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1. Iniroduction

Whenever a parsing technique is discussed in the literature, the author usually generalizes
the method to permit ‘“look-ahead’ calculations (i.e. the parser, when visualized as a
pushdown automaton, is permitted to look beyond the current symbol of its input, in
order to determine its next move). Thus an LR(1) method [16] is usually augmented
by including the calculation of “k-symbol input sets” (on an exception basis) instead of
only “l1-symbol input sets,” whence the method is generalized to LR(k) [3, 4, 16, 17].
A precedence method [25] is usually augmented by permitting duplicate right-parts
in production rules. The grammar remains precedence detectable [11] but the reduction
phase of the precedence parser must include a “k-symbol look-ahead” ability (again on
an exception basis) to choose properly between duplicate right-parts of rules. Prece-
dence methods may thus be extended to handle (1, k) bounded right-context grammars

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of 18sue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

This work was supported, in part, by National Science Foundation Grant GJ-851 to Purdue Uni-
versity and National Science Foundation Grant DCR 72-03740 A0l to the University of Illinois at
Urbana-Champaign.

Authors’ addresses M.D. Mickunas, Department of Computer Science, Digital Computer Labora-
tory, University of Illinois at Urbana-Champaign, Urbana, IL 61801; R.L Lancaster, Computer
Science Department, Bowling Green State University, Bowling Green, OH 43402; V.B. Schneider,
Department of Computer Sciences, Mathematical Sciences Building, Purdue University, West
Lafayette, IN 47907.

Journal of the Association for Computing Machinery, Vol 23, No 3, July 1976, pp 511-633



512 M. D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

[1, 6, 9, 11]. The fact that look-ahead is performed on only an exception basis is a conse-
quence of two disadvantages of the technique: (1) look-ahead sets are difficult to calcu-
late, and (2) provision of k-symbol look-ahead sets for those portions of the parser that
don’t need it consumes an enormous amount of memory space.

In principle, the technique of transforming a grammar to LR(1) overcomes the above
two disadvantages. Moreover, since there are fewer parsing actions to be performed, the
parser lends itself to simpler analyses of its space/time requirements. But there are two
major objections to the policy of transforming a grammar to LR(1): (1) the structure
imposed by the original grammar is generally not preserved, and (2) the transforma-
tion may exhorbitantly (sometimes exponentially) increase the number of production
rules.

From a compiler-writer’s point of view, the first objection is often academic. The
practitioner is concerned not with the changes in the grammatical structure per se, but
with how those changes affect the code-generating (semantic) properties of the compiler.
The transformation techniques presented in this paper permit a compiler’s semantics to
adjust to such changes in grammatical structure in three ways. To illustrate these meth-
ods, consider the following stylized subset of an Algol-like grammar:

m @ (statement) — (assignment)

m :  {statement) — {label) : {statement)

s :  (label) — identifier

m :  (assignment) — (variable) : = {(expression)
ms :  (variable) — identifier

The above grammar is LR(2). The semantics of 7 would attribute the meaning of
“label” to an identifier, whereas the semantics of 75 would attribute the meaning of
‘“variable” to it. In each case, the dentifier (or its encoding) is located by the code-
generating routine as the last symbol which was scanned by the parser.

A non-LR(1) problem arises with the rules #; and 5. To reduce an <dentifier, an
LR(2) parser will apply 75 whenever the identifier is followed by : =, and it will apply s
whenever the wdentsfier is followed by : identifier. For example,

identifier : identifier : = - - -
should be parsed by applying the rules m; , 75, - - - , w4, 7, ™2 yielding

(label) : identifier : = - - -

then (label) : (variable) : = - .-
then Zlabel) : {(assignment) - -
then (label) : {statement) - - -
then {statement) - - -

The transformations we will present would transform the above grammar to the LR(1)
grammar:

m : (statment) — (assignment)

m : (statement) — (labeler) (statement)
w5 : (labeler) — ddentifier :

ms : (assignment) — (left-part) = (expression)
7

w5 @ (left-part) — <dentifier :

~

If the original grammar contained code-generating subroutines associated with rules
w3 Or 5, then some alteration of these subroutines may be necessary to work correctly
with rules 73’ and 5’ of the altered grammar. The semantics of m; () must still supply
the “label” (“variable’’) meaning to the identifier. However, the identifier (or its en-
coding) is now located by the code-generating routine as the next-to-last symbol which
was scanned by the parser. A second technique allows the semantics to remain un-
changed. The transformed grammar is used to parse the program “internally” and, as
the internal parse proceeds, an “external” parse via the original grammar is induced. As
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this external parse proceeds, the original semantics can be applied. This technique was
first suggested by Gray and Harrison [11] and arises from the notion of “grammatical
covers,” originally due to Reynolds and Haskell [23]. In order to accomplish the internal/
external linkage, we map the new rules onto the old rules by a function, ¢, which in
this example simply maps each =, to m, . While we will not present a formal proof that
this technique works, we will nonetheless have further detailed remarks to make about
it. Schematically, the internal/external parses proceed as follows:

internally

externally

wdentifier : identafier : = -+ -

’
apply s

{labeler) “dentifier : = - - -

I
apply s

(labeler) (left-part) = ...

N 4
apply m,

(labeler) (assignment) - - -

identifier : identifier : = - - -

apply ¢(ms') = m
{label) : udentifier : = - - -
apply d(ms) = ms
(label) : (variable) : = - --

apply ¢(m) = m
(label) : (assignment) - - -

apply m apply ¢(m') = m
(labeler) (statement) - - - (label) : (statement) - - -

apply apply ¢(m’) = m
{(statement) - - - (statement) - - -

A third way of adapting the grammar to its semantics in this case is to force the lexical
scanner (which supplies an encoded form of the input to the parser) to recognize the
sequence of symbols : = as a single input symbol (:=). Thus, the grammar may be
changed to

m :  (statement) — (assignment)

my : (statement) — (label) : (statement) -
w3 ¢ (label) — tdentifier

ms ©  (assignment) — (variable) := (expression)
s ¢ (variable) — identifier

The parser can now decide to apply 7 if the next input symbol is : and apply s if it is
:=. This is a standard technique that is usually applied in an ad hoc fashion.

In our experience, the transformation to LR(1) does not exhorbitantly increase the
size of the grammar, so long as the language in question is well suited to LR(1) parsing.
We have found that, even if the original grammar is badly written, the transformation
will produce a grammar of reasonable size. Even for pathological languages, the trans-
formation produces LR(1) grammars which are competitive with handwritten LR(1)
grammars for the same language. In the remainder of this section we present basic defi-
nitions and notation. Most of what follows is standard, and we have patterned much of
the format after that of Gray and Harrison [11].

Definition. A (context-free) grammar (CFG) is a four-tuple, G = (V,Z,P,8) where

(a) V is a finite nonempty set of symbols (vocabulary);

(b) T < V (terminal vocabulary);

(¢) N = V — Z (nonterminal vocabulary);

(d) S € N (goal symbol); and

(e) P is a finite subset' of N X V* (productions).

We will denote an element (4,) of P as A — v, and we will often ascribe indices to
productions: w, = A — v. For any rule, A — v, A is called the left-part and v the right-
part of the rule. Any rule having left-part A is called an A-rule.

! From [11] Let X and Y be sets of words We write XY = {zy | € X, y€ Y} where zy is the con-

catenation of z and y Define X° = {A} where A is the null word. For each 7 > 0 define X+ = X*X
and X* = U,», X* Let X* = X*X and let ¢J denote the empty set.
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We find it convenient to employ binary relations on sets of words.

Definition (from [11]). Let p be a binary relation on a set X, i.e. p © X X X. Define
0’ = {(an) | a€ X}, and for each® 2 > 0, p™ = p*p. Last, p* = U..op' and p* = p*p.
For a binary relation p on X, p* is the reflexive-transitwe closure of p while p* is the
transitive closure of p. For ¢ € X we will write ap to denote {d€ X | apb} and similarly
pa to denote {b€ X | bpa}. For H & X we write Hp to denote {b€ X | (there exist a€ H)
[apb]} and similarly pH to denote {b€ X | (there exist a€ H)[bpal}. We will also write
ay,0, -+ ,a.pH instead of ay ,a2, -+ ,an € pHor{ay,a,, - ,a,} S pH.

We employ the usual binary relation = € V* X V*, writing u = v instead of
(u, v) € =.

