . . , t(n)
i , j
e,e',e"
f
N
T
S(i)
(p,j,f ,e)

o()
G
£ (G)
n
a,~,y
6

Z

HALT (end) marker
set of productions for G
error map (strings to strings)
number of productions
left-hand side of rule p
component j of rule p 's RHS
number of components in rule p

input string, length n
indices
error counts
backpointer to statesets
set of variables for G
terminals
stateset i, composed of states
state, a four-tuple
Kleene star
"o rde r "
a context-free grammar
language of G
length of input string t
strings
null (empty) character
a new distinguished start symbol

derives via grammar G

derives via G and error map

Earley's Algorithm Without Lookahead
Preparatory to discussion of the error corrector,

details of Earley's context-free language recognizer
are informally reviewed.

Any context-free grammar G with distinguished
rule Z ~ S --t is suitable, given that halt symbol -4
and distinguished variable Z appear only in this first
of productions, p = 1. Remaining rules are arbi-
trarily ordered.

Input t = t(1) . . . t(n) -4 is a member of T*- I .
Each position preceding and following input character

t(i) is indexed as i and i-t-l, respectively. The index
position falls between input characters. Location 1
marks a locus in front of the whole input string t.
Index n + l falls between t(n) and -4.

A state is a triple (p , j , f) where p is a production
number, j marks a position in RHS(p), so that 1 _< j
_< p + l . f i s a pointer to some location in t: namely, a

point on the left of t(f) as described above. State (p,j,f)
isfinal provided t h a t j = p-k- 1 ; i.e. cursor j has reached

maximum value. Final states represent phrases which
have had all components recognized and have been
recognized themselves. Final states signal certain
substitutions which are to be discussed later.

A stateset is a set of s ta tes--where no particular
constraint is imposed- -o ther than order of arrival of
states. (The changes to accommodate errors will in-
clude a stronger constraint on order.) A state may be
added to the end of the list of states of some stateset
unless it is already on the list. Each stateset S(i) is
uniquely associated with position i of input t. There
are n + 2 statesets for input t(1) - - . t(n) -4 of length
n + l .

States in a stateset S(q) represent partial phrases
that are known up to point q in a left-to-right scan of
input t. I f (p , j , f) is in S(q), then components c(p,1) . . .
e(p, j - - 1) of rule p have been discovered in substring
t (f) . . . t(q--1). Backpointer f indicates where com-
ponent c(p, 1) begins; i.e. stateset S(f) had state (p , l , f)
which initiated the search for L(p) represented by

(P,J,f).
A pictorial notation of state works well for illustra-

tions. Backpointer f becomes a subscript to an LHS;
cursor j, a dot in an RHS. Thus a rule V ---* abc num-
bered p = 13, and state (13,2,3) in stateset S(8) can
be explicitly described as in Figure 1.

Figure 2 depicts the mechanisms of Earley's recog-
nizer in labeled steps. To start, state Z1 ---* .S -4 is
placed at the head (of the empty) order list for stateset
(S1). Processing may now begin.

Communications January 1974
of Volume 17
the ACM Number 1

In Step 1 of Figure 2, a state is removed from the list
of S(I) states. Only Z1 ---+ .S -~ is available. The cursor
in this state indicates that the variable S is sought. The
algorithm adds to S(1) all states which represent pos-
sible searches for S. Such states have back pointers

f = 1 and represent rules 1" such that L(r) = S. The
dot cursor shows that no part of any RHS of any new
state in S(1) has been matched. That is , j = 1.

In Step 2 of Figure 2, another selection from S(1),
viz. $1 --~ .aS, successfully matches its " . a " to t(1).
$I -~ a .S is added to S(2). A third selection from S(1)
only exhausts the list of states for S(1).

The first state chosen from S(2) predicts, in Step 3,
a phrase S, and generates two new states on the list
for S(2). The first of these is of no value, but Step 4
puts a state into S(3).

Only one state is available in S(3). S._, --+ b. is a final
state with a pointer back to S(2). The algorithm returns
to S(2) and advances into S(3) all states awaiting phrase
S, appropriately advancing their cursors. Step 5 depicts
this, which causes another final state to enter S(3), Step
7 completes recognition.

The recognizer is easily changed to a parser. With
provision for pointers to substituted phrases, a complete
phrase structure is available.

The least-errors recognizer in the next section builds
upon Earley's concepts by incorporating dynamic pro-
gramming into recognition. This requires an augmented
notion of state.

Because the algorithm attempts to use storage effi-
ciently, s ta t e se t is redefined, as are orders and
methods of processing states in a stateset.

3. A Least-Errors Recognizer

Sentences may have mutations, insertions, and de-
letions of terminals. Any grounded context-free gram-
mar G is acceptable to the algorithm, provided there is
a distinguished rule Z ~ S --t, as discussed previously.

Recognition consists of an optimal, least-errors count
e of errors in t, the input, t ¢ T*. The techniques are
easily adapted to supply more details of analysis. A
version of the algorithm has been programmed which
gives error counts, error loci, and a count of the num-
ber of least-errors solutions.

No detailed proof is given for the new algorithm.
Readers interested in developing a proof might find
Jones, 1972 [16] helpful.

The objective is to find the least-errors necessary for
correction. Such error counting is separable, that is,
subanalyses contribute to analysis without interactions
(crossproducts). For example, consider a rule X --+ Y Z.
In analysis, errors of X are the sum of those of Y and
Z. If Y and Z are least-errors, then the composition
resulting in X is least-errors.

Since the error analysis function is separable, mini-
mizing errors in each subanalysis is an efficient ap-

proach. A least-errors parse must have least-errors
components. Otherwise, it is not least-errors, since
better components could be substituted. This is actually
a statement of Bellman's (1957 [1]) dynamic program-
ming technique, which is based on his principle of
optimality:

If an objective function is separable into independent segments,
then each segment may be individually optimized and the results
combined into a final optimal solution.

Dynamic programming is simple but subtle. For
instance, it tells nothing about how to compose a
final solution from optimal segments. Consequently
all possible compositions are tested; a final solution is
chosen from alternatives. Each alternative is optimal
for its particular composition, but some alternatives
are usually better than others. Only a representative
least-errors correction is returned. Such a representa-
tive may or may not correspond to an original error-free
sentence, depending upon which sentences in language
£ (G) can be changed into the actual input in a mini-
mum number of errors.

