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ABSTRACT

Optimal error analysis with respect to a con-
text-free language may be viewed as the evaluation
of an algebraic power series, By generalization of
the nodal span context-free recognition algorlthm,
any algebraic power series is computable in 0(n3)
steps. The closure of algebraic power series under
sequential transduction yields a generous class of
reasonable error measures for which optimal analy-
sis is 0(n3). Included is minimizing the number of
symbol insertions, deletions and/or replacements
needed for correction, a special case which has
been studied separately,

INTRODUCTION

An important
guage compiler is

requirement of a programming lan-
that it detect, locate and, if
possible, correct syntax errors in badly formed
programs. It is not uncommon for a compiler to
diagnose the presence of many errors when, in

fact, the programmer has made but a single mistake.
Such cascades of spurious analysis may be avoided
if a compiler is constrained to determine an "opti-
mal" interpretation of a given erroneous input
string.

Of course, the notion of optimality must be
defined with respect to some quantitative model of
the error making process., No particular model is
being advocated here, Rather, it is suggested
that many reasonable measures of error on context-
free languages are algebraic power series [1]; for
example, the minimal number of symbol changes
needed to transform the input string back into the
error-free language. Since the coefficients of any
algebraic power series may be computed by a gener-
alized nodal span recognition algorithm, optimal
analysis for these notions of error is possible in
O(n3) steps, where n is the length of the faulty
input string.

ALGEBRAIC POWER SERIES [1]

Let R be a commutative semi-ring with identity.
Denote the two associative, commutative operations
of R by @ and &; their identity elements by 1 and
0, respectively. The distributive property,

i@ (&) = (L ® D& ® k) for all i, j, k in R,
is crucial.
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Let G = <V,T,P,5> be a context-free grammar,
where V and T are finite non-terminal and terminal
alphabets, respectlvely, P is a finite set of pro-
ductions in V - (VUT) ; S is a distinguished start
symbol in V. If each production X = ¢ in P is
associated with a weight i in R, denoted X =,
then G is called an R-weighted grammar, 1

Oy

Let T be a derivation tree for X : t, where X
in V and t in T¥. Then the weight of T', denoted
w(l), is defined to be the product ( ® ) of the
weights of all production occurrences, in T. If
w(T) = i, then we shall also write X >, t. For
each X in V, the R-weighted grammar G induces a
function fX:T* - R, defined by

£(0) = @ w(D)

r

where T" ranges over all distinct derivation trees
of t from X in G, If there is no derivation of t
from X, then f _(t) = 0. The function induced by
the grammar, denoted fG’ is fS'

If every rule X =  in P has either 1&] 2 2 or
o in T, then G is called proper, When G is proper,
no t in T" has an infinite number of derlvatlons,
so f_ is well-defined. A function f:T* - R is
called an algebraic power series if there is some
proper R-weighted grammar G such that f = f Iif
G is a right linear grammar, then f_ is cal?ed a
rational power series, If f = f_ except at the
empty string, then we say that f is algebraic
(rational) off €.

Lemma 1, For every proper R-weighted grammar G,
there exists a Chomsky Normal Form R-weighted gram-
mar G', such that fG fG"

Construction., The grammar G is transformed into G'
as in the context-free case, For each v in T, if T
occurs in any rule X - y where ]a[ % 1, then all
such occurrences are replaced by a new non-terminal
AT and rule A’r o1 T is added to the productions.

Any rule X -,

Y]"'Ym
the m-1 rules

(m 2 3) is then replaced by

X - Y2,
Zy =y Yylyseensy s 1 Yool
Zn-1 71 Ye1¥m



where Z.,.4.,2 are distinct new non-terminals.
Since the welgﬂts of all auxiliary productions are
1, these additional steps in a derivation do not
affect its total weight. Since the ambiguity of G
is preserved in G', fG = fG,.#

EVALUATTON

Cocke's nodal span context-free language rec-
ognition algorithm can be generalized in a straight-
forward way to compute any algebraic power series

[27.

Theorem 1. Any algebraic power series f T > R can
be evaluated at string t in T in 0(|t| ) steps on
a random access computer.

Proof. By Lemma 1,
mal Form grammar G =

there exists some Chomsky Nor-
<V,T,P,S> such that f = fG.

Let t be some string in ", We may assume
that t is not €, since otherwise f(t) = f(¢) =
immediately.