Definition. Let G = (V,2,P,S) (N = V — Z) be a CFG and let u, » € V*. Define
u => v if there exist z, w € V*; y € Z*; A € N for whichu = zAy, v = zwy,and A — w
is in P. Furthermore, we write the reflexive-transitive closure of = as =*. If we wish to
make clear that the grammar G is being used, we will write =°.

Note By this definition we have immediately restricted our attention to righimost, or
canomical derivations

Definition. The set of (canonical) sentential forms for a CFG, ¢ = (V,Z,P,S),
is denoted by CSF(G) and is defined as CSF(GQ) = {z€V*| S=*2}. The language
generated by @ is denoted by L(G) and is defined as L(G) = Z*NCSF(G).

Defimtion. Let G = (V,2,P,8) be a CFG and let , € V*, (0 < ¢ < 7). If 2, =
2,41 by applying the production =, € P, then we say that z, derectly derwes .1 via =, .
If 2y = 2, = --- = z, where z, directly derives z,41 via w, (0 < ¢ < r), then we say
that 2, (canonscally) derwes x, via (7,)7— and that ()i is a (canonical) derivation of
x, from x, .

Defimation. A CFG @ is said to be unambiguous if and only if every z € L(G) has
exactly one canonical derivation. A CFG which is not unambiguous is said to be am-
biguous.

Definition. Let @ = (V,Z,P,8) (N=V— Z) bea CFG and let w € V*, A € N,
w € Z¥ such that udw € CSF(G). Let # = A — v in P. Then www € CSF(GQ) is said
to have® handle (, luv|). By convention, S € CSF(G) has handie' (A, 1).

Definition. Let k be a nonnegative integer. A CFG, ¢ = (V,Z,P,8), is said to be
LR(k) if and only if* for all z € V*; gy, 4 € Z*; &, ' € Py ; if oy € CSF(G) has
handle (=, |z|) and zy’ € CSF(G) has handle (7', 7) and Wy = ®4 then® (=, |z]) =
(7', 7). Otherwise G is said to be non-LR(k), and in that case any rule, =, which violates
the above conditions is said to be non-LR(%). It is well known that an LR(%) grammar
is unambiguous.

Definition. A CFG, ¢ = (V,2,P,8) (N=V—-2), is said to be

(a) A-freeif PC N X V™,

(b) A-isolated if either (i) G'is A-free, or (ii) P S (NX(V—{8})* U {S—A},

(c) reduced if for each A € V — {8}, (i) there exist z,y € V* for which
zAy € CSF(Q), (ii) there exists z € Z* for which 4 =" 2.

2 From {11]. The operation is a composition of relations which 13 defined as follows. f p S X X ¥
and e C Y X Z, define ps = {(z,2) | (#,y)Ep and (y,2) € for some y€ Y}. Observe that pe C X X Z.
tLetz = a1ay - a, € V*forsomen > 0 (where eacha, € V and where,:f n = 0,z = A). The length
of z 1s denoted by |z| and is defined as |z| = n Forz <n, ®z =a;--- a,and 2 = a5 sj1 ** Gn .
Fori 2> n, Wz =20 =z

* A is also used to denote the null production

5Tf X is a set, then Xy = X U {A}.

¢ Notice that as a result of our convention that S € CSF(G) has handle (A, 1), we avoid the “‘am-
biguous LR(0) grammar’’ anomaly cited by Harrison [12] Our definition is equivalent to that of the
“Augmented LR (%)’ grammars of Geller and Harrison [7]. Thus, for example, the grammar with
productions 8 — Sa | a is not LR(0) by our defimtion since S € CSF(G) has handle (A, 1), Sa €
CSF(G) has handle (S—8a,2), and the handles are not the same
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There are some additional useful relations which we shall employ.

Defination. LetG = (V.Z,P,S) (N=V—~Z)beaCFG,andlet X,Y € V.

(2) X\Y (X left-derives Y) if and only if there exists w € V* for which X—Yu isin P.

(b) XpY (X right-derives Y) if and only if there exists w € V* for which X—uY
isin P.

(¢) X7Y (X left-derives terminal ¥) if and only if XA\*Y and ¥ € Z.

(Thus X\*Y is an abbreviation for “(there exists u€ V*) [X=*Yu}” and Xp*Y for
“(there exists u€ V*) [X=*uY].” We will often be presented with a set H € V and
will wish to identify an element, A, of {X€ V | (there exist YEHucV*) [X=*uY]}.
Using the relation p, we will constrain such an element by simply specifying Ap*H.)

2. Preliminary Remarks

The main idea behind conversion from LR (k) to LR(1) can be illustrated as follows:
Suppose a rule, A — w, participates in an LR(2) (non-LR(1)) portion of a grammar.
The decision of whether to apply the reduction A — w can be made on the basis of two
symbols of look-ahead. If A — w is indeed the correct reduction for a sentential form
--uwty --- then the next input symbol, {, must eventually fit into the parse, perhaps
via a structure like

8

\/ N
VAYAY

The conversion scheme must alter the offending rule 4 — w so that the decision to apply
it is not forced until after the symbol ¢ has been scanned. The technique we use is to
“extract” the right-context first:

8

SN
\

C
/ T
.y w

and then to merge the extracted branch with its left neighbor so as to force a prema-
ture scanning of the extracted symbol

(t/d]

t Vo

[ct] (t/0]

[at]

PO | w t V...

The algorithm that we will develop performs such extraction upon all right-contexts for
the symbol A of the offending rule A — w and performs a premature scan merger on all
such right-contexts for all C for which Cp*4. We consider a few more examples.

The LR (2) grammar

S — Abb | Bbe
A —>ad|a
B —aBla
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with offending rules A — a and B — a requires no right-context extraction, and is con-
verted via premature scanning to the LR(1) grammar

S — [Ablb | [Bble
[4b] — a[Ab} | ab
[Bb] — a[Bb] | ab

The LR(2) grammar

S — Abb | Bbe
A — Adala
B —a

with offending rules A — a and B — a requires no right-context extraction, and is con-
verted via premature scanning to the LR(1) grammar

S — [Ablb | [Bblc
[Aa] — [Ad]a | aa
[4b] — [Aalb|ab
[Bb] — ab

Finally, the LR(2) grammar
8 - bS8S |a| aac

has the offending rule S — a, whose right contexts are generated by the second 8 in the
right-part of S — bSS; those right-contexts are a and b;

SN
/AN
SN
|

4]
and

S

S

\

a o ¢

AN
/

S
|
S
|
a

The grammar is converted first (under right-context extraction) to
S — bSala/8) | bSblb/8] | a | aac
[a/8] — A ac
[b/8] — Sala/S]| Sb{b/S].
The right-contexts (whether a or b) for 8 — @ have thus been extracted in all situations:
s

AN

b s [brs)

a b S x [x/8]
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(x = aorb) and

and
s
I
b S fo/s]
RNVAN
a a Cc

Moreover, the new rule, [¢/S] — A, which is also non-LR(1), has had its right-contexts
extracted. Finally, the grammar is converted (under premature scanning) to the LR(1)
grammar

8 — b[Sa]la/8] | b[Sb][b/S] | a | aac
[Sa] — b[Sall{a/S)a) | b[SbY([b/Sla] | aa | aaca
[Sb] — b[Sall[a/S}b] | b[SbI[[b/SIb] | ab | aach
[a/8S] = A ac
[[e/S)a] — a| aca
[[a/S]b] — b | acb
{6/8] — [Salla/S] | [Sb][b/S]
([b/8la]l — [Sallla/S]al | [Sb]([b/S)e]
[[6/ 816} — [Sallla/S]b] | [Sb]([b/S]b]

This transformation can be optimized to prematurely scan only the conflicting right-
contexts for the offending rule. In this case, although both a and b have been extracted,
only a is a conflicting right-context. Thus, after right-context extraction, we can obtain
instead the following LR(1) grammar:

8 — b[Salla/8) | bSb[b/8]} | a | aac
[Sa] — b[Sa]([a/S]a] | bSb[[b/Sla] | aa | aaca
la/S] = A ac
[le/Sla] — a | aca
[6/8] — [Salla/S] | Sb[b/S]
[{b/8la] — [Sallla/Sla] | Sb{[b/Sla]

This grammar contains 16 rules. So far as we can tell, every LR(1) grammar for this
language must contain at least 12 rules. Thus, although the size of the grammar has
increased dramatically, the increase is due to the language involved, and is not ascrib-
able to any wholesale inefficiencies in the transformations.

