
Transforming LR(k) Grammars to LR(1), SLR(1), and (1,1)
Bounded Right-Context Grammars

M. D. MICKUNAS

University of Ilhnozs at Urbana-Champalgn, Urbana, llhnois

R. L. LANCASTER

Bowhng Green State University, Bowhng Green, Ohio

AND

V. B. SCHNEIDER

Purdue University, West Lafayette, lnd~ana

ABSTRACT. A method is presented for directly transforming an arbitrary LR(k) grammar to an
equivalent LR(1) grammar. It is further shown that the method transforms an arbitrary prefix-free
LR(k) grammar to an equivalent LR(0) grammar. It is argued that the method is efficient and offers
some advantages over tradltmnal "look-ahead" parsing methods. Finally, it is demonstrated that
the method can be used to transform an LR(1) grammar to an equivalent SLR(1) grammar, which
in turn can be easdy transformed to an equivalent (1, 1) bounded right-context grammar.

HEY WORDS AND PHRASES: parsing, context-free grammars, LR(k) grammars, grammatical trans-
formations

CR CATEGORIES: 4.12, 5 22, 5.23

1. Introduction

Whenever a parsing technique is discussed in the literature, the author usually generalizes
the method to permit "look-ahead" calculations (i.e. the parser, when visualized as a
pushdown automaton, is permitted to look beyond the current symbol of its input, in
order to determine its next move). Thus an LR(1) method [16] is usually augmented
by including the calculation of "k-symbol input sets" (on an exception basis) instead of
only "l-symbol input sets," whence the method is generalized to LR(k) [3, 4, 16, 17].
A precedence method [25] is usually augmented by permitt ing duplicate right-parts
in production rules. The grammar remains precedence detectable [11] but the reduction
phase of the precedence parser must include a "k-symbol look-ahead" ability (again on
an exception basis) to choose properly between duplicate right-parts of rules. Prece-
dence methods may thus be extended to handle (1, k) bounded right-context grammars

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice i s

given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This work was supported, in part, by National Science Foundation Grant GJ-851 to Purdue Uni-
versity and National Science Foundation Grant DCR 72-03740 A01 to the University of Illinois at
Urbana-Champaign.
Authors' addresses M.D. Mmkunas, Department of Computer Science, Digital Computer Labora-
tory, Univermty of Illinois at Urbana-Champaign, Urbana, IL 61801; R.L Lancaster, Computer
Science Department, Bowling Green State University, Bowling Green, OH 43402; V.B. Schneider,
Department of Computer Scmnces, Mathematical Sciences Building, Purdue University, West
Lafayette, IN 47907.

Journal of the Assoclatlon for Computing Machinery, Vol 23, No 3, July 1976, pp 511-533

512 M . D . MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

[1, 6, 9, 11]. The fact tha t look-ahead is performed on only an exception basis is a conse-
quence of two disadvantages of the technique: (1) look-ahead sets are difficult to calcu-
late, and (2) provision of k-symbol look-ahead sets for those portions of the parser tha t
don ' t need i t consumes an enormous amount of memory space.

In principle, the technique of transforming a grammar to LR(1) overcomes the above
two disadvantages. Moreover, since there are fewer parsing actions to be performed, the
parser lends itself to simpler analyses of i ts space/ t ime requirements. But there are two
major objections to the policy of transforming a grammar to L R (1) : (1) the structure
imposed by the original grammar is generally not preserved, and (2) the transforma-
tion may exhorbi tant ly (sometimes exponentially) increase the number of production
rules.

F rom a compiler-writer 's point of view, the first objection is often academic. The
pract i t ioner is concerned not with the changes in the grammatical structure per se, bu t
with how those changes affect the code-generating (semantic) properties of the compiler.
The transformation techniques presented in this paper permit a compiler 's semantics to
adjust to such changes in grammatical structure in three ways. To i l lustrate these meth-
ods, consider the following stylized subset of an Algol-like grammar:

~rl : (s tatement) --~ (assignment)
• "2 : (s ta tement) ~ (label) : (s ta tement)
~-~ : (label) ~ identifier
• "4 : (assignment) --~ (variable) : = (expression)
~r5 : (variable) ---, identzfier

The above grammar is LR(2) . The semantics of ~r3 would a t t r ibu te the meaning of
" label" to an identifier, whereas the semantics of lr5 would a t t r ibute the meaning of
"var iable" to it. In each case, the identifier (or i ts encoding) is located by the code-
generating routine as the last symbol which was scanned by the parser.

A non-LR(1) problem arises with the rules zr3 and 7r5. To reduce an identifier, an
LR(2) parser will apply ~'5 whenever the identifier is followed by : = , and i t will apply lr3
whenever the zdent~fier is followed by : identifier. For example,

identifier :identif ier :
should be parsed by applying the rules ~'3, ~rs, • • • , 7r4,7rl, lr2 yielding

(label) : ident i f ier:
then (label) : (variable) :
:

then (label) : (assignment) • •
then (label) : (s tatement) . . .
then (s tatement) • • •

The transformations we will present would transform the above grammar to the LR(1)
grammar:

~'l' : (s tatment) --~ (assignment)
!

7r2 : (s tatement) --~ (labeler) (s tatement)
!