If dynamic programming is to be effective in re-
ducing combinatorics, a recognizer should save a
particular optimal subanalysis of an input segment
only once. The recognizer will develop many sub-
analyses independently and concurrently. Subanalyses
which result in the same variable being assigned to the
same segment of input can be merged; a least-errors
subanalysis is chosen as representative and used later
with all other larger analyses which require it.

Error-correction mechanisms (given shortly) are
not embedded directly and simply into Earley's par-
ticular implementation. A phrase (or subanalysis) in
the error-free case is without uncertainty of any kind.
With errors, a realization of a phrase may not be opti-
mal. Any phrase used as a component in another
analysis should be least-errors, thereby preventing
duplication of effort which would otherwise be neces-
sary when an improved phrase is discovered. The new
algorithm seeks all recognitions of a phrase over some
segment and chooses a least-errors realization as
representative. There must be a late binding time for
use of phrases as components, requiring not merely
that phrases be found, but that they be least-errors.
To this end much of the later discussion will cover
definite processing constraints which do not plague
the usual Earley algorithm.

Along the same vein, Earley discusses various look-
ahead cases. For purposes of this paper, lookahead
length k is set at k = 0 since the error mapping is so
unrestricted there is actually no information in any
lookahead. Given constraints upon errors, it is possible
to make some sense of k # 0. Indeed under special
conditions Earley's O(n) execution times for determi-
nistic grammars are possible. This holds true only if
errors preserve features in the grammar necessary for
deterministic recognition and if certain lists which
Earley has in his implementation are included. Combi-

Communications January 1974
of Volume 17
the ACM Number 1

nations of g rammar and errors which preserve determi-
nistic parsing appear to be rather unrealistic.

General Algorithm for Least-Errors Recognition
Input t is taken from T*. Endmarker -t is never

subject to error: it always signals correctly an end of
analysis. The notation for productions is the same as
that used for Earley's algorithm. States have an error
counter, and statesets a new ordering among their
states.

A state is a quadruple (p,j , f ,e), where p is a produc-
tion number, j marks a position in RHS(p) , so that
1 < j _< p-f-l , f i s a pointer to some location in t, and e

the error count. Because grammar G is grounded, there
is some shortest sentence of length k in £(G) . It follows
that no input of length n has more than n + k errors. One
may simply assume that all of n input characters are in-
sertions and all of k characters of a shortest sentence
were deleted. Thus e _< n+k , for input of length n.
Final state (p,p+l,f ,e) denotes recognition of phrase

RHS(p) with e errors. A state is depicted as in Section
2, except that an error count follows : Zi ---* S. -t,e.

A stateset is an ordered set of states. States within a
stateset are ordered by ascending values of j within p
within f ; f takes descending values. Each stateset S(i)
is uniquely associated with position i of the input
string t. There are n + 2 statesets for input t(1) . . .
t(n)-q of length n + 1.

Adding to Statesets. In the left-to-right matching
of input, states are added to statesets. If state (p,j,f ,e)
is a candidate for admission to a stateset which already
has a similar member (p,j,f,e') and e' < e, then (p,j,f ,e)
is rejected because of the principle of optimality. How-
ever, if e < e', then (p,j,f,e') is replaced by (p,j,f,e).

Processing
The algorithm processes n + 2 statesets on ascending

index i, doing S(1) through S(n+2) . Each stateset S(i)
is initialized with states (k, 1, i, 0) for k between 1 and
tPI, where there are IPI rules in grammar G. Thus,
at each locus of input t, all phrases are tentatively be-
gun. Later discussion covers a more efficient predictive
method. For clarity, this is omitted from early, more
important details.

Processing of stateset S(i) begins after its initializa-
tion (above). A procedure SCAN is called for each state
in S(i). SCAN checks various correspondences of input
token t(i) against terminal symbols in RHSs of rules.
Only when SCAN has been called for all of stateset S(i)
is further processing of S(i) performed.

Once SCAN is done, COMPLETER substitutes all final
states of S(i) into all other analyses which can use
them as components. COMPLETER is the difficult phase
of this algorithm because it is intimately tied to imple-
mentation considerations, especially space conservation.

When the above are finished for S(i), analysis begins
similarly for S (i+ 1). Processing terminates at stateset
S(n+2) , which is treated as a special case.

SCAN
SCAN handles states of S(i), checking input t(i) with

requirements of states in S(i) and various error hy-
potheses. These SCAN actions are given and explained
below for a state (p,j,f,e) in stateset S(i). " A d d " has
special meaning, as discussed previously.
1. I f c(p,j) = t(i) then add - - i f pos s ib l e - - (p , j+ 1,f,e) to
S (i + 1). This case is a pelfect match.
2. If c(p,j) is terminal but not equal to t(i), then add
(p , j+ 1,f ,e+ 1) to S (i+ 1) when possible. This is a muta-
tion-error hypothesis.
3. I fc(p,j) is terminal, then add (p , j+ 1, f , e + 1) to S(i),
if it is possible. This deletion hypothesis assumes that
component c(p,j) is not available, that it was deleted
from the input.
4. Add (p,j , f ,e+l) to S (i + I) if possible. Here assume
that t(i) should not be in the input: an insertion hy-
pothesis.

All SCAN actions are tried. The recognizer is making
guesses at any point as to which action is right. To be
correct, the recognizer covers all possibilities. No con-
text can help cut possibilities, since with errors context
is not reliable. It is very crucial that Earley's algorithm
limits combinatorics via merging and sharing of states.

The sorted order of states in S(i) becomes important
in SCAN'S pass. Those states which may be added to
S(i) f rom SCAN actions on (p,j,f,e) in S(i) lie ahead of
(p,j,f,e) since ordering is via increasing values of j.
This insures that a single SCAN pass is adequate.

Two Examples. Partial analyses depicted in Figures
3 and 4 illustrate SCAN actions. States shown are repre-
sentative of those occurring with an augmented Earley's
recognizer.