3. Main Results

We now turn to the development of our primary result, a procedure for reducing look-
ahead. The procedure is presented as an iterative application of a succession of trans-
formations on grammars. Besides the Right-Context Extraction and Premature Scan-
ning transformations, we use three utility transformations which serve, for the most
part, to simplify operations. The first of these utility transformations is the Right-
Stratification Transformation, which simply breaks a single production rule, 4 — wv,
into two rules, A — ufv] and [v] — ».

Right-Stratification Transformation. Let G = (V,Z,P,S) be a CFG. To right-stratify
arule A — uy in P at the u, v interface, we define

P, = {A—u}, P,=P—P.
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We then define a new grammar, G,” which differs from @ in its nonterminal vocabulary
and its set of productions.

P/ = {A—ufp] | A—uv is in Py, P"=P"UP"U P3”;
P = {[v}ov | A>w is in Py}, V" =V U ().
PS,’ = P2 ,

Lemma 1. Let @ = (V' 2,P",8) (N" = V" — ) be obtained from G = (V,2,P,S)
(N =V =2) by means of the Right-Stratification Transformation. Then

(¢) L(G") = L(Q); and

(b) there is a surjection,’ ¢, from P,” onto Py such that of ® € P,” is not LR(j) then
¢(mw) € Py s not LR(j).

Proor. Right-stratification is a common transformation and is used by both McAfee
and Presser (18] and Graham [9]. McAfee and Presser present an informal proof that
L(G") = L(G). Graham gives a complete proof that L(G") = I(G) as well as a proof
that the right-context bound is preserved. By defining ¢ as the identity on P;" (thus
mapping Pi, onto P;) and as a function from the singleton set P,” onto P and
from the singleton set P;” onto Py, we obtain the desired surjection. Embedding this in
Graham’s proof yields part (b) of thelemma. 0O

The Look-Ahead Reduction Procedure that we develop initially determines which
rules of a grammar require right-context extraction and subsequent premature scanning
of those right-contexts. This information is then transmitted in the set, H, of left-parts
of the selected rules. The transformation we are about to present accomplishes the right-
context extraction portion of the Look-Ahead Reduction Procedure.

It is necessary for the Right-Context Extraction Transformation to extract terminal
symbols whenever they can occur as right contexts for one of the selected rules, i.e. if
C — v is a selected rule, and if some symbol, A, right-derives C, then whenever 4 ap-
pears in the right-part of a rule, it should either be rightmost or be followed by a terminal
symbol. We formalize that objective by the following,.

Definition. Let G = (V,2,P,8) (N = V—2) be a CFG and let H C N. G is said
to be in H-right-context-extracted form if and only if for every nonterminal 4 in p*H and
for every rule B—udy in P, either (a) y = A, or (b) y € ZV*. Notice that this defi-
nition reduces to that of an operator form grammar [5, 11} in case H = N and G is re-
duced.

Notation. Let m = C — vbe a C-rule of P. If C is in H then 7 is also called an H-rule
of P.

Right-Context Exiraction Transformation. To extract the right-contexts for a reduced
A-isolated grammar G = (V,2,P,8) (N = V — Z) (given H C N) we first (iteratively)
locate each rule

m =B —uCwDEw (E € N;upw € V¥

for which C, Dp*H, and right-stratify = at the »,D interface (to obtain B — uCy[DEw]
and [DEw] — DEw). Although we might present the Right-Context Extraction Trans-
formation without such stratification, the transformation would be not only more com-
plex, but also less efficient (in general). This is because the transformation, given such a
m, will accomplish an extraction of the right-contexts for both C-rules and D-rules (since
C, Dp*H). These contexts will then appear in modifications of =. In the unstratified
case, the modifications must account for all possible pairs of such right-contexts, whereas
with stratification, combinations of right-contexts are handled in series. For example,
if v = Fr (whence # = B— uCFzDEw) and a, b are in Fr, ¢, d, e are in Er, then =

7 Let X and Y be sets, and ¢ & mapping of X into Y. If each element of ¥ i8 the image of at least one
element of X, then ¢ is a surjection from X anto Y.
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would yield

m = B — uCala/FlaDcle/Elw ms = B — uCblb/FlaDclc/Elw
w = B — uCala/FlaDdld/Elw w5 = B — uCblb/FleDd{d/Elw
w3 = B — uCala/FlaDele/Elw me = B — uCblb/FlaDele/Elw
However, by stratifying = as
7 = B — uCFz[DEw) 7 = [DEw]| —» DEw
we obtain
m = B — uCala/Flz(DEw] . = [DEw] — Ddld/Elw
w2 = B — uCb[b/Flz[DEw] w5 = [DEw] — Dele/Ew
m = [DEw) — Dcle/Ew

Note that it is sometimes necessary to stratify a rule more than once. For example,
7 = B — xFuCvDEw (E € N),

where F, C, Dp*H, must be stratified as
7 = B — rFulCvDEu)] 7" = [DEw] —» DEw
7 = [CvDEw] — Cv[DEw]

Upon performing right-stratification, we have a (reduced A-isolated) grammar, G =
(V,2P,8) (N =V — Z). We compute H C N’ such that for = in P, if ¢(=) in
P is an H-rule, then 7 is an H'-rule. (We can actually compute H more carefully to
yield a possibly smaller subset of N', but the calculation given here will do.) To con-
tinue with the transformation, we then define

P/ = {A—uBCvin P' | CEN'; Bp*H'}

(Notice that as a result of stratification, C of such rules is uniquely determined. )
Let M' = {CeN’ | A>uBCvisin P, where Bp*H'}. For each C € M’ define

Q'(C) = {D—Ewin P'| EEN’; ON*D}, P/ (C) = Q(C) — P/(C).
R'(C) = {D—awin P'|a€Z; CN\*D}, P/(C) = R(C) NP/,
P/(C) =qQ)ynp P{/(C) = R'(C) — P/(C),
and define
P/ = Ucew P/(C) (fori€ (2,3,4,5)),
Po, = P -— Pl’.

We then define a new grammar, G”, which differs from G’ in its nonterminal vocabulary
and its set of productions.

P," = {A—uBala/Clv | CEN'; Cra; A—uBCy is in P, where Bp*H'}
and for every CeM':

P, (C) = {[a/D]—a/E)uwblb/G)z | E,GEN'; Era; Grb; D—EwGz is in Py (C) where
Ew®p*N'},

P (C) = {[a/D]—>la/Elw | EEN’; Era; D—Ewis in Py (C)},
P, (C) = {[a/D}—>wEblb/Flzx | acZ, FEN'; Frb; D—awEFz is in P, (C) where Ep*H'},
Py (C) = {{e/D}>w | a€Z; D—aw is in Py (C)},
and define
Py = Ugew P7(C) fori€ {2,345,
PGII - Pcl,
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Pl” U ler U Ps” U P4” U Ps” U PG”,
VUW'; N” = V" — Z, where W' = {[a/A]|a€Z; ACN'; there is an
[a/A)-rule in P"}.

Also define H” = H' U {{a/AleW” | AcH'}.

This transformation is quite similar to that presented by Gray and Harrison [11] for
obtaining an operator form grammar. It should be noted that the transformation as
shown can operate in general on only A-isolated grammars.

The following example illustrates the methods of the transformation. Consider the
LR(2) grammar with productions

1|

P’
V”

m = S—Ad
e, Mg, Mg = A——»aAB\blbbc
s = B—A

The Look-Ahead Reduction Procedure will find that 3 is not LR(1), and thus will
specify its left-part as H = {A}. No stratification is required, so G’ = G and H' = H.
Thus Py is found to be

Py = {m = A—adB}, and M’ = {B}. (Right-contexts for A-rules are generated by
1, which needs no extraction, and by .
Right-contexts for A-rules obtained through
7 must be ultimately extracted through the
symbol B.)

Q' (B) = {ms) (In m, right-contexts for A-rules are gene-
rated by the symbol B. =; is a rule which
does not originate terminal right-contexts,
but 75 does generate them. Thus extraction
must proceed through s .)

R'(B) = {my,ms,m (In m, right-contexts for A-rules are gen-
erated by the symbol B, and since BA*A,
they are also generated by the symbol A.
The right-contexts which are generated by 4
originate in the rules my, 73, and 7, .)

