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ABSTRACT 

Optimal error analysis with respect to a con- 
text-free language may be viewed as the evaluation 
of an algebraic power series. By generalization of 
the nodal span context-free recognition algorithm, 
any algebraic power series is computable in O(n 3) 
steps. The closure of algebraic power series under 
sequential transduction yields a generous class of 
reasonable error measures for which optimal analy- 
sis is O(n3). Included is minimizing the number of 
symbol insertions, deletions and/or replacements 
needed for correction, a special case which has 
been studied separately. 

INTRODUCTION 

An important requirement of a programming lan- 
guage compiler is that it detect, locate and, if 
possible, correct syntax errors in badly formed 
programs. It is not uncommon for a compiler to 
diagnose the presence of many errors when, in 
fact, the programmer has made but a single mistake. 
Such cascades of spurious analysis may be avoided 
if a compiler is constrained to determine an "opti- 
mal" interpretation of a given erroneous input 
string. 

Of course, the notion of optimality must be 
defined with respect to some quantitative model of 
the error making process. No particular model is 
being advocated here. Rather, it is suggested 
that many reasonable measures of error on context- 
free languages are algebraic power series []]; for 
example, the minimal number of symbol changes 
needed to transform the input string back into the 
error-free language. Since the coefficients of any 
algebraic power series may be computed by a gener- 
alized nodal span recognition algorithm, optimal 
analysis for these notions of error is possible in 
O(n 3) steps, where n is the length of the faulty 
input string. 

ALGEBRAIC POWER SERIES []] 

Let R be a commutative semi-ring with identity. 
Denote the two associative, commutative operations 
of R by ~ and ~; their identity elements by ! and 
O, respectively. The distributive property, 
i @ (jR) = (i Q j)~(i Q k) for all i, j, k in R, 
is crucial. 

This work supported by an IBM Graduate Fellowship. 

Let G = <V,T,P,S> be a context-free grammar, 
where V and T are finite non-terminal and terminal 
alphabets, respectively; P is a finite set of pro- 
ductions in V ~ (VUT)*; S is a distinguished start 
symbol in V. If each production X ~ ~ in P is 
associated with a weight i in R, denoted X ~i ~' 
then G is called an R,weighted grammar. 

Let F be a derivation tree for X = t, where X 
in V and t in T*. Then the weight of F, denoted 
w(V), is defined to be the product ( ~ ) of the 
weights of all production occurrences,in U. If 
w(F) = i, then we shall also write X =. t. For 
each X in V, the R-weighted grammar G Induces a 
function fx:T* ~ R, defined by 

fx(t) = ~ w(r) 
F 

where F ranges over all distinct derivation trees 
of t from X in G. If there is no derivation of t 
from X, then fv(t) = 0. The function induced by 
the grammar, d~noted ~G' is fs" 

If every rule X ~ ~ in P has either ]~] ~ 2 or 
in T, then G is called proper. When G is proper, 

no t in T* has an infinite number of derivations, 
functlon f:T ~ R is so fG is well-defined. A " * 

called an alsebraic power series if there is some 
proper R-weighted grammar G such that f = fco If 
G is a right linear grammar, then fG is called a 
rational power series. If f = fG except at the 
empty string, then we say that f is algebraic 
(rational) off Eo 

Lemma ]. For every proper R-weighted grammar G, 
there exists a Chomsky Normal Form R-weighted gram- 
mar G', such that fG = fG'" 

Construction. The grammar G is transformed into G' 
as in the context-free case. For each T in T, if 
occurs in any rule X ~ ~ where I~I ~ ], then all 
such occurrences are replaced by a new non-terminal 
A and rule A ~ T is added to the productions 

Any rule X ~. Y]'''Ym (m ~ 3) is then replaced by 
the m-] rule~ 

X -~i YIZI 

Z] -~] Y2Z2,...,Zm_3 -~] Ym_2Zm_2 

Zm_ ] -~] Ym_]Ym 

196 



where Z],...,Z 2 are distinct new non-terminals. 
Since the weights of all auxiliary productions are 
i, these additional steps in a derivation do not 
affect its total weight. Since the ambiguity of G 
is preserved in G', fG = fG ''# 

EVALUATION 

Cocke's nodal span context-free language rec- 
ognition algorithm can be generalized in a straight- 
forward way to compute any algebraic power series 
[2]. 