Figure 3 presents SCAN actions on a state represent-
ing T --*. a. Three paths represent three error hy-
potheses which can hold at one time, viz. deletion
error, insertion error, and mutat ion/match. SCAN ap-
plies these possibilities to each state. Error counts
appear after each RHS of a state.

Figure 4 partially depicts an error analysis of t(1)t(2)
= a a using a grammar from Figure 2. Many states
are derived in more than one way. Some paths are dis-
carded subsequently as nonoptimal, while others
create new, diminished, error counts for states.

C O M P L E T E R
Upon completion of the pass of SCAN over S(i),

COMPLETER begins its run. COMPLETER handles substi-
tution of final states in S(i). Each final state represents
recognition of some nonterminal (phrase). Final states
have pointers back to the stateset of their origin. In
these originating (or prior) statesets may lie stranded
states awaiting recognition of some nonterminal com-
ponent. (Observe that SCAN does nothing special for
nonterminals.) COMPLETER'S task is to search back for
stranded states awaiting nonterminals. For example,
suppose Up ---* W.Va , e is a stranded state in S(x), and
that COMPLETER substitutes final state Vx --~ 7. ,e' which

Communications January 1974
of Volume 17
the ACM Number 1

Fig. 3.

insertion hypothesis

mutation-match
t h e s ~

S(i) t(i) S(i+l)

Rule used: T--l~a

Input: t(i)

Fig. 4.

S I qm- . a S , l ~

S1 .*~.. b ' ' l

s(1) t(1)=a S(2)

S 2 --~ b. ,i

/
t(2)=a s(5)

is in S(i); this results in a state Up ~ WV.a,e+e' being
added to S(i). Notice that errors are additive.

A problem occurs among final states in stateset S(i)
which have a common-valued backpointer f COM-
PLETER should not repeat substitutions, yet Figure 5
demonstrates that unless final states are carefully se-
lected, some COMPLETER substitutions may be wasted.

Consider details of Figure 5. If state Y1 --+ b.,1 in
S(2) is first substituted back into $1 - + . Y,0 of S(1), then
state St ~ Y.,1 is added to S(2). This COMPLETER ac-
tion will have to be redone, since state U1 ~ a . ,0 ,in
S(2) is substituted back into Yx ---* .U,0 of S(1), and
this result into Sa ~ .Y,0. In the end S~ ~ Y.,1 of S(2)
is replaced by $1 --+ Y.,0.

To avoid futile COMPLETER substitutions of nonopti-
mal final states, COMPLETER first substitutes final states
in S(2) whose errors are fewest. A least-errors final state
of S(2) will never have its error count diminished by
states entering S(2) via COMPLETER substitution of yet
unselected final states in S(2). This follows because
state s entering S(2) via COMPLETER has errors e-[-e' at
least equal to errors e' in the final state in S(2), which
satisfied the variable it was waiting for.

Final State Selection Given Pointer f. A rule for
COMPLETER'S selection of final states may be stated:
Among yet unused final states in stateset S(i) with
common backpointers f , COMPLETER selects a final
state whose error count e does not exceed error counts
of any other. The selected final state is removed from
the list of unused eligibles, and substituted. Substitu-
tions are guaranteed sound. I f a selected final state is
modified by any other final state, this modification
has been accomplished already. Alternately, since a
selected final state is least-errors among those awaiting
substitution (having f in common), there is no chance
that it will be modified to fewer errors by any yet-to-be
selected final state in S(i).

Selecting Backpointer f. Until now discussion has
assumed that COMPLETER selects unused final states
from groups with common backpointers f ; constraints
upon values of f have been skirted. Backpointer f de-
termines where a subanalysis began. This is very ira-

Rules used: S ---~-a S
S--~-b

Input: a a

x = blocked (not tksed)

/ = replaced state (error diminished)

portant since groups of final states in S(i) can be ordered
by their ability to influence one another across values
ofbackpointerf Given two final states s = (p,p+ 1,re,e)
and s' = (q,q+l,m+l,e') in S(i), it is possible for s' to

be substituted into a state with backpointer f = m in
stateset S (m + 1) and thereby modify s in S(i). There is
no possibility of s influencing s'. To do so, s would have
to satisfy a component in the RHS of the rule for s'.
This is impossible since s spans more input than does s'.

COMPLETER for S(i) works first with a group of final
states with the highest possible backpointer (f = i) and
then successively considers each group of lower-valued
backpointers until all have been used. In this manner,
any interaction of S(i)'s final states across backpointer
v a l u e s f i s kept in front of COMPLETER--it will not miss
pertinent final state error changes in S(i) on its single
COMPLETER pass, nor will any substitutions have to be
redone.

C O M P L E T E R in Detail
This section describes exactly how COMPLETER of

S(i) functions on each group of final states in S(i) with
common backpointers f = x. Values for f are chosen in
descending order as indicated above, ranging from f--- i
to, finally, f = 1. Each value f = x determines an associ-
ated prior stateset S(x).

Two ways that COMPLETER can substitute final states
of S(i) into states of S(x) are:

S1. Select final states (p,p+l,x,e) in S(i) and check

in stateset S(x) for stranded states awaiting L(p).
Earley's algorithm does this efficiently with the help
of lists which link all states in stateset S(x) awaiting a
particular variable L(p). Least-errors substitutions
for COMPLETER have been mentioned in this context.

Communications January 1974
of Volume 17
the ACM Number 1

Fig. 5.

~ Y1 ~ . b , 0

Y1 -w- .U,O

U I ~ . a , 0 - , .<
s O)

G r m m a r : S - - ~ y
V - ~ - b
Y - ~ - U
U - ~ - a

I n p u t : a

- - - - - - - - - - - - -__ ? _ _

t (1) = a

-.).S I ..~ ?

%Y1 - ~ b . , 1

~,.-U 1 --~- a . ,0

s (2)

$2. Search through S(x) and with each stranded
state awaiting nonterminal W, check for final states
(p,p+l,x,e) in S(i) such that L(p) = W. Substitute a

least-errors final state of those available. This converse
strategy dispenses with lists for S(x), although at a
cost of always running in time O(nS). I f a grammar is
unambiguous, Earley's linked lists allow O(n 2) execu-
tion times. However, unrestricted errors force O(n 3)
times anyway. $2 conserves memory otherwise used for
pointers.