P =
Py = {ms
P/ = {m} (m is a rule in which the right-contexts for

A-rules are both generated and originated.)
P 5 = {3,
Pe = {7!'1,1!’3,1"4,%’5}.

Thus, the one-symbol right-contexts for A-rules originate in 7 , m; , 7, and are @ and b.
The transformation yields:

P = {A—aAala/B], A—aAbb/B]} (ultimateextractionof right-contexts for A-rules),

P2” = g’

P,” = {[a/Bl-la/Al, (b/Bj—-[b/Al} (propagation of right-contexts through rules of P3'),

P = {la/A}l—Aala/B}, [a/A]—Ablb/BY} (origination of the right-context a and also
ultimate extraction of right-context for
A-rules),

P = {[b/A}>A, [b/A]—be} (origination of the right-context b),

P = {8—Ad, A—b, A—bbc, B—A} (rules which do not receive ultimate extraction

of the right-contexts for A-rules).

Note that the rule B — A4, although included in P”, is useless. This poses no problem
for these formalizations, but a practical implementation of the Right-Context Extrac-
tion Transformation concludes by reducing G”.
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LemMMA 2. LetG = (V,Z,P,8) (N = V — Z) be a reduced A-tsolated LR(k) grammar,
andlet HC N. Let G” = (V' 2,P",8) (N" = V" — 2) and H' C N” be obtained from
@G and H by means of the Right-Context Extraction Transformation. Then

(@) L(G") = L(G);

(b) there 1s a surjection, ¢, from Py" onto Py such that if = € P,” 1s not LR(§), then
¢(w) € Pyisnot LR(j); and

(¢) G” is in H"-right-context-extracted form where for each = € P”, if ¢(x) € P is an
H-rule then w is an H" -rule.

The relationship between G’ of the transformation and G is given by Lemma 1. We
establish some claims relating G” to G'.

Camml. Leta €2, AC N, v€Z* A=""av if and only if A =7 av. Moreover,
if lafA) is in N”, then A =% av if and only if (a/A] =% v.

Proor. The proof is by induction on the length of the derivations.

Basis. Suppose A =% av. This occurs if and only if # = A — av is in P’. Thus, =
is in Pg’. This occurs if and only if A — av isin Ps", which occurs if and only if 4 =% av.
Moreover, [a/A] is in N” if and only if = is in P§' (< Pg'). This occurs if and only if
fa/A] — visin P;", which occurs if and only if [a/4] =% ».

Induction step. Suppose that the claim holds for derivations of length &k (1 < & < n)
and consider a derivation of length n + 1. Thus A = av (n + 1 steps). This may
be written

A=u  u="%a (nsteps). 1)

(1) occurs if and only if 7 = A — u is in P’ and u contains a nonterminal symbol.
We have six cases to consider, depending on whether = is in Py, Py, P,, Py, P/, or Py.

Case 1. wisin Py. Then there exist C € N'; B in p*H’ for which v = 4 — wBCx.
Also, v = vwebvsvy (b € Z) where

w =>'G: an , (2)
B =>a0[ Vg, (3)
C :-G bvs s (4)
X =%y, (5)

Such a 7 is in P, if and only if A — wBb[b/C]z is in P,". By the inductive assumption,
(3) and (4) hold if and only if B =% v, and [b/C) =% »;. Applying the inductive
assumption to the successive nonterminals of w and z, we find that (2) and (5) hold
if and only if w 3" ap, and z =" v,.| Combining these results, we have 4 =%
wBb[b/Clz =% avwibvw, = av. Moreover, [a/A) is in N” if and only if wisin Py U P,/
(S Py), so one of cases 3 or 5 applies.

Case 2. wisin Py. This occurs if and only if # = A — u is in Py’ . Applying the
inductive assumption to the successive nonterminals of u, we find that (1) holds if and
only if ¥ =% av. Thus we have A =% 4 ="% av. Moreover, [a/A] is in N” if and only
if wisin Py U Py’ (S Ps), so one of cases 4 or 6 applies.

Case 3. wisin Py. Then there exist B,D € N'; w, z € V*; Bu™ in p*H for which
7 = A — BwDz. Also v may be written v = nbvw, (b € Z) where

Bw =" ay, , (6)
D =% by, )
=%y, (8)

Such a 7 is in Py if and only if [a/A] — [a/Blwb[b/D]z is in P,”. As in case 1, we apply
the inductive assumption to (6), (7), and (8), and combine to obtain [a/AJ
=% a/Blwb[b/D)x =% nbvws = v. Moreover, P, C Py, so case 1 applies and A ="°
av.

Case 4. wisin P;/. Then there exist B € N’ for which # = A — Bw. Also, v may
be written v = vw, where B ='% ay; and w ='% 1. Such a 7 is in P, if and only if
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[a/A) — [a/Blw is in P,". Again, as in case 1 we obtain [a/A] =% [a/Blw =" vw;, = v.
Moreover, P; C Ps, so case 2 applies and 4 =" av.

Case 5. = is in P,. Then there exist ¢ € Z; C € N'; B in p*H’ for which = =
A — awBCz. Also, » may be written v = vbows (b € Z) where wB =" v, C =" buy,
and £ = v;. Such a 7 is in P, if and only if [a/A) — wBblb/Clz is in P,”. Again, as
in case 1 we obtain [a/A] =% wBbb/Clz =" vbvws = v. Moreover, P, C Py, so
case 1 applies and 4 =" av.

Case 6. wisin P;. Then m = A — az, where =% v. Such a = is in Py if and
only if [a/A] — zis in P;". Again, as in case 1 we obtain [a/4] =% ¢ =" ». Moreover,
Py C P4, so case 2 applies and 4 =% av.

These six cases complete the inductive extension, and Claim 1 is proved. O

CraM 2. Every x € CSF(G") can be uniquely written ¢ = 23 - -2y (n > 0, where
ifn =0 z=y) wherez, € V'*ala/Al| a€Z;AEN";Ja/AIEN"} (for i € {1,2,---,n})
and where y € V'™,

Proor. By inspection of P” we see that every occurrence of [a/A] (a € Z; A € N')
in the right-parts of productions is either preceded by an a or occurs as the leftmost
symbol in the right-part. In the latter case, the left-part of the production is of the form
la/B] (B € N'; same a € Z). Taking this observation into account, the claim is easily
proved by induction. We shall leave the details to the reader. [1

Our next result requires the following, Let z € CSF(G”) have the unique decomposi-
tion of Claim 2,

¢ = oo/ Adesfas/As]- - Tatalan/Anly  (2,€V'*0,€2;4,6N [a./AJEN"
for 4€{1,2,- - m}ye V™).
Define ¢ as
o(mmlar/ Ax]xza»z[az/ Aol * + Zo@alan/Anly)
21 A12245- - - Lo Any.

Clearly for z, y € CSF(G"), if z = y then o(z) = o(y). We further define ¢, a surjec-
tion from P,” onto P,’, by

A—o) ifr=A->uisinP” UP/,
o(neP)) = A —o(au) ifr=[a/A]—>uisinP, " UP UP,” UP,) (a € 2),
otherwise.

o(x)

(The fact that ¢ is a surjection follows easily by construction and the fact that G’ is
reduced.)

CramM3. Let u€ V'™, yeZ* nc Py, If uz € CSF(G") has handle (m,|u|)
then o(uz) € CSF(G’) has handle (¢(7),jo(u)|).

Proor. The proof is by induction on the length of the @ derivation.

Basis. S € CSF(G”) has handle (A,1) and o(S) = S € CSF(G’) has handle (A,1)
= (¢(A),|a(S)]).

Induction step. Suppose that the claim holds for G”-derivations of length &
(0 £ k £ n) and consider a derivation of length » + 1. Then x = X — y with u = zy
and S =Y Xz =% zyz with handle (=,|zy|). By the inductive assumption,

='Y ¢(2X)z. 1

We have two cases to consider.