We assume the use of a two-dimensional, random
access data structure F which may be indexed by
each non-terminal X in V and each non-empty sub-
interval s of t. When specifying indices for F,
distinct subintervals s of t are distinct even if
their values as substrings are equal. Each element
F[X,s] is of type R and is used to tabulate the
value of fx(s).

We begin by initializi to 0, the identity
of @ in R. Since there arenT [ (,tT#])/Z sub-
strings of t and [Vl is constant, this initializa-
tion of F is performed in O(,tl ) steps.

Suppose ltl = n and s is some substring of t
of length 1, i.e., s is some terminal symbol in T.
Then, since G is 3 Chomsky Normal Form grammar,
any derivation X = s in G must consist of the single
application of some production X -8 in P, Thus,

= Q® i.

X8
i

fX(S)
in P

Accordingly, the base step of the algorithm com-
putes f§(s), for all X in V and symbols s of t, in
eps:

for each of the n symbols s of t do
for each production X 2T in P do
if s = 7 then F[X,s] = F[X,s] O i.

Now consider larger substrings s of t, Sup-
pose lsl = k 2 2, Because G is a Chomsky Normal
Form grammar, any derivation of s from X in G must
be of the form X =, YZ 5 s, Invoking the dis-
tributivity in R of product over sum, we see that:

C% w(T)
X238
@,

- 7“ .
XﬂiYZ uv=s F].Yﬂu F2.Z9v

£,(s) =

LewT) @w,):

in P
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i® f (u) @ £,(v).
XﬂiYZ uv=s ¥ z

in P
of s

there
there

Thus, from the values of F for all substrings
shorter than k, we may compute f_(s). Since
are k-1 ways of representing s ="uv (we know
are no derivations of € in G), the number of opera-
tions required is no more than IPI (k-1)+3. There
are n-k+1 distinct substrings s of t of length k.
Thus, F may be computed for all substrings of
length k and all X in V in (n Pl (k-1)3
steps, given the values of F for all shorter sub-
strings:

for each of the n-k+1 substrings s of t of length
Tk do
for each production X el YZ in P do
for each of the k-1 partxtlons uv = s do
F[X s] := F[X,s] & (i ® F[Y,u]l @ F[Z, Z,v]).

Hence, to compute f(t) = fS(t) = F[S,t] requires

n
3+| | «%+ (nkH+1) « (k=-1)=| P| + (n-1) o+ (n+1)/2=0(n3)
k=2

steps, plus O(n ) for 1n1tlallzat10n and 0(n) for
the base step. Thus, £(t) is O(Itl ) computable. #
Coroilarx 1. Any rational power §er1es £:T - R
can be evaluated at string t in T in O(|t|) steps.

Proof, Suppose X -, YZ is a production of the
Chomsky Normal Form grammar constructed by Lemma ]
from a right linear grammar for f£. Then clearly,
Y only derives some terminal symbol in T. There-
fore

£ (s) = fy(osy)

i

@ 10 30w
X-.YZ Y~ .0 [':Z3s
i j 1

i0j0 £,(s9).

X~.YZ Y-, 0
1 J

Thus, F need only tabulate f_(s) for suffixes s of
t and all X in V. Given the value in F for the
next shorter suffix s. of t, f _(s) is computable
in a constant number of steps.” Thus, proceeding
from right to left, f(t) = F[S,t] is O(Itl) com-
putable. #

OPTIMIZING SEMI-RINGS

Many of the closure properties of context-free
languages have analogies in the theory of algebraic
power series. Because some operations may lead to
necessarily improper weighted grammars, the results
are often restricted by some limiting condition.
But if the semi-ring is such that every induced
function is well-defined, even when the underlying
grammar is improper, then these restrictions may
be relaxed,

A semi-ring R will be called optimizing if 1,
the identity of ® in R, satisfies 1@ = 1 for
all i in R,

For example, consider the set



+
N = {non-negative integers} U {»} with operations
defined in the following table:

=
®

®
I-_l
7=

+ I s
Then N 1is an optimizing semi-ring.