COMPLETER strategy for substituting final states of
S(i) into S(x) is mixed. A first Stage SI (a relaxation)
is performed to insure that final states in S(i) have least-
errors when substituted into S(x). Discussion on Figure
5 contained some ideas on this matter, which will be
amplified in detail. Stage $2 performs substitutions into
S(x) via the second strategy. Principal motives for
dropping Earley's algorithm here involve a desire to
save space (no pointers in S(x)), and an at tempt to
push much of storage into a sequential organization.
These assumptions underlie the whole COMPLETER
philosophy.

Stage $1: Stabilization. Let S(x) be typical of the i
statesets associated with a backpointer value f = x
for S(i). COMPLETER begins by substituting (details
given shortly) all final states in S(i) with common
pointers f = x into all possible stranded states in
S(x) with pointers f = x. The result is a set of final
states in S(i), f = x, which have minimal-error counts e.

Let m be a state with fewest errors among yet un-
selected final states in S(i) with pointers f=x . Where
possible, COMPLETER substitutes m into states (p,j,x,e)
of S(x). Let a successful result be V~ --~ a.#,e. COM-
PLETER computes additional errors necessary to delete
part # of the RHS, that is, to map (via deletions) #
into e. This is easily accomplished with a table NULLVR
of least-errors counts for deletion of any variable W

in grammar G. Let e ' be the null cost of/3. COMPLETER
builds final state V~ --~ afl.,e+e' and adds it to S(i), if
possible. This stage of COMPLETER iS concerned only
with least-errors counts in final states (f = x) of S(i).
Other possible results are deferred for $2. Stage $I has a
finite bound since states with f = x are limited in both
S(i) and S(x). S1 continues until all final states (f = x)
in S(i) have been selected.

Stage $2: Substitution. Stage S1 assures that all
final states with f = x in S(i) are of least-errors.
COMPLETER stage $2 then searches through stateset
S(x) and with each stranded state awaiting non-
terminal W, checks for final states(p, p + l , x, e) in

m

S(i) such that L(p) = W. $2 substitutes a least-errors
final state of those available in S(i). The result is
added to S(i).

Other C O M P L E T E R Actions. SCAN is used on
COMPLETER'S " a d d " actions to S(i) since the scanner will
not be called again for S(i). For example, if COMPLETER
Stage $2 adds a state of the form A --~ a V . c X Y to
S(i), then SCAN is used to process the "c" relative to
input t(i). States for A --~ aVc.XY, A --~ aVcX.Y,
and A --~ aVcXY, are added to S(i). The latter two
states are derived from SCAN of A ~ aV c .X Y using
table NULLVR of null string matchings (explained below).
SCAN is applied to any state added to S(i) during COM-
PLETER, including final states derived in stage S1.

Matchings which span no input are represented in
stateset S(i) by final states of the form (p,p+l,i,.).
Although COMPLETER could handle null-string final
states, such null matching is duplicated work since it is
independent of input and done identically at each
stateset. Table NULLVR of least-errors variable deletions
should be built prior to regular processing. With such a
table, SCAN of S(i) can handle null-phrase cases; COM-
PLETER of S(i) need not even consider final states in
S(i) with p o i n t e r f = i . SCAN'S deletion-error mechanism
then handles all null-matched variables via a rule: I f
possible, add (p,j+ 1,f,e+NULLVR(C(p,j))) to S(i).

This completes discussion of a basic least-errors
algorithm. As detailed, recognition is bottom-up. How-
ever, table NULLVR introduces ftexibilities which can
be exploited: By converting the algorithm into a top-
down recognizer, one may avoid inefficiencies in
blanket initializations of statesets.

A Top-Down Version
Once COMPLETER of stateset S(i) is freed from

doing final states with pointers f=i , this group of
states with f = i can be handled at any time during
processing of stateset S(i). Other SCAN and COMPLETER
actions on stateset S(i) are independent of SCAN actions
upon states in S(i) with pointers f=i: Table NULLVR
includes any cases which might arise.

The recognizer runs SCAN and then COMPLETER over
all states f # i in S(i), adhering to the order just es-
tablished. All variables which could be useful to states
in S(i) become known. For example, W is useful to

Communications January 1974
of Volume 17
the ACM Number 1

Y -+ a .Wb. The recognizer marks vector location
PRED(W) for each useful phrase W.

Prior to parsing, the recognizer builds an I N I X
] N I predictive matrix, where there are IN[variables in

g rammar G. If W ~ aXt3 and via errors ~ : ~ --~ ~, then

W ~ X~. Thus W predicts (via grammar G and errors)
phrase X. An appropriate entry is placed in the pre-
dictive matrix. Then during recognition, whenever
PRED(W)~--1 is made, PRED(X)= 1 should be set also.

Omitting states with f=i , the recognizer has per-
formed SCAN and COMPLETER passes for S(i). It then
initializes group f = i with all requests from request
vector PRED: I f PRED(W)= 1, it adds states (p,l,i,0) to
S(i), provided that L(p) = W. SCAN is then performed
over (only) this f = i group of states in S(i). COMPLETER
is not necessary because, in conjunction with SCAN,
NULLVR replaces it in this special case of f = i . These
initializations for group f = i and associated SCAN
actions constitute the PREDICTOR phase for stateset S(i).

Only phrases which could be useful to stranded
states in S(i) have been started in S(i). Analysis is
"predict ive." This PREDICTOR is very much weaker
than usual since errors allow many more derivational
possibilities. Discussion in Section 4 will include easy
ad hoc constraints on the error map ~; such constraints
allow PREDICTOR to perform rather effectively.

The Algorithm
State Z1 ~ .S-q,0 is added to an empty S(1). Proper

PRED(.) entries are made using the predictive matrix on
S. SCAN for f = i = l is performed. Thus S(1) begins
with PREDICTOR. Usual SCAN and COMPLETER passes
are unnecessary for S(1).

S C A N , C O M P L E T E R , and P R E D I C T O R a r e performed for
statesets S(2) through S(n+ 1).