Casel: #=A—>yisinP,” U Pc". Then ¢(7r) A—>o(y)isin P/ U Py and
o(zd) = a(x)A Thus by (1) 8 =% o(2)4z =5(r) o(z)o(y)z, and o(z)o(y)z =
o(zyz) € CSF(G’) has handle (¢(r) Ia(xy)l)

Case2. 7 = [a/A] = yisin P," UP" UP,” UP;". Then ¢(7) = A — o(ay)
isin P, U Py U P/ U Py and, by Claim 2, 2X = z[a/A] = wala/A4]. Thus, 6(zX) =
o(wala/A]) = o(w)A and by (1) 8 =% o(w)Az =4, o(w)a(ay)z and o(w)o(ay)z
= o(way)z = o(zyz) € CSF(G') has handle (¢(7), jo(xy)]). O
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Proor oF LEMMA 2. Claim 1 establishes that L(G") = L(G’). By inspection of P”
wesee thatform, T € P'; 1= X —»y,o'= X —y,if # =% 7 and (7)) = $(7),
then 4" = ¢ (ie. by symmetry, neither right-part is a suffix of the other). Suppose
that = € P,” is not LR(5). Then there exist z,2” € V"*; 2,;' € =*; #’ € P” for which

zz € CSF(G”) has handle (,|z|),

2’27 € CSF(G") has handle («',|2'|), (1)
(|¢|+J)xz = (lZH‘J)x'z" and

(mlzl) = (7' |2)).

By Claim 3, o(2)z € CSF(G’) has handle (¢(7),|o(2)]), o(¢')z’ € CSF(G’) has handle
(¢(x),|o(z)]).

Case 1. |z} = |2|. Then by (1) 2 = 2 whence a(z) = o(z'). Also Pz = 7.
Thus "@*0g(zz) = PO He2"). Also by (1), # # 7. Now it cannot be that
#(w) = ¢(n') since then z = 2’ (by our observation that neither right-part is a suffix
of the other). So ¢(7) # ¢(='). Consequently (¢(m),lo(z)|) # (¢(x'),lo(z)|) and
&() € Py’ is not LR(j).

Case 2. [z| < |&/|. Then by (1) there exist z € =%, 2, € =* for which z = 22
and zz; = 2, whence ¢(2)z; = o(z'). Since || > 0 it follows that |o(x)| < |o(z))].
Thus (¢(7),le(2)]) # (¢(x'),Je(z)]). Also by (1) and the fact that ¢ preserves any
terminal suffix of 2, 1*®'"g(z2) = YWIIe(2"r"). Consequently ¢(7) € P, is not
LR(7).

Case 3. |z| > |£/|. Asin case2, wefind that ¢(x) € P’ isnot LR(j).

By composition of the surjection obtained here and the one obtained in the Right-
Stratification Transformation (Lemma 1), we obtain a new surjection (which we now
rename ¢) from P,” onto P, . Also, by the construction of P” we see that ¢” is in H”-
right-context-extracted form where, for = € P”, if ¢(x) € P is an H-rule, then = is an
H”-rule. This completes the proof of Lemma 2. O

Having obtained a grammar G” in H” -right-context-extracted form, we are now ready
to develop a transformation to effect the premature scanning of those extracted right-
contexts. That is, given some H'-rule (4, — z) and a “path” of p*H”-rules
(Ao — 14y, - - ,Au1 — 2,4.) leading from an extracted right-context (a in A — zAqay),
we wish to “merge”’ that right-context (beginning with A — 2[4.aly) with the p*H” -rules
(obtaining [dea] — x[dia), - - ,[Asaa] — 2.[A.a] and terminating with [A.a] — za).
However, in order to simplify the proof for that Premature Scanning Transformation, it
is convenient to perform a so-called “state-splitting” transformation, isolating the p*H” -
rules by distinguishing their left-parts. This is accomplished by the following.

Path Isolation Transformation. Let G = (V.Z,P,8) (N = V — Z) be a reduced
A-isolated CFG and H & N. Apply the Right-Context Extraction Transformation to
G and H obtaining G’ = (V' 2,P',8) (N'= V' — Z) in H' -right-context-extracted form
where H C N’ and H'-rules map onto H '_rules. Define

P/ = {A—uBavisin P’ | a€Z;Bp*H’}
andlet M'= {BEN'| A—>uBavisin P, where Bp*H'}. For each B € M’ define
Q'(B) = {C—wD in P'| DEN’;Bp*C}, P (B) = Q'(B) — Py(B),

R'(B) = {C—uwb in P' | bcZ;Bp*C}, P/(B)= R'(B) N P/,
P/ (B)= Q'(B) N P/, P{(B) = R'(B) — P/(B),
and define
P/=P — P/

We then define a new grammar, G”, which differs from G’ in its nonterminal vocabulary
and its set of productions.

P, = {A—uB'av| a€Z; A—>uBav is in P, where Bp*H'}
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and foreach Be M’

P, (B) = {C'"—uE'cwD’ | DEN’; c€ Z; C—uEcwD is in Py (B) where Ep*H'},
Py (B) = {C'>wD' | DEN’; C—wD is in P5'(B)},
P/ (B) = {C"—uEcwb | EcN'; ¢,b€Z; C—uEcwb is in P, (B) where Ep*H'},
P;"(B) = {C'—wb |[beZ; C—wb is in Ps (B)},
and define
P’= U P”(B) (foric {2,345)),
BeM’
PGII Pc’

PII = Pl” U lel U P3” U P4” U P5” U Pe”,
= V' UW” where W' = {A’| Ac N’ and there exist an A’-rule in P"}.

Also define
H' = 1A'ew" | AcH).

Lemma 3. LetG= (V,Z,P,8) (N= V — Z) be a reduced A-isolated LR (k) grammar
andlet HC N. Let G" = (V' ,2,P",8) (N"= V" — Z)and H < N" be obtained from
G and H by means of the Path Isolation Transformation. Then

(@) L(G") = L(G);

(b) there is a surjection, ¢, from Py” onto Py such that if = € Py is not LR(j) then
¢(7) € Pyisnot LR(j); and

(¢) Q" is in H”-right-context-extracted from where for each w € P, if ¢(w) € P is
an H-rule then either w is an H” -rule or m is LR(1) with respect to all rules of G.

Proor. Path isolation is a particular instance of the “factorization” transformation
of Graham [9]. Graham proves that such a transformation preserves both the language
and the right-context bound. A slight addition to Graham’s proofs yield the needed
surjection from P,” onto P,” which, when composed with the surjection from P, onto
P, obtained in right-context extraction (Lemma 2), yields the desired surjection (which
we now rename ¢) from P,” onto P, . To prove part (c), suppose 7 = A — v in P’
is not an H”-rule, but that ¢(x) is an H-rule. Since by construction G” is in H”-right-
context-extracted form, it follows that 7 can occur only in derivations like S =% u4
=37" uv. Clearly, under such conditions, if = is not LR(1), then =, and by part (b),
¢(w), are not LR(k) for any integer k, which contradicts the hypothesis that
GisLR(k). O

We now present the transformation which is the nucleus of the Look-Ahead Reduction
Procedure. Following the transformation, some examples are presented.

Premature Scanning Transformation. Let G = (V.Z,P,8) (N = V — Z) be a re-
duced A-isolated CFG and let H & N. Apply the Path Isolation Transformation to @
and H, obtaining ¢ = (V',2,P',8) (N' = V' — Z) in H -right-context-extracted
form, where H' C N’ with H’-rules mapping onto H-rules. Define 7" = {A—uBav in
P |a€Z; Bp*H'} and let M’ = {Bain N'2 | A—»uBav is in T where Bp*H}. For each
B € N’ for which there exists a € Z such that Baisin M', define

Q' (B) = {C—wD in P' | DEN’; Bp*C}, P{/(B) = Q(B) — P/(B),
R'(B) = {C—wbin P’ |beZ; Bp*C}, P/(B)= RB)NT,
P/(B)=qQB)NT, P{/(B) = R'(B) — P/(B),
and define
P/= U P/(B) (foric€ {234, 5)),
Bac M’
Pl’ = T, - (PzIUP4I),
P/ = P — (T'UP,/UP))
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(Note that P, NP, = & fore # 7; 4,5 € {1,2, 3,4, 5,6}). We then define a new gram-
mar G” which differs from G in its nonterminal vocabulary and its set of productions.
For each Ba € M’', define

P,”(Ba) = {[Cal—ulEclw[Da] | c€Z; DEN'; C—uEcwD is in P,'(B) where Ep*H'},
Py (Ba) = {[Cal->w[Da] | DEN'; C—wD is in P5'(B)},