Theorem 1. Any algebrazc power series f:T R can 
be evaluated at string t in T* in o(Itl 3)" steps on 
a random access computer. 

Proof. By Lemma l, there exists some Chomsky Nor- 
mal Form grammar G = <V,T,P,S> such that f = fG" 

Let t be some string in T*. We may assume 
that t is not E, since otherwise f(t) = f(E) = 0 
immediately. 

We assume the use of a two-dimensional, random 
access data structure F which may be indexed by 
each non-terminal X in V and each non-empty sub- 
interval s of t. When specifying indices for F, 
distinct subintervals s of t are distinct even if 
their values as substrings are equal. Each element 
F[X,s] is of type R and is used to tabulate the 
value of f x ( S ) .  

We begin by initializing F to 0, the identity 
of e in R. Since there areltI.(ItT+])/2 sub- 
strings of t and V is constant, this initializa- 
tion of F is performed in O(Itl 2) steps. 

Suppose ItI = n and s is some substring of t 
of length ], i.e., s is some terminal symbol in T. 
Then, since G is ~ Chomsky Normal Form grammar, 
any derivation X = s in G must consist of the single 
application of some production X ~. s in P. Thus, 

i 

fx(S) = @ i .  
X~.S 

1 
i n  P 

Accordingly, the base step of the algorithm com- 
putes f. (s), for all X in V and symbols s of t, in 
n. IPl seeps: 

for each of the n symbols s of t do 
for each production X ~. T in P do 

if s = • then F[X,s] ~= F[X,s]-~ i. 

Now consider larger substrings s of t. Sup- 
pose IsI = k ~ 2, Because G is a Chomsky Normal 
Form grammar, any derivation of s from X in G must 
be of the form X =. YZ ~ s. Invoking the dis- 
tributivity in R o~ product over sum, we see that: 

= fx(S) ~ x~ s w(F) 

° @ @ @. @. iew(r )ew(r2) 
X~.YZ1 u~s F1Y~: T2:Z~v 
in P 

= X~ Y @ i~ fy(U) ~ fz(V). 
• Z uv=s 

i n  P 

Thus~from the values of F for all substrings of s 
shorter than k, we may compute f (s). Since there 
are k-1 ways of representing s =Xuv (we know there 
are no derivations of E in G), the number of opera- 
tions required is no more than IPJ-(k-]),3. There 
are n-k+] distinct substrings s of t of length k. 
Thus, F may be computed for all substrings of 
length k and all X in V in (n-k+l).iPi'(k-])-3 
steps, given the values of F for all shorter sub- 
strings: 

for each of the n-k+] substrings s of t of length 
k do 
for each production X 4° YZ in P do 

for each of the k-] partltions uv = s d_o 
F[X,s] := FIX,s] ~ (i ~ F[Y,u] @ F[Z,v]). 

Hence, to compute f(t) = fs(t) = F[S,t] requires 

n 
3.1PI.~.(n-k+1).(k-l)=IPI.(n-]).n.(n+l)/2=O(n3) 

k=2 

steps, plus O(n 2) for initia%ization and O(n) for 
the base step, Thus, f(t) is O(Itl 3) computable. 

Corollary ]. Any rational power series f:T ~ R 
can be evaluated at string t in T* in O(It I) steps. 