The final result is state Z1 ~ S - t . , e in stateset
S(n+2) . This corresponds to matching phrase Z to
input t(1) . . . t(n)-t. The actual four-tuple is (1,3,1,e),
and e is least-errors for recognition.

Figure 6 presents an outline of the algorithm.
Implementation. This particular implementation

assumes random access memory. Each state occupies
one word. States (p,j,f,.) are sequentially ordered in
a stateset, j within p within f (f descends from i to 1).
Each sequential block of states (p,j,f, .) with common
backpointer f has a header node which gives the back-
pointer value f . This header occupies one word: No
backpointer f is explicitly stored in any state's storage
word. Headers serve adequately and conserve memory.
A vector points to the origin of each stateset. Storage
for the stateset uses ascending addresses from the vec-
tor indication.

A number of practical factors influence the organi-
zation:

(i) Sequential blocks eliminate any need for pointers
in states. This is quite important when programming
the algorithm since it does make heavy demands upon
storage. General unrestricted errors change the problem

10

Fig. 6.

i :=

C Begin)

t /
Add Z 1 -~- ,S -~ ,0 to S(1) /

Set a l l PRED e n t r i e s I appropriate for S

SCAN over all. states f~i '"~.___~
in stateset S(i)

x := i-I]
i

l

COMPLETER, s tage S1 for "
f=x (Get mnimal f i n a l
s t a t e s , f=x, in S (i))
Apply SCAN as needed,

COMPLETER, s tage $2,
Do p r i o r s t a t e s e t S(x)
looking for s t randed
s t a t e s ; apply SCAN for
each add i t ion to S (i)

+
x := x-i I

Use PRED to i n i t i a l i z e I /
f=i s t a t e s in S(i)

l SC~I over f=i s t a t e s
in S(i)

I i := i*l]

I Lmine stateset S(i+l)
Z 1 -~ S -~ . ,e

t
e)

quite a bit from error-flee analysis. Pointers are necessary
for unambiguous and deterministic cases which Earley's
implementation can take advantage of, but unre-
stricted errors preclude special cases.

(ii) A large portion of s torage--O(n2)--can be put
onto magnetic tape, leaving only a linear f rac t ion- -
O(n)- - in random access memory. I f S(i) is current,
then it and S (i+ 1) should be in random access memory.
Stage S1 should be done with s t a t e s f = x of S(x) in a
fixed size random access buffer.

(iii) Sequential methods can be very fast.
One theoretical consequence of using sequential

storage organizations is that a multitape Turing
machine is fairly easy to program for the algorithm
(Lyon, 1972 [23]). Such an implementation runs in
time O(n 3 log n). A log n factor arises because tape
fields must carry error counts e which in an ordinary
O(n 3) context-free recognition hold either 0 or 1. Error
is O(n). Sufficient cells must exist in each tape field
for a binary number of similar magnitude to the error.
Thus tapes are O(log n) longer than usual, and so are

run times.
States in S(i) and S (i + I) are addressed associa-

tively via p, j, andf . There is no search to find any state
in either stateset. This is not strictly necessary for prior
statesets S(i-- 1) • .. S(1).

Headers actually become useful only when a stateset

Communications January 1974
of Volume 17
the ACM Number 1

Fig. 7.

Z~.-> S.-~ ,i

Z/ -> S~. ,2

Sl -> .aS ,i

- S~_ -'~ a.S ,0

Sj[-~ aS. ,i

S 1 => .b ,I

Sj. -")" b • ,1

SK-')" .aS ,i

SZ-) b a.S ,0

S z -.I- aS. ,I

S~. -~ .b ,I

Zm -> .S@ ,0

Za-> S, d ,i

Z~-> Sq. ,2

S~ -> .aS ,0

S~ -~ a.S ,I

S~_ - ~ aS. ,2

S~. ~ .b ,0

S (2) t (2) f a

Z/-3~ .S~ ,2

Z z --~ S.-~ ,i

Zl -'2 Sd. ,2

S~. ~ .aS ,2

S~. -9' a.S ,I

S~ -~ aS. ,I

Sj_ - ~ .b ,2

S I -> b. ,2

S(1) t(1)fa S(4)*

z~-> . s 4 ,o

Z~-> S.-[,i

Z 3 -'~ Sq, ,2

S 6 ~ . aS ,0

S 3 -)P a.S ,i

S 3 -). aS. ,2

S5-~ .b ,0

s(3) t(3)ffi4

*Only state Z1-~ $4 .,e matters for the analysis.

INPUT : a a -1

GRAMMAR RULES :

z-~s4
S - - ~ a S
S ---) b

NULLVR(Z)= 2
NULLVR(S)ffi 1

S(i) is completely processed by SCAN, COMPLETER, and
PREDICTOR. At this point many states in S(i) are elimi-
nated, since only those awaiting variables, "stranded,"
are worth saving. Stateset S(i) is compressed to con-
serve storage. Contents of S(i) will not change f rom
this point forward.

Table NULLVR gives least-errors deletion counts for
each variable V, as in the e r r o r / g r a m m a r derivation

V ~ e. Natural ly if a rule V ~ e exists or a true gram-

matical derivation V ~ e is possible, then NULLVR(V)
= 0 .

Organization Comments. The SCAN pass over S(i)
establishes a basis for COMPLETER. I f SCAN actions on
some states resident in S(i) were deferred until after
SI phases of S(i), these Sl ' s could be invalid because
of new, least-errors final states f rom SCAN. SCAN actions
are also applied in stage $2 of COMPLETER. However,
any special cases which could influence S1 have been
accounted for in S1 through use of NULLVR. SCAN
associated with phases S1 and $2 differs f rom usual
SCAN. In the former cases there is a definite lower
bound on errors, namely, the errors of the back-
substituted state. States which get into S(i) through
routes other than COMPLETER of S(i) are not so easily
assigned lower error bounds. Consequent ly a SCAN
pass occurs prior to COMPLETER SO that these cases
are removed as a problem to COMPLETER.