P, (Ba) = {[Cal—ulEclwa | c€Z; EEN’; C—uEcw is in P,/ (B) where Ep*H'},
P (Ba) = {[Cal—>wa | C—w is in P§'(B)},

and define
P”= U P/(Ba) (for€ {2,3,4,5}),
BacM'
P, = {A—u[Balv|a € Z; A — uBay is in P, where Bp*H'},
Pe” = PGI

p’ = Pl” u le/ U P3” ] P4” U Ps” U Pe”,
V"= VUW’ whereW” = {[Aa] | AEN'; a€ T; thereexist an [Aa]-rule in P”}

Before embarking on proofs for the Premature Scanning Transformation, let us illustrate
the methods used by the transformation. Consider the LR(2) grammar with productions

m, w21 S — Ab | aBbc m:B—C
my, T A — adbA | b wg, m : C — b | Cbd

The rules 7, and 7 are not LR(1). Thus the Look-Ahead Reduction Procedure will
calculate H = {4, C}. Path isolation has no useful effect on this grammar, yielding
G’ = G and H' = H. The Premature Scanning Transformation yields

T' = {m,ms,ms,m} (rulesin which right-contexts for H'-rules originate)
with M’ = {Ab,Bb,Cb},

QA= {m} Q(B)= {m} Q(C) = & (rules through which right-contexts for H'-
rules must be propagated),

R'(A) = {m R'(B) = {me,m} R'(C) = {ms,m} (rules at which propagation of right-
contexts will terminate),

P, = {m} (rules which both originate right-contexts for H'-rules and also through
which such contexts must be propagated),

{m} (rules which both originate right-contexts for H'-rules and also which
will terminate propagation of such right-contexts),

Ps: = {m, ™},
Pl = {1I’1, 7I'2},

Pel = ,®'.
Then
Py = P, (Ab) = {[Ab}—alAb]{Ab]}, Py’ = P;"(A4b) U P;"(Cb),
Py = Py"(Bb) = {[Bb]-[Cb]}, P," = {8—[Ab], S—a[Bb)},
P/ = P,”(Bb) = P,”(Cb) = {{Cb]—[Cb}db}, P = &.
P;"(Ab) = {[Ab}—bb} P§" (Cb) = {[Cb]—bb},

The resulting grammar is LR(1).
It is illustrative to note the effect that path isolation has on the Premature Scanning
Transformation. It is only as a result of path isolation that we can specify Py = P’
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— (T'UP;'UPy’). Consequently the P, are pairwise disjoint. Without path isolation, we
would have to specify Py = P’ — Py, and Py could then overlap P, U Py U P/ U P/,
making the following proofs much more difficult. As an example, consider the LR(2)
grammar with productions

m,m:S—>Bb|D ms, m: A —alab
m,m:B—>A|D m:D—>e¢

The rule 7; is not LR(1); thus H = {A}. The Right-Context Extraction Transformation
does not alter the grammar, but the Path Isolation Transformation yields

‘II'1,7I'QZS—>B,bID ’n's,ﬂ'giB—)AlD

m, m:B > A | D T, ™m:A—ajab

s, me: A —alab m:D —e¢
m:D —e¢

and H' = {A’}. Proceeding with premature scanning,

T’ = {7‘-1}, P4I = /@)
M = {B'b}, P/ = {ms, ms, ™},
P/ = g, Py = {m},
Py = {m, m}, Py = {m, T, ™, T, Tu, T},
and then
P =&, = {[4] b]—>ab [A'b]—abb, [D'b]—cb},
Py = {[B'b]—[4Y], [B'b]-[D'b]}, P 1” = {S—[B'b}},
P/ = &, P = {S—D, B—A, B—D, A—a, A—ab, D—c}.

The resulting grammar is now LR(1).

Now consider the alteration Py = P’ — Py’ and apply the altered Premature Scanning
Transformation to the orlgmal grammar (without applying the Path Isolatlon Trans-
formation) with H’ = {A}.

T = {77'1} = g)
M’ = {Bb}, P6 = {ms, ™, ™},
P2:=Q, Pl =l7rl}v
P3={11'3,1|'4}, P5,={7Tg,1l'3,‘ll'4,1l'5,71'6,1r7}
(indeed Ps’ NPy = &, Pd N P = &),
and then
P = &, P" = {[Ab]—ab, [Abl—abb, [Db]—cb},
Py" = {[Bb]—[Ab], [Bb]—[Db]}, p;’ { S—[Bbl},
P’ = g, = {8§—D, B—A, B—D, A—a, A—ab, D—xd}.

Except for renaming of nonterminals, this grammar is the same as that obtained by
performing path isolation followed by premature scanning. Thus, the Path Isolation
Transformation is merely a convenience, needed to simplify the following proofs. The
simplification lies in noticing that premature scanning causes a nonterminal symbol
to be bracketed in some rule of P” (in either the left-part or the right-part of the rule)
if and only if that symbol was primed by the Path Isolation Transformation. Moreover,
all instances of primed symbols in rules of P’ become bracketed in the corresponding
rules of P”. Thus we know that for every A € N, a rule of P” can contain some bracketed
symbol, [4a], only if no rule of P” contains the symbol A, and contrapositively, A can
appear only if no [4a] appears.

LemMa 4. LetG = (V,Z,P,8) (N =V — Z) be a reduced A-isolated LR (k) grammar
and'let HC N. Let G = (V' Z,P",8) (N = V" — Z) be obtained from G and H by
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means of the Premature Scanning Transformation. Then

(a) L(G") = L(&);

(b) there is a surjection, ¢, from Py” onto Py such that if = € Py 1snot LR(j) (7 > 0)
then

(7) ¢(w) EPisnot LR(j + 1) if 7€ P, UP" UP”UP,

(1) ¢(w) € Py is not LR(j) otherwise; and

(¢) foreach = € P” if ¢(x) € Pisan H-rule, then either wisin P," UP" UP,” U Py”
or w18 LR(1) with respect to all rules of G.

The relationship between G’ of the transformation and G is given by Lemma 3. We
first prove some claims relating G” to G'. Let ¢ (mapping V" into V U V?*) be defined by

o fAa X = [Ad)isin W,
o(XeV?) = {X otherwise,

and extend ¢ to a homomorphism from V"* to V* by
o(zy) = o(z)a(y) forz,y e V"™, a(A) =
and let ¢, a surjection from P,” onto Py , be defined by

‘A o) ifr =[de] > uaisin P U Py" (acZ),
S(rEPy) = A —o()B if r = [Aa] > u[Ba] isin P,” U Py" (a€Z),
A—>au) ifr=A-uisinP UP,

lA otherwise.

(The fact that ¢ is a surjection follows easily by construction. )

Cram 4. L(G') S L(G").

Proor. Consider the context-sensitive grammar obtained by deleting the brackets
from the rules of G”. As a result, the equivalent of G’ is obtained.

CramM 5. Letu € V'™, 2€ 2% n € P". If uz € CSF(G") has handle (=, ju}) then
o(uz) € CSF(G') has handle (¢(w), p), where

_ {Ia’(u)[ -1 xR UPR"URUP,
~ Yo (u)| otherwise.

Proor. The proof is by induction on the length of the G”-derivation.

Basis. S € CSF(G”) has handle (A, 1) and ¢(8) = § € CSF(G’) has handle (A,1)
= (¢(A),|e(S)]). ,

Induction step. Suppose that the claim holds for G -derivations of length k (0 <
k < n) and consider a derivation of length n + 1. Then ©# = X — y with « = zy where
XeN';zyec V™ and 8 =" 2Xz =, zyz with handle (=,|zy|). By the inductive
assumption we have

S =% ¢(2Xz) = o(zX)z. (1)

We have three cases to consider.

Casel. m#=A—yisin P, UP,". Then ¢(7) = 4 — o(y) isin P/ UP,/. Then
(1) yields 8 =" o(z4)z = o(2)Az =%, 0(z)o(y)z = o(ay)z. Thus o(ayz) =
o(zy)z € CSF(G') has handle (¢(r), |o(zy)|).

Case 2. 7= [Aa) — w[Ba]isin P,” U P;” (a € Z). Then ¢(7) = 4 — o(w)B is
in P,/ U Py. Then (1) yields 8§ = o(z{dal)z = o(z)Adaz =5, o(z)o(w)Baz =
o(zw)Baz. Thus o(zyz) = o(zy)z = o(2w|Ba))z = o(aw)Baz € CSF(G') has handle
(¢(m),lo(zw)B|) = (¢(7r),|0(xw)Bal—1) = (¢(m),lo(zy)|~1).’