If the context-free grammar G of a given lan-
guage is identified with the N -weighted grammar
wheri every production is associated with weight 0
in N', then £(0) is L(G), the error-free lan-
guage. A quantitative, generative model of errors
is provided by the addition to G of productions
with non-zero weight. These rules may be language
dependent, for example,

<primary> > begin <conditional expression> end

describes a common mistake in Algol-60, Or the
error rules may reflect the uniform error charac-
teristics of the input device, for example, some
weighted confusion matrix for characters on a key-
board. The weight of a production may be inter-
preted as the number of errors incurred in using
that rule in a derivation.

The function f _(t) determines the minimum
number of errors in which t can be derived. The
strings for which the N -weighted grammar still
provides no explanation lie in fé1(w).

In the light of the following theorem, when
adding error productions, the restriction to
proper rules can be ignored and the induced min-
imal error function fG:TH - Nt remains algebraic

(off €).

Theorem 2, If R is an optimizing semi-ring, then
every R-weighted grammar G induces an algebraic
power series (off €).

Construction. We show the bookkeeping of weights
required in the construction of a proper grammar
G' such that (v in T - {eD[f.(t) = £, (O 1.
The procedure is just a genera?ization of the re-
moval of € and chain rules from a context-free
grammar,

Clearly, it is never necessary to have two
productions which are identical except for their
weights, If X ﬁi o and X =, o are both in a set
of productions, then for every derivation
T,:8 % BXy =.Boy % t there is a derivation
T2:S 5 BXy =».Bay % t, Since f (t) includes in
its sum botth(F ) and w(FZ), gy the distributive
law, the single production X -, ..o will suffice.

Therefore, in the construction below, rules may be
"appended" to a set of productions in the sense of
a set-theoretic union with summation (&) over the
weights, For example, the result of appending the
weighted production A -, a to the set

{A-,a, A-, b} is the'set {A “ag9 3 A 7 b}.

From the distributive law and the condition
that 1 @i =1 for all i in R, it follows that

ie@d @ j) =1

for every i and j in R.

Step 1. Elimination of €-rules. For each Y in V,
let iY = fY(E), i.e., iY = @D w(l) where T ranges
T

over all distinct derivation trees for Y = € in G.
If € cannot be derived from Y, then i, = 0 by def-
inition. We must show that the value of i, is well-
defined, even if G is not proper. Any derivation
tree for Y 3,¢ which is deeper than the cardinality
of V must contain a path with some non-terminal X
repeated. But any derivation X ¥ oXy 3, X 3.3 €
on such a path may be replaced by X =, - th& re-
sulting tree is another a derivation é% € from Y.
Suppose the weight of the rest of the derivation
tree, the same in both cases, is j. The total
weight of both of these derivation trees enters
into the formal sum for i,. However, by the condi-
tion on R, (j @) ©@ i, O 1,) ® (J ©® iy) = j @ iy,
so the longer derivation has no effect on the value
of i_. Thus, i, can be computed by summing only
over derivation trees T of € from Y which are no
deeper than the cardinality of V., But there are
only a finite number of such "shallow" trees.
Therefore, the value of i, may be determined by ex-
haustive examination of a¥1 such "shallow" trees,

We construct an intermediate grammar

G" = <V,T,P"S> with no €-rules such that £ = f_,
off €. Let P" be initially empty. Then, gor egch
rule X =, ¢ in P, append to P" all rules X - B,

B % €, which can be obtained from X -, ¢ by dele-
tion of zero or more non-terminals Y }...Y from
o for which iY],...,lYlE % 0., If o= a?Y]..:Yhak
and Y.,,...,Y, “are deléted, then the rule which 1is
appen&ed to %" is X - o with a weight of

i0® 1Y2® ceo @lYk'

Step 2. Elimination of rules X -, Y., For each X

and Y in V, compute iXY = @D w(F} where T ranges
T

over all distinct derivation trees of Y from X in

G", Let i, = 1, By reasoning similar to Step 1,

i is computabfe. (Because P'" has no €-rules,
every derivation of Y from X in G" is linear. Thus,
by the condition on R, only the finite number of
derivations which are no longer than the cardinal-
ity of V can affect the value of iXY.)