Proof. Suppose X ~. YZ is a production of the 
Chomsky Normal Formlgrammar constructed by Lemma ] 
from a right linear grammar for f. Then clearly, 
Y only derives some terminal symbol in T. There- 
fore 

fx(S) = fx(~S]) 

= @ @ @ io j ow<r) 
X~.YZ Y~.a F:Z~s 1 1 j 

@ @ i®j®fz(Sl). 
X~.YZ Y~.~ 

J 

Thus, F need only tabulate fx(S) for suffixes s of 
t and all X in V. Given the value in F for the 
next shorter suffix s I of t, f.(s) is computable 

. A . 
in a constant number of steps. Thus, proceedzng 
from right to left, f(t) = F[S,t] is O(It I) com- 
putable. # 

OPTIMIZING SEMI-RINGS 

Many of the closure properties of context-free 
languages have analogies in the theory of algebraic 
power series. Because some operations may lead to 
necessarily improper weighted grammars, the results 
are often restricted by some limiting condition. 
But if the semi-ring is such that every induced 
function is well-defined, even when the underlying 
grammar is improper, then these restrictions may 
be relaxed. 

A semi-ring R will be called optimizing if i, 
the identity of Q in R, satisfies ]~ = ! for 
all i in R. 

For example, consider the set 
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N + = [non-negative integers} U {~] with operations 
defined in the following table: 

N + + min 0 

Then N + is an optimizing semi-ring. 

If the context-free grammsr G of a given lan- 
guage is identified with the N -weighted grammar 
wher$ every pr]oduction is associated with weight 0 
in N , then fG(0) is L(G), the error-free lan- 
guage. A quantitative, generative model of errors 
is provided by the addition to G of productions 
with non-zero weight. These rules may be language 
dependent, for example, 

<primary> ~1 be$in <conditional expression> end 

describes a common mistake in Algol-60. Or the 
error rules may reflect the uniform error charac- 
teristics of the input device, for example, some 
weighted confusion matrix for characters on a key- 
board. The weight of a production may be inter- 
preted as the number of errors incurred in using 
that rule in a derivation. 

The function fG(t) determines the minimum 
number of errors in whish t can be derived. The 
strings for which the N -weighted grammar still 
provides no explanation lie in f~](~). 

In the light of the following theorem, when 
adding error productions, the restriction to 
proper rules can be ignored and the induced min- 
imal error function fG:T" ~ N + remains algebraic 
(off 6). 

Theorem 2. If R is an optimizing semi-ring, then 
every R-weighted grammar G induces an algebraic 
power series (off E). 

Construction• We show the bookkeeping of weights 
required in the construction of a proper grammar 
G' such that (V in T* - {E})[fn(t) = fG,(t)]. 
The procedure is just a generalization of the re- 
moval of E and chain rules from a context-free 
grammar. 

Clearly, it is never necessary to have two 
productions which are identical except for their 
weights• If X ~. ~ and X ~. ~ are both in a set 

i 3 
of productions, then for every derivation * * . . . 
F.:S = 8X~ =.8oCV = t there is a derlvatlon 
F~:S  ~ BXy ~ . B ~  ~ t .  S i n c e  f ~ ( t )  i n c l u d e s  i n  
i t s  sum b o t h J w ( F ] )  and  w(~2)  , ~y t h e  d i s t r i b u t i v e  
l a w ,  t h e  s i n g l e  p r o d u c t i o n  X ~ . ~  w i l l  s u f f i c e •  

T h e r e f o r e ,  i n  t h e  c o n s t r u c t i o n l b ~ l o w ,  r u l e s  may be  
" a p p e n d e d "  to  a s e t  o f  p r o d u c t i o n s  i n  t h e  s e n s e  o f  
a s e t - t h e o r e t i c  u n i o n  w i t h  s u m m a t i o n  (~) o v e r  t h e  
w e i g h t s .  For  e x a m p l e ,  t h e  r e s u l t  o f  a p p e n d i n g  t h e  
w e i g h t e d  p r o d u c t i o n  A ~3 a to  t h e  s e t  
{A ~2 a, A ~2 b} is the set [A ~3~ a, A ~2 b}o 

From the distributive law and the condition 
that ] ~ i = ] for all i in R, it follows that 

i • (i G j) = i 

for every i and j in R. 