Case 3. == [Aa) > waisin P,” U P;" (a € 2). Then ¢(w) = A — o(w) is in
P/ U Py Then (1) yields 8§ =¥ o(z[da))z = o(z)Aaz =>¢(‘l’) o(z)o(w)az = o(aw)az.
Thus o(zyz) = o(zy)z = o(zwa)z = o(zw)az € CSF(Q’) has handle (¢(7),|o(zw)]|)
= (¢(7),|lo(2w)a]—1) = (¢(7),le(zy)|—1). O
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ProoF oF LEMMA 4. By Claim 5 applied to elements of L(G") we have L(G") C
L(G"), and with Claim 4 this yields L(G') = L(G"). To prove part (b) we use the re-
sults of Claim 5. Suppose that = € P,” is not LR(j). Then there exist 2,2 € V"%,
27 € Z*; «’ € P" for which

7z € CSF(G") has handle (1r,|9:|), (1)
@7 € CSF(G”) has handle (7' ||), (2)
IZI+J)zz= (el + J (3)
(wlal) = (W,IZI) (4)

As in the proof of Lemma 2, we see that for m, 7 € P, n = X >y, © = X - ¢
if > 7 and ¢(w) = ¢(«'), then ™'Y £ 4 (i.e. neither right-part is a suffix of the
other). The proof now breaks into cases.

Casel. =, m € P," U P U {A}. By Claim 5, ¢(2z) € CSF(G') has handle
(¢(7),Jo(z)]) and a(«2’) € CSF(G’) has handle (¢(7'),|e(z)|). Exactly as in the
proof of Lemma 2 we find that ¢(7) € Py U P¢ U {A} is not LR(j).

Case 2. w, # € " UP" UP,” UP. By Claim 4 and (1), (2), o(2z) =
o(x)z € CSF(G') has handle (¢(7),Jo(z)]—1) and ¢(2'2') = o(z')2 € CSF(G') has
handle (¢(7'),lo(z)|—1).

Case 2(a). |z} = |¢/|. Then by (3), z = 2 whence o(z) = o(z’) and Yz = V2,
Thus (@D (1) = Ue@IDHID 57"y By (4), 7 # . Now it cannot be that
o(w) = ¢(x’) since then z = 2’ (by our observation that neither right-part is a suffix
of the other). So ¢(7) = ¢(n'). Consequently (¢(m),|o(z)|—1)5%(d(x ),|o(2')|—1)
and ¢(m) € P,y U P/ U P/ U P, is not LR(z41).

Case 2(b). |a| # |«/|. Just as case 2(a) was handled very much like case 1 in the
proof of Lemma 2, so too, Case 2(b) is handled much like cases 2 and 3 in the proof of
Lemma 2, and we find that ¢(7) € Py U Py’ U P/ U Py is not LR(j+1).

Case3. 7€ P"UP UfA); #ep,”UP”UP”UP,” ByClaim5 and (1)
and (2), o(22) = o(x)z € CSF(G') has handle (¢(7),|o(z)|) and o(z'2’) =
o(2')z € CSF(G') has handle (¢(='),le(2")|—~1). By (3) and the fact that ¢ preserves
any terminal suffix of 2, we have '@ g (22) = 1" @5(4'2"). Now it must be that
é(w) # ¢(r'), since P,” U Py"-rules have unbracketed left-parts, whereas P,” U P5”
U P.” U P;”-rules have bracketed left-parts. If it were that ¢(7) = ¢(7’) then = would
be of the form A — y and # of the form [Aa] — ¥'; but as a result of Path Isolation,
nonterminal symbols cannot be both bracketed and unbracketed in N”. Thus ¢(w) =
o(7') and ((m),lo()l) #= (¢(7'),lo(z)|~1) and ¢(x) € Py’ U Ps' U {A} is not
LR(7)-

Cased. 7€ P UPUP"UP; « ¢ P,” UP U{A}. By Claim 5 and (1)
and (2), o(2z) = o{z)z € CSF(G') has handle (¢(w),|o(2)|—1) and ¢(z2) =
o(2' )2 € CSF(G') has handle (¢(7'),lo(z)|). By (3) and the fact that o preserves
any terminal suffix of ', we have (/7@ T4 = We@ITDH®D L (077 Asin case 3,
¢(m) # o(n') whence (¢(m),lo(2)|=1) = (&(x'),lo(2)]) and ¢(x) € Py U Py U
P/ U P/ is not LR(j+1).

Part (¢) of Lemma 4 follows by construction, part (¢) of Lemma 3, and part (b) of
Lemma 4. This completes the proof of Lemma 4. O

Although we are now ready to describe an LR (k) to LR(k—1) algorithm for reduced,
A-isolated grammars, we cannot yet describe the LR(k) to LR(1) algorithm. While
such -an algorithm is simply an iterative version of LR(k) to LR(k—1), it must also
account for the possibility that, between iterations, the Right-Context Extraction Trans-
formation may introduce new A-rules, destroying the A-isolation property. Thus, it is
necessary to perform yet another transformation, removing A-rules, to recover a A-iso-
lated grammar. The standard A-elimination algorithm for CFGs (¢f. Hoperoft and Ull-
man [14, pp. 62, 63]) may be used. The transformation (which we call a “A-Isolation
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Transformation”) preserves both the language (modulo A) and the right-context bound
(cf. Graham [10, Cor. 4.4]).

Finally, we can present the procedure for reducing the right-context bound of an
LR(k) grammar. We have parameterized the algorithm by specifying that it should
halt after having obtained an LR(p) grammar.

Look-Ahead Reduction Procedure. Given an LR (k) grammar, G = (V,Z,P,8),

fori: =k — 1ldowntop
(1) Apply the A-Isolation Transformation to G, obtaining G' = (V' Z,P’,8")
(N' =V = 3).
(2) Compute H' = {AEN'|some A-rule of P is not LR(2)}.
(3) Apply the Premature Scanning Transformation to G’ and H’, obtaining a new
grammar, G = (V,Z,P,S).
halt

TueoreM 1. Let G = (V,Z2,P,S) be a CFG. If G vs LR(k) for some k, then the Look-
Ahead Reduction Procedure halts for p > 1, yielding an LR(p) grammar G for whach
L(G") = L(G).

Proor. The fact that L(G”) = L(G) is clear from Lemma 4. Thus, to prove the
theorem, it is sufficient to show that the (k—7)-th iteration of the Look-Ahead Reduction
Algorithm effectively converts an LR(j+1) grammar, G, to an LR(7) grammar, G”.
The (k—7)-th iteration certainly halts since the transformations each involve only finite
computations on finite grammars. Moreover, the A-Isolation Transformation preserves
the right-context bound. Suppose that after applying the Premature Scanning Trans-
formation, G” is not LR(j) (§ > 1). Then there is some rule, = € P,”, which is not
LR(;). Consider the partitioning of P”, (P,", P,", Py", P,”, P5’, Ps") accomplished by
premature scanning. It cannot be that = = A since then (by Lemma 4), ¢(7) = A
is not LR(j) (j > 1) whence G" and G are not LR(k) for any k, contradicting the hy-
pothesis that G is LR(k).

It cannot be that = € P,” U Py” U P,” U P,” since then (by Lemma 4) ¢(r) € P’
is not LR(j+1), contradicting the hypothesis that G and G are LR(3+1).
Thus, = € P,” U Ps". But then (by Lemma 4), ¢(x) € P’ is not LR(j), and by step 2
of the Look-Ahead Reduction Procedure, ¢(x) is an H'-rule. Then (by Lemma 4),
either = is LR(1) with respect to all rules of @” or 7 € P,” U P;” U P,” U P,”, each
of which again leads to a contradiction. Thus it must be that after the (k—y2)-th iteration,
each rule 7 of P” is LR(j) with respect to all rules of G.” O

It is natural to ask under what conditions the Look-Ahead Reduction Procedure will
halt for p = 0, yielding an LR(0) grammar. Clearly this would follow if part (¢) of
Lemma 4 were to read:

(¢) foreach m € P",if ¢(w) € P isan H-rule, then either wisin Py” UPy" UP,” UP,’

or m is LR(0) wth respect to all rules of G.
This in turn would follow if part (¢) of Lemma 3 were to read:
(¢c) G” is in H” -right-context-extracted form where for each w € P”, if ¢(w) € P 15 an
H-rule, then either m is an H” -rule or 7 is LR(0) with respect to all rules of G.
There is a quite simple language constraint which is sufficient to yield these strengthened
conclusions.