Part SI of COMPLETER is actually a relaxation
method. Each selected final state m sets a minimal error
count for results of substitutions which use m. Since
each selected final state m has at least as many errors
as any prior selections o f Sl, m cannot influence them.
Fur thermore , only final states enter S(i) via actions of
S1; S1 only stabilizes error counts for final states in S(i).
Other $2 actions could be taken, but are deferred until
$2.

$2 uses least-errors final states in S(i) to perform
substitutions. Supplementary SCAN actions add to S(i)
and S(iq-1) those states which a SCAN pass failed to
provide because the necessary seed state was not in
S(i).

Example. Figure 7 presents a full analysis of the
input and g rammar shown in partial detail in Figure 4.
For input " a a - t " and g rammar Z --+ S - I , S --~ aS,
S --+ b, there are two corrections possible. One is " a b - t "
with one muta t ion-er ror assumed and the other
" a a b - I " , which assumes that a " b " was deleted. These

two solutions share a state l a b e l e d ~ Y) i n S(2) and are

completed by either s t a t e s @ o r @ i n S (3).

An Upper-Bound on Storage
Each state (p,j,f,e) has bounded parameters p, j, f ,

and e. For fixed values of p, j, and f , only one state
exists in stateset S(i). Parameter f ranges f rom 1 to i
in S(i). G r a m m a r G determines finite parameters p and
j. Storage for S(i) is thus O(i). It follows that, for n + 2
statesets of a complete analysis, total storage is O(n2).

A Bound on Execution
For any stateset S(i), the SCAN pass runs over O(i)

states. There are i-- 1 COMPLETER S1 stages, each taking
time propor t ional to [P 12 , where I P] is the number of
product ions in G. COMPLETER for S(i) also passes over
i--1 prior statesets, S(i - -1) th rough S(1). Each prior
stateset S(j) has O(j) members, and each " s t r a n d e d "
state in S(j) may require a bounded number of compu-
ta{ions in the substitution process. Thus COMPLETER for
S(i) executes in O(i2). Total COMPLETER time for all
analysis is O(n3). COMPLETER limits recognition speed.

4. Practical Constraints

There are ad hoc limitations which can be at tached
easily to the error hypothesis mechanism.

Local and Global Limits. Errors which involve
components of RHSs which are terminals are called
local errors. For example, muta t ion errors are always
local, because they involve a terminal in an R H S of a
rule which a state represents. Counter e in (p,j,f,e) is a
global error count, e is a total accumulat ion of errors.
Define a supplemented state (p,j,f,L,e), where all but
L are as before. Local error L is incremented to L + 1
if and only if e := e-t-1 via a muta t ion or character
deletion hypothesis. A state representing X ~ V can

11 Communications January 1974
of Volume 17
the ACM Number 1

Fig. 8.
INPUT: "v" = ("vc" * "vc" + +)

GRAMMAR: Z -~ [PG]
[PG] -) [PG] ; [ST]
[PG] -~ [ST]
[FC l -) [TM]
[FC] -+ [FC] * [TM]
[AE] -5 [FC]
[AE] -~ lag] + [FCI
[ASI -~ "v" = [AE]
[UC] -~ [AS]
[UU] -5 goto "L"
[UC] -) "L" : [UC]
[10] -) if "be" then
[i s] -~ [ic1 [uc]
I t s] - ~ [i s]
[CS] -5 [1S] e l s e [ST I
[US] -~ "L" ; [CS]
[ST] -+ [UC]
[ST] -) [CS]
[TM] -> "vc"
[TM] -5 ([~ 1)

PERFORMANCE: Local errors States Time (seconds)

6 2800 17.3
5 2690 16.6
4 2531 14.8
3 2337 13.9
2 2062 11.8
1 1300 6.1
0 -- 0.6

Fig. 9.
INPUT : LABL :

GRAMMAR :

PERFORMANCE:

BEGN DCLR ; DCLR ; Db~4Y ; END

Z -~ PRGM -~
PRGM -~ BLOK
PRGM -~ CMST
UBST -SASGN
UBST -> GOTO
UBST -) DMMY
UBST -~ PROC
BCST -) UBST
BCST -) LABL : BCST
UNCL -~ BCST
UNCL -~ CMST
UNCL -~ BLOK
STILT -~ UNCL
STMT -~ CNDL
TAlL -> STMT END
STMT -~ FORS
TAlL -~ STMT ; TAlL
BKHD -~ BKHD DCLR
BKHD -> BEGN DCLR
ULCD -~ BEGN TAIL
uL~ -, ~K~ ; TAlL

CMST -> ULCD
CMST -> LABL : CMST

BLOK -~ ULBK
BLOK ~> LABL : BLOK

Fiducials (no errors) States Time (seconds)

--- 2295 13.3
• 1567 9.3

; DCLR 984 5,7
; DCLR : 730 4.5

CONSTRAINTS: Local error cutoff = 2
Global error cutoff = 5

have no local errors. Clearly L < e for any state.
Limits can be set upon how many local and global

errors a state can have. An at tempt to add a state which
exceeds a local or global error l imit--called a cutoff - -
results in a failure. Whatever analysis the state repre-
sents is lost.

Cutoffs for local and global errors thin numbers of
states generated at any stage of analysis. Justifications
for cutoffs arise from observation of actual practice.
If a programmer meant to write a conditional state-
ment, it is unlikely that he would omit IF, THEN, and
ELSE. Consequently, a local cutoff of L <_ 2 is not un-
reasonable for a rule

conditional :: = IF boolean THEN statement ELSE statement

Any action which serves to limit states will augment
efficiency. Figure 8 demonstrates that changes in num-
bers of states linearly influence execution times, which
is hardly surprising, given the way COMPLETER works.
Global errors in Figure 8 are set to e _< 32. Six runs
were made with L _< r, and r = 1 , . . . , 6. An addi-
tional run established a time and state census for a
correct input with no local errors. The first admission
of errors entails a ten-fold increase in execution time
for that particular grammar.

Fidueial Characters. Another practical approach
reserves certain terminals as privileged. There are four
areas of concern: the range and the domain of muta-
tion hypotheses, the range of insertion errors, and the
domain of deletion mappings. By restricting terminals
which can occur in these areas, some characters become
fiducial (error-free) markers. The result is to partition
analysis into much smaller pieces.