Step I. Elimination of E-rules. For each Y in V, 
let iy = fy(E), i.e., iy = ~ w(F) where ~ ranges 

F . 
over all distinct derivation trees for Y = 6 in G. 
If E cannot be derived from Y, then iy = 0 by def- 
initiono We must show that the value of ~. is well- 
defined, even if G is not proper. Any derivation 
tree for Y =.6 whlch is deeper than the cardlnallty 

i 
of V must contain a path with some non-terminal X 
repeated But any derivation X ~ ~V $ 2 X ~ - E 

• i" ~-- ~ i3 
on such a path may be replaced by X ~.. ~ - the re- 

. . . .  • 
sultlng tree is another a derlvatlon o~ 6 from Y. 
Suppose the weight of the rest of the derivation 
tree, the same in both cases, is j. The total 
weight of both of these derivation trees enters 
into the formal sum for i.. However, by the eondi i ¥ 
tion on R, (j ®i] ® i 2 G lq) • (j ® iq) = j ~ i3~ 
so the longer derivation h~s no effect on the value 
of iy. Thus, iy can be computed by summing only 
over derivation trees U of E from Y which are no 
deeper than the cardinality of V. But there are 
only a finite number of such "shallow" trees. 
Therefore, the value of i may be determined by ex- 
haustive examination of a~l such "shallow" trees. 

We construct an intermediate grammar 
G" = <V,T,P"S> with no E-rules such that f = f ,, 
off E. Let P" be initially empty. Then, ~or etch 
rule X ~. ~ in P, append to P" all rules X ~ 8, 
B ~ E, which can be obtained from X ~. ~ by dele- 
tion of zero or more non-terminals Y ~...Y from 

for which i~i, .... i.~ ~ 0. If ~ =I~Yi.~.Y~ 
and Y.,...,Y.~re del~ed,-then the ru~elwhic~ ~s 
appended to ~" is X ~ ~0...~k with a weight of 

i ~ iy2 G ..o Q iyk. 

Step 2. Elimination of rules X ~. Y. For each X 
and Y in V, compute ixy = ~ w(F~ where F ranges 

F 
over all distinct derivation trees of Y from X in 
G". Let iXX = I. By reasoning similar to Step 1, 
ixy is computable. (Because P" has no E-rules, 
every derivation of Y from X in G" is linear. Thus, 
by the condition on R, only the finite number of 
derivations which are no longer than the cardinal- 
ity of V can affect the value of ixy.) 

We construct the proper grammar G' = <V,T,P',S> 
from G" as follows. Let P' be initially empty• 
For every X in V and each rule Y ~. ~ in P", where 

i 
not in V and ixy ~ O, the rule X ~. . ~ is ap- 

pended to P'. ~ ~giXY 

The errors considered in [3,4, and 5], omis- 
sion, insertion, and replacement of symbols, are 
easily expressed in N+-weighted productions. 
Assuming (without loss of generality) all occur- 
rences of terminal symbols ~ are isolated into 
productions of their own, we may augment an arbi- 
trary G to G' by adding, for each terminal rule 
X ~ ~, the following N+-weighted error rules: 

omission: X ~I 6 

insertion: X ~0 XA 
where A ~0 6 
and A ~1 #A (VT in T) 

replacement: X ~1T (VT in T). 

Finally, to allow symbols to be inserted errone- 
ously at the very beginning of a string, add 
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S "n A S. Clearly, f~,(t) is the fewest insertion, 
omission and/or replacement errors which permit t 
to be derived from S in G. By Theorems 2 and I, 

~G, (t~ is algebraic, and therefore computable in 
O[,t I ) steps. Furthermore, by modifying the Cocke 
recognition algorithm in the usual way to preserve 
a derivation tree, we obtain a minimal error parse. 
From this parse and the natural inverses of each 
error, we may arrive at a minimal error correction. 