We construct the proper grammar G' = <V,T,P',S>
from G" as follows, Let P' be initially empty.
For every X in V and each rule Y -, ¢ in P", where
o not in V and iXY # 0, the rule X1->1,ol o is ap~
pended to P'. 4 XY

The errors considered in [3,4, and 5], omis-
sion, insertion, and replacement of symbols, are
easily expressed in N+-weighted productions,
Assuming (without loss of generality) all occur-
rences of terminal symbols ¢ are isolated into
productions of their own, we may augment an arbi-
trary G to G' by adding, for each terminal rule
X - g, the following Nt-weighted error rules:

omission: X e €

insertion: X ﬂO XA
where A », €
and A -, TA (¥7r in T)

1
replacement: X -, T (vr in T),

1

Finally, to allow symbols to be inserted errone-
ously at the very beginning of a string, add



§ -, AS, Clearly, f_ ,(t) is the fewest insertion,
omission and/or replacement errors which permit t
to be derived from S in G. By Theorems 2 and 1,
(t% is algebraic, and therefore computable in

O?l ) steps. Furthermore, by modifying the Cocke
tecognition algorithm in the usual way to preserve
a derivation tree, we obtain a minimal error parse.
From this parse and the natural inverses of each
error, We may arrive at a minimal error correction,

But this particular optimal error measure is
just a special case of an NT-weighted sequential
transduction. Because algebraic power series are
closed under such mappings, any error measure which
may be so expressed is computable in 0(n3) steps.

WEIGHTED TRANSDUCERS

An R-transducer is a non-deterministic finite
state machine with output and weights associated
with each arc [1]. It consists of a set of states
Q, distinguished subsets of initial and final
states, a flnlte set of arcs D contained in
QX T X % x Q, and an association of weights to
arcs w: D » R. If (q,t,t',q') is an arc in D, then
t and t' are called its anut and output, respec-
tively. A sequence p in D* of condected arcs, be-
ginning at an initial state and endlng*at a final
state, is called a path. If d is in D" (not neces-
sarily a path), then w(d), input (d) and output (d)
are respectively the product (®) o?® the weights,the
concatenation of the inputs and the concatenation
of the outputs of the constituent arcs in d,.

* IE3

Given an R-transducer M from T to T
alge?iaic power series f:T* - R, we define
Mf:T © = R by

and an

ME(e') = () £(input(p)) © w(p)
P

where p ranges over all paths of M with 6utput(p)=t'.

If arcs with empty output are allowed in D, then

this sum may be infinite and not well-defined. For
instance, if G has productions {S =y 85, § = b}
and M is - -
b/1b
=
a ]E

then Mf (b) =1 €1 ® ... . M is called proper if
no arc in D has €-output, It can be shown that if
f is-algebraic and M is proper, then Mf is also
algebraic [1]

When R is an optimizing semi-ring, the re-
striction to proper transducers can be relaxed.
Thus, any minimal error measure which can be ex-
pressed as an Nt-transduction is algebraic (off
€) and therefore 0(n3) computable. For example,
the errors insertion, omission and replacement are
trivially expressed by an Nt-transduction, as is
the non-overlapping transposition of adjacent sym-
bols,

1.Although Shamir's definition of proper in [1] is
that no arc in M has €-input, he probably intended
our definition since otherwise the theorem is
false.
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Theorem 3. If R is an optimizing semi-ring, £ an
algebraic (rational) power series and M an R-trans-
ducer, then Mf is algebraic (rational) off €.

1%
Proof (sketch). We may assume DAQXTU{€}XT "xQ
(if necessary, by adding states to Q and breaking-
up transitions on input strings longer than one)
Exactly as in Shamir [1], the function fM D*-» R
such that £ (d) = f(input(d))® w(d) if d in D*is a
path and 0 otherwise, is algebraic (rational). To
get Mf, apply the homomorphism output: D*~ T'* to
£ . If R were not an optimizing semi-ring, then
tgis step might fail to produce an algebraic (ra-
tional) power series, since closure is guaranteed
only for €-free homomorphisms, This is why, for
arbitrary R, the transducer must be proper, i.e.,
no €-output arcs., However, because R is an opti-
mizing semi-ring, from Theorem 2, one shows that
erasing homomorphisms, such as output, preserve
algebraic (rational) power series. #

CONCLUSTON

The purpose of this note has been to point out
that minimal error analysis, as considered in [3,
4 and 5], is an instantiation of a general result
already implicit in the papers of Shamir [1] and
Cocke [2]. We have pointed out the relevance of
the theory of algebraic power series in non-com-
muting variables in order to minimize further
piecemeal rediscovery. Although our examples have
been in Nt (minimizing the number of errors) we
observe that all results apply in the optimizing
semi-ring of probabilities under product and max.
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