Fiducials are fairly commonplace. FORTRAN is an
example of a card oriented language where end-of-state-

12

ment coincides with the end of a card. Figure 9 presents
experimental results with an ALGOL-like grammar and
sets of fiducials. Fiducials indicated in the table are
prohibited f rom entering any errors whatsoever. Re-
sults are fairly predictable: As input characters are
constrained performance improves, quickly at first.
Common separators such as " ; " in ALGOL have the
most fiducial value.

5. Observations

With reasonable constraints upon errors, the recog-
nizer might serve as a diagnostic scanner. First, a very
fast syntactic analyzer would be called to test for cor-
rectness. Upon discovery of discrepancies, input would
be passed for a least-errors analysis. Corrected text
would be returned as output.

The algorithm has been programmed. Error loci
are saved in bit strings which are carried with each
state. COMPLETER actions include the oRing of a final
state's bit string into the string associated with a
stranded state. This simple arrangement works well for
short inputs. Unlike a system of pointers to components,
the bit strings are complete upon reaching stateset
S(n-f-2). Error loci are available without backtracking
along pointer paths.

One can speed things up. For instance, in any S1
relaxation final states (p , p + l , x , e) and (p ' , p '+ l , x , e ')

such that L(p) = L(p ') and e' < e can be collapsed into
one final state (p' ,p'-f-l ,x,e') . This reduces relaxation

effort f rom O(I P [2) to O(I N [2).
Counting solutions requires attention to yet finer

details. A counter a is inserted into each state, so the

Communications January 1974
of Volume 17
the ACM Number 1

Fig. 10.
Grammar
rules

z - ~ s .-.t
~ - xCD

S ~ - u G
C I,- EsA
D~-F
G I~ EsK
E l~Ec
E~-c
A ~ fgh
F J~bF
F~'by
K ~'BL
B ~- ghk
L ~PbL
L ~bz

Input and representative Total Possible
error loci(underscore) errors analyses

cs by ~ 4 i

xc2sfghb2y~ 0 i

~e2sghkb2z~ 1 1

xc2sgh~b2y ~ 2 7

Fig. 11.
Z

X e c s g h kb ~ y

Z

/ A
x C c s ~ g h k b b y

Z

/ i l / .

x c c s g k b 15 ~ .

form is (p,j,f,e,a). If a state (p,j,f,e,a) is to be added to
S(i) which has (p,j,f,e,a'), the result is (p,j , f ,e,a+a').
Since this changes the rule of adding (normal adding
would reject), care must be exercised during Stage
$2 (f=x) of any COMPLETER that no final states with
f = x are generated since these states have been ac-
counted for already in Stage S1.

Counts of components of a state are multiplied to
get the state's ambiguity. Null phrases (NULLVR) must
have a table NULL# which gives their ambiguity, or
count. Naturally no cyclic variables A ~ B ---+ C --+ A
can be allowed; otherwise ambiguities could be un-
bounded. This prohibition is used in the algorithm:
In an S1 relaxation, among unselected least-error final
states with f = x, there will be at least one which cannot
be influenced by the others. This final state is selected,
since its ambiguity counter a will not change.

Here is an example. Suppose there is a rule A ~ B.
Let As --~ B.,e,a and Bj --+ abc. ,e,a ' be final states in
S(i). Let S(j) contain state As -+ .B,0,1. In S(i), state
Bj --~ abc. ,e,a ' cannot be influenced by As --~ B.,e,a,
so the former is selected first even though error counts
e are the same. The end result is a final state As --+
B. ,e ,a+a ' in S(i). If chosen in the other order, im-
proper counts for phrase A would result.

As an example of an analysis, consider the LR(1)

13

grammar and results in Figure 10. Leinius, 1970 [20J,
devotes some attention to recovery from errors with
this grammar, which is also simple precedence. Sen-
tences in Figure 10 should have a form xc"sfghbmy or
uc-sghkbmz. Error loci are marked via underline. A
locus may contain more than one error.

Analyses for input xc2sghkb2y are interesting and
varied. Figure I1 depicts seven interpretations. First,
one assumes that an " f " has been deleted and a " b "
changed into "k" . Next, assume an " f " deletion and
the " k " to be inserted. The " k " can associate to five
different phrases, given interpretations shown in the
center tree of Figure 11. And last, the pair "x . . . y"
could be wrong, i.e. mutations of the correct set
"U • • • Z".

No grammars larger than those which appear in
text examples have been tested. With longer inputs and
larger grammars both memory and execution times
grow uncomfortably. A compiled version--tailored to a
specific grammar--might provide further efficiencies.
Earley suggests such an approach.

This research has shed some light on attempts to
fashion recovery and correction strategies for syntactic
scanners. Experience with the programmed algorithm
indicates that ALGOL-like phrase structures are ex-
tremely fragile. A least-errors global correction is often
worse in reconstructing an original sentence than a
correction constrained as in Section 4. This suggests
that distances between ALGOL sentences are not great.
Least-errors recognition then implies whole new sen-
tences, rather than reconstruction of originals. "Robus t "
grammars might gracefully sustain syntactic damage in
sentences without bizarre disintegration of structure;
the problem is to find robust features while preserving
usefulness.

Acknowledgments. Professor Bruce Arden suggested
to the author that, for general-error correction, Earley's
algorithm might work better than Younger's. The re-
laxation of S1 of COMPLETER resulted from a discussion
with Professor E. LaMer.