But this particular optimal error measure is 
just a special case of an N+-weighted sequential 
transduction. Because algebraic power series are 
closed under such mappings, any error measure which 
may be so expressed is computable in O(n 3) steps. 

WEIGHTED TRANSDUCERS 

An R-transducer is a non-deterministic finite 
state machine with output and weights associated 
with each arc [1]o It consists of a set of states 
Q, distinguished subsets of initial and final 
states, a finite set of arcs D contained in 
Q x T* X T'* X Q, and an association of weights to 
arcs w: D -~ R. If (q,t,t',q') is an arc in D, then 
t and t' are called its input and output, respec- 
tively. A sequence p in D* of connected arcs, be- 
ginning at an initial state and ending, at a final 
state, is called a path. If d is in D (not neces- 
sarily a path), then w(d), input (d) and output (d) 
are respectively the product ((D) o[" th~ weights~the 
concatenation of the inputs and the concatenation 
of the outputs of the constituent arcs in d. 

* F* 
Given an R-transducer M from T to T and an 

algebraic power series f:T* -~ R, we define 
Mf:T t* -~ R by 

Mf(t') = Q f(input(p)) (9 w(p) 

P 

where p ranges over all paths of M with output(p)=t '. 
If arcs with empty output are allowed in D, then 
this sum may be infinite and not well-defined. For 
instance, if G has productions IS -*] aS, S -*] b} 
and M is -- -- 

b/Ib 

t h e n  MfG(b)  = 1 ~ 1 t~ . . . .  M i s  c a l l e d  p r o p e r  i f  
no  a r c  i n  D h a t  6 - o u t p u t .  I t  c a n  b e  s h o w n  t h a t  i f  
f i s . a l g e b r a i c  a n d  M i s  p r o p e r ,  t h e n  Mf i s  a i s o  
a l g e b r a i c  [ 1 ] t .  

When R is an optimizing semi-ring, the re- 
striction to proper transducers can be relaxed. 
Thus, any minimal error measure which can be ex- 
pressed as an N+-transduction is algebraic (off 
6) and therefore O(n 3) computable. For example, 
the errors insertion, omission and replacement are 
trivially expressed by an N+-transduction, as is 
the non-overlapping transposition of adjacent sym- 
bols. 

tAlthough Shamir's definition of proper in []] is 
that no arc in M has E-input, he probably intended 
our definition since otherwise the theorem is 
false. 

~/o[E) 

~/o b" } 

~/1 T U [E) 

(V~, • in T) 

Theorem 3. If R is an optimizing semi-ring, f an 
algebraic (rational) power series and M an R-trans- 
ducer, then Mf is algebraic (rational) off 6. 

Proof (sketch). We may assume Dc]QxTU[E~XT'*xQ 
(if necessary, by adding states to Q and breaking- 
up transitions on input strings longer than one). 
Exactly as in Shamir [1], the function fM:D*~ R 
such that fM(d) = f(input(d))~w(d) if d in D'is a 
path and O otherwise, is algebraic (rational). To 
get Mf, apply the homomorphism output: D*~ T'* to 
f . If R were not an optimizing semi-ring, then 
t~is step might fail to produce an algebraic (ra- 
tional) power series, since closure is guaranteed 
only for C-free homomorphisms. This is why, for 
arbitrary R, the transducer must be proper, i.e., 
no E-output arcs. However, because R is an opti- 
mizing semi-ring, from Theorem 2, one shows that 
erasing homomorphisms, such as output, preserve 
algebraic (rational) power series. # 

CONCLUSION 

The purpose of this note has been to point out 
that minimal error analysis, as considered in [3, 
4 and 5], is an instantiation of a general result 
already implicit in the papers of Shamir [1] and 
Cocke [2]. We have pointed out the relevance of 
the theory of algebraic power series in non-com- 
muting variables in order to minimize further 
piecemeal rediscovery. Although our examples have 
been in N + (minimizing the number of errors) we 
observe that all results apply in the optimizing 
semi-ring of probabilities under product and max. 
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