TuroreM 2. Let G = (V,2,P,8) be a CFG. If G 1s LR(k) for some k and L(G) 1s
prefiz-free,’ then the Look-Ahead Reduction Procedure halts for p > 0, yelding an LR(p)
grammar, G", for which L(G") = L(G).

Proor. In view of the proofs of Lemma 4 and Theorem 1, it is necessary to show that
the prefix-free condition on L(G) is sufficient to yield the cited modification to Lemma 3.

8 A language, L CZ*, is said to be prefiz-free [13] if and only if x € L and 2y € L impliesy = A.
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Suppose (within the hypotheses of Lemma 3 and the prefix-free hypothesis) that = =
A —pin P” is not an H” -rule, but that ¢(x) is an H-rule. As in the proof of Lemma 3,
since by construction G” is in H”-right-context-extracted form, it follows that 7 can
oceur only in derivations like

S =% ud = w with handle (,uv|). (1)
Suppose that 7 isnot LR(0). Then there exist w € 2*and #' € P” for which
www € CSF(G”) has handle (#, 7) (2)
and
(mfus]) # (7', 7). (3)

Since @” is reduced, it follows that there exists y € =* for which uv =" y. Then by
(1) and (2), y € L(G") and yw € L(G"). Since L(G) = L(G") is prefix-free it follows
that w = A. But then, by (1), (2), and (3), we find that 7 is not LR(k) for any k.
Thus, by part (b) of Lemma 3, we are led to the contradiction that ¢(=) is not LR(k)
forany k. 3

4. Concluding Remarks

We have presented a number of the preceding transformations separately for the sake of
proving them correct. However, in practice, some economization is possible. We have
already remarked that the Path Isolation Transformation followed by the Premature
Scannnig Transformation can be combined into a single modification of the Premature
Scanning Transformation in which we define P = P’ — Py instead of P = P’ —
(T U P U P;). However, it is more difficult to prove that the modified version works
correctly. Another simplification is possible in the Look-Ahead Reduction Procedure.
The modified procedure is:
Given an LR(k) grammar, G,

while G is not LR(p)
(1) Apply the A-Isolation Transformation to G, yielding ¢ = (V',2,P',8)
(N =V =2).
(2) Compute H' as some (arbitrary, but nonempty) subset of {AEN' | some A-rule
of P’ is not LR(p)}.
(3) Apply the Premature Scanning Transformation to G’ and H’, yielding a new
grammar, ¢ = (V,Z,P,8)
halt

It is a very difficult task to prove that this modified Look-Ahead Reduction Procedure
halts (and we have not tried to do so). However, we think that this version is compu-
tationally more efficient than the original algorithm (if for no other reason than the
simplified need to detect only non-LR(p) (p = 0 or 1) instead cf non-LR(z) rules).
In our implementation [19-22, 24] we stop at the first encountered non-LR(p) rule,
A — u, and set H = {A}.

In our preliminary remarks, we noted that it is not necessary to apply premature
scanning to all extracted right-contexts, but only to those which are involved in non-
LR(p) conflicts. The modification that is needed in the Premature Scanning Transfor-
mation is to change the definition of the set 7" to

T" = {A—uBav [ a€Z; Bp*H’; and a is a conflicting right-context for some H -rule}.

Theorem 2 asserts that if L(@) is prefix-free (and G is LR(%)) then the Look-Ahead
Reduction Procedure is capable of producing an equivalent LR(0) grammar. We remind
the reader that any language can be made prefix-free by the concatenation of an end-
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marker to each sentence of the language. Formally, let G = (V,Z,P,S) be a CFG and
let S" and § be symbols not in V. Then for G' = (VU{S'8},2U($},PU{S' —88},8'),
L(G") is prefix-free. Geller and Harrison [7] call such a grammar, G, the “$-augmented
grammar of G.” In practice, virtually all programming languages have such endmarkers
(e.g. “end-of-record mark’’).

An interesting side effect of the Look-Ahead Reduction Procedure is that it can be
modified to yield a grammar in DeRemer’s “simple” LR(1)} (SLR(1)) form {3, 4].
The modified procedure is:

Given an LR(%) grammar, G,

while ( is not SLR(1)
(1) Apply the A-Isolation Transformation to G, yielding ¢ = (V' ,Z,P',8")
(N =7V -2).
(2) Compute H' as some (arbitrary, but nonempty) subset of {4 €N’ |some A-rule
of P’ is not SLR(1)}.
(3) Apply the Premature Scanning Transformation to ¢’ and H', yielding a new
grammar, ¢ = (V,Z,P,S).
halt

Although this procedure will often halt for an arbitrary LR(k) grammar, G, halting is
guaranteed only if L(G) is prefix-free. That is, in some cases, an LR(0), hence SLR(0)
(see [3, 4]), hence SLR(1) grammar is the best that can be obtained. As an example of
conversion to SLR(1), consider the LR(1) grammar with the following productions.
This grammar is not SLR(k) for any integer, k.

m, T2, M : S — ada|aBb|bBa
m,m: A—cl|cd
me, ™: B—c|cB

Rules 7, and g are not SLR(1). Suppose that we compute H = {B}. No right-context
extraction is required. After premature scanning of the conflicting right-contexts (merely
the rightmost a of m;), we obtain the grammar with productions

m', m, m: S — ada|aBb|blBal, e, m: B—clcB
m,m: A—c|cA ms, m : [Ba] — ca | c[Ba)

which is SLR(1).

In our implementation, we require a (1, 1) bounded right-context (BRC) grammar,
which is obtained from an LR (k) grammar by (1) transforming to SLR(1) via the above
algorithm, and then (2) transforming to (1, 1) BRC by a scheme that is much like the
one presented by Graham [9]. Consider once again the grammar with productions 7, - - -,
m; above. Using Graham’s original scheme [9], “state splitting” is used to obtain the
SLR(1) grammar with productions

S — ada | aBb|bBa B —c¢|cB
A—clcd B —c¢|cB

and subsequently, one obtains the (1, 1) BRC grammar with productions

S — ada | aBb | bB'a B —¢|CHB
A —c|cA C —c¢
B-—c¢l|cB

In her more recent work [10], Graham shows how to directly obtain (1, 1) BRC from
LR(1), but to obtain a grammar of reasonable size requires considerable optimization of
the transformation.

With our implementation we first obtain the SLR(1) grammar with productions
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I

m, -+, m above, and subsequently the (1, 1) BRC grammar with productions

8 — ada | aBb | b[Ba] [Ba] — ca | C[Ba)
A—c|cA C—ec
B —>c¢|cB

Our final observation concerns the relation of these transformations to the notion of
grammatical covers (originally due to Reynolds and Haskell [23]). Gray and Harrison
[11] present a definition of cover which is similar to the following.

Let G = (V,Z,P,8) and G" = (V",2,P",8) be CFGs and let ¢ be a mapping from
P” to P, . Extend ¥ to a homomorphism from P"* to P* by requiring ¢(A) = A and
for z,y € P, ¥(xy) = ¥(2)¥(y). G” is said to completely cover G under ¢ if and only if

(a) L(G") = L(G); and

(b) foreach z € L(G), () if S =>E$.):‘_1 z then there exist (w,” )7y in P’ (m > n)
forwhichS=3.nm xand ¢ ((m.")im) = (m)iar, (i) if S =7 .»m, 2 then S=}lx,mm ) @

Gray and Harrison actually present a more general notion within which a G”-deriva-
tion may induce (via ¢) only a portion of the corresponding G-derivation. In their
terminology, “sparse” G-derivations are covered.

We note that, with the exception of A-Isolation, each transformation presented here
produces as output a grammar G which completely covers the input grammar, G. In
each case, a simple modification of the associated surjection, ¢, provides the cover
mapping, ¢ from P” to P, . For the A-Isolation Transformation, a sparse covering is
accomplished. The only portions of input grammar derivations which are not covered
are subderivations which lead to A. We have found that, in practice, it is quite easy to
relocate any semantic actions that may have been associated with such neglected A-sub-
derivations.
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