Received September 1972, revised April 1973

References
1. Bellman, R.E. Dynamic ProgrammiHg. Princeton U. Press,
Princeton, N.J., 1957.
2. Bollinger, H. The HELP metacompiler, a compiler writing
tool. 1968 Annual Spring Meeting, General Motors Committee
on Engineering Computations.
3. Chomsky, N. On certain formal properties of grammars.
blformatio/t and Control 2,2 (Feb. 1959), 137-167.
4. Conway, M.E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963), 396-408.
5. Earley, J. An efficient context-free parsing algorithm. Comm.
ACM13,2 (Feb. 1970), 94-102.
6. Earley, J. An efficient context-free parsing algorithm. Unpubl.
Ph.D. diss. Carnegie-Mellon U., 1968.
7. Eggers, 13. Zur Theorie and Praxis Selbstkorrigierender
Regulaerer Sprachen. Dr.rer.nat. dissertation. Technischen
Universitaet Hanover, 1972.
8. Eggers, B. Error reporting, error treatment and error cor-

Communications January 1974
of Volume 17
the ACM Number 1

rection in ALGOL translation, Part II. Second Annual Meeting,
G.I. Karlsruhe, Oct. 1972.
9. Evans, A., Jr. An ALGOL 60 compiler. In .4nnual Review
in Automatic Programming. Pergamon Press, New York, 1964.
10. Feldman, J.A., and Curry, J.E. The compiler-compiler in a
time-sharing environment. Summer Engineering Conf. on Ad-
vanced Computer Organization. U. of Michigan, Ann Arbor,
Mich., 1967.
11. Feldman, J.A., and Gries, D. Translator writing systems.
Comm. ,4CM 11,2 (Feb. 1968), 77-108.
12. Hopcroft, J.E., and Ullman, J.D. Error correction for formal
languages. Digital Syst. Lab. Rep. 52. Princeton U., Princeton,
N.J., 1966.
13. Hopcroft, J.E. Formal Languages and Their Relation to
,4utomata. Addison-Wesley, Reading, Mass., 1969.
14. Irons, E.T. An error-correcting parse algorithm. Comm.
,4CM 6,11 (Nov. 1963), 669-673.
15. James, E.G., and Partridge, D.P. Adaptive correction of
program statements. Comm. ,4CM 16,1 (Jan. 1973), 27-37.
16. Jones, C.B. Formal development of correct algorithms: An
example based on Earley's recognizer. SIGPLAN Notices 7 (Jan.
1972), 150-169.
17. Kovalevsky, V.A. Sequential optimization in pattern recog-
nition and pattern description. Preprint supplement booklet I,
IFIP Cong., Edinburgh, 1968, pp. 1146--1151.
18. La France, J.E. Optimization of error recovery in syntax-
directed parsing algorithms. SIGPLAN Notices 5 (Dec. 1970),
2-17.
19. LaFrance, J. E. Syntax-directed recovery for compilers.
Ph.D. diss., U. of lllinois at Urbana-Champaign, 1971.
20. Leinius, R.P. Error detection and recovery for syntax-
directed compiler systems. Unpubl. Ph.D. diss. U. of Wisconsin,
1970.
21. Levy, J.P. Automatic correction of syntax errors in program-
ming languages. Ph.D. diss., Cornell U., 1971.
22. Lyon, G.E. Least-errors recognition of mutated context-
free sentences in time n ~ log n. Proc. Sixth Princeton Conf. on
Inform. Syst. and Sci. Princeton, N.J., 1972, pp. 115-118.
23. Lyon, G.E. Time IP log n least-errors recognition of un-
grammatical sentences of context-free languages. Mental Health
Res. Inst. Comm. # 292. U. of Michigan, Ann Arbor, Mich.
1972.
24. Lyon, G.E. A syntax-directed least-errors recognizer for
context-free languages. Unpubl. Ph.D. diss. U. of Michigan,
1972.
25. Peterson, T.G. From a private discussion with the author,
March 22, 1972.
26. Peterson, T.G. Syntax error detection, correction and re-
covery in parsers. Ph.D. diss., Stevens Inst. of Tech., 1972.
27. Peterson, W.W. Error-Correcting Codes. The MIT Press,
Cambridge, Mass., 1961.
28. Teitelbaum, R. Context-free error analysis by evaluation
of algebraic power series. Proc. ACM-SIGACT Fifth Ann.
Conf. on Theory of Computing. U. of Texas, Austin, Texas,
1973, pp. 196-199.
29. Wegbreit, B. Studies in extensible programming languages.
Ph.D. diss. Harvard U., 1970.
30. Wirth, H., and Weber, H. EULER: A generalization of
ALGOL and its formal definition; Parts I and II. Comm. A C M
9,1-2 (Jan.-Feb. 1966), 13-35, 89-99.
31. Younger, D.H. Recognition and parsing of context-free
languages in time n ~. b(formation and Control 10,2 (Feb. 1967),
189-208.

Added in proof. Readers may also find the following recent
contribution of interest. Graham, S.L., and Rhodes, S.P.
Practical syntactic error recovery in compilers. ACM SIGACT-
S1GPLAN Symp. on Principles of Prog. Languages, Boston, 1973.

N u m e r i c a l R .A. W i l l o u g h b y

M a t h e m a t i c s E d i t o r

A Fast Method for
Solving a Class of
Tridiagonal Linear
Systems
Michael A. Malcolm
University of Waterloo
and
John Palmer
Stanford University

The solution of linear systems having real, symmetric,
diagonally dominant, tridiagonal coefficient matrices
with constant diagonals is considered. It is proved that
the diagonals of the LU decomposition of the coefficient
matrix rapidly converge to full floating-point precision.
It is also proved that the computed L U decomposition
converges when floating-point arithmetic is used and
that the limits of the LU diagonals using floating point
are roughly within machine precision of the limits using
real arithmetic. This fact is exploited to reduce the
number of floating-point operations required to solve
a linear system from 8n -- 7 to 5 n -t- 2k - - 3, where k

is much less than n , the order of the matrix. If the
e lements of the subdiagnals and superd iagona l s

are 1, then only 4 n q- 2k - - 3 opera t ions a re needed.

The ent i re L U decomposition takes k words of s to rage ,

and cons iderable sav ings in array subscripting are
achieved. Upper and lower bounds on k a r e ob ta ined in

t e rms of the ratio of the coefficient matrix d i a g o n a l

constants and parameters of the f l oa t ing -po in t number

system.
Various generalizations of these resul ts a r e discussed.
K e y W o r d s and P h r a s e s : numer i ca l l inear a lgeb ra ,

l inear sys tems , Toep l i t z mat r ices , t r i d i a g o n a l matrices
C R C a t e g o r i e s : 5, 5.1, 5.11, 5.14, 5.17

14

Copyright © 1974, Association for computing machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Communications January 1974
of Volume 17
the ACM Number 1