7ra : (labeler) --~ identifier :
I

~'4 : (assignment) --~ (left-part) = (expression)
!

v5 : (left-part) --~ identifier :

If the original grammar contained code-generating subroutines associated with rules
7r, or ~r5, then some alterat ion of these subroutines may be necessary to work correctly
with rules ~-a t and 7rj of the altered grammar. The semantics of ~r3 (~'s) must still supply
the " label" ("var iab le") meaning to the identifier. However, the identifier (or i ts en-
coding) is now located by the code-generating routine as the next-to-last symbol which
was scanned by the parser. A second technique allows the semantics to remain un-
changed. The transformed grammar is used to parse the program " in ternal ly" and, as
the internal parse proceeds, an "external" parse via the original grammar is induced. As

Trans forming L R (k) Grammars 513

this external parse proceeds, the original semantics can be applied. This technique was
first suggested by Gray and Harrison [11] and arises from the notion of "grammatical
covers," originally due to Reynolds and Haskell [23]. In order to accomplish the in ternal /
external linkage, we map the new rules onto the old rules by a function, ~b, which in
this example simply maps each ~- / to ~-,. While we will not present a formal proof tha t
this technique works, we will nonetheless have further detailed remarks to make about
it. Schematically, the internal/external parses proceed as follows:

internally externally

identifier : identi f ier :
t

apply ~r8
(labeler) identifier :

apply ~'j
(labeler) (left-part)

apply ~r4'
(labeler) (assignment) . . -

apply ~'1'
(labeler) (statement) . . .

apply 7r~
(statement) . . .

identifier : identifier :
apply ¢(Tra') = ~',

(label) : identifier :
apply th(lrj) -- lrs

(label) : (variable) :

apply 4~(m') = m
(label) : (assignment) . . .

apply ~b(~rl') = ~'1
(label) : (statement) . . -

apply ~b(~r2') = ~r2
(statement) . . .

A third way of adapting the grammar to its semantics in this case is to force the lexical
scanner (which supplies an encoded form of the input to the parser) to recognize the
sequence of symbols : = as a s~ngle input symbol (: =) . Thus, the grammar may be
changed to

7rl : (statement) ~ (assignment)
7r2 : (statement) --, (label) : (statement)
m : (label) ~ identifier
m : (assignment) --~ (variable) := (expression)
m : (variable) --~ identifier

The parser can now decide to apply ~ra if the next input symbol is : and apply ~'5 if it is
: = . This is a standard technique that is usually applied in an ad hoc fashion.

In our experience, the transformation to LR(1) does not exhorbitantly increase the
size of the grammar, so long us the language in question is well suited to LR(1) parsing.
We have found that, even if the original grammar is badly written, the transformation
will produce a grammar of reasonable size. Even for pathological languages, the trans-
formation produces LR(1) grammars which are competitive with handwrit ten LR(1)
grammars for the same language. In the remainder of this section we present basic defi-
nitions and notation. Most of what follows is standard, and we have patterned much of
the format after that of Gray and Harrison [11].

Defini t ion. A (context-free) grammar (CFG) is a four-tuple, G = (V , Z , P , S) where
(a) V is a finite nonempty set of symbols (vocabulary) ;
(b) ~ c V (terminal vocabulary) ;
(e) h r = V - Z (non termina l vocabulary) ;
(d) S E N (goal symbol) ; and
(e) P is a finite subset 1 of N X V* (product ions) .

We will denote an element (A,v) of P as A ~ v, and we will often ascribe indices to
productions: ~r, = A ~ v. For any rule, A ~ v, A is called the left-part and v the right-
part of the rule. Any rule having left-part A is called an A-rule.

1From [11] Let Xand Y be sets of words We writeXY = {xy I x E X , YEY} where xy is the con-
eatenatlon of x and y Define X ° = {A} where A is the null word. For each i > 0 define X '+1 = X ' X
and X* = tJ,_~0 X' Let X + = X * X and let ~ denote the empty set.

514 M . D . MMICKUNAS, R. L. L A N C A S T E R , AND V. B. S C H N E I D E R

We find i t convenien t to employ b ina ry relations on sets of words.
Definition (from [11]). Let p be a b ina ry relat ion on a set X, i.e. p C X X X. Define

0 ~
p = {(a,a) [a E X } , a n d f o r e a c h 2 z ~_ O, p~+l _- p,p. Last, p* U,_~0p" and p + p*p.
For a b i n a r y relat ion p on X, p* is the refiexive-transitwe closure of p while p+ is the
transitive closure of p. For a E X we will write ap to denote { b E X [apb} and similarly
pa to denote { b E X [bpa}. For H _C X we write Hp to denote { b E X [(there exist a E H)
[apb]} and similarly pH to denote {bEX [(there exist aEH)[bpa]}. We will also wri te
al , a2 , " . , a, pH instead of al , as , " " , a~ E pH or {ax , as , . . . , a~} ~ pH.

We employ the usual b ina ry relat ion ~ C_ V* X V*, wri t ing u ~ v ins tead of
(u, v) E ~ .

Definition. Let G = (V , Z , P , S) (N = V - ~) be a C F G and let u, v E V*. Define
u ~ v if there exist z, w E V*; y E Z*; A E N for which u = xAy, v -~ xwy, and A --* w
is in P. Fur thermore , we write the reflexive-transit ive elosure of ~ as ~ * . I f we wish to
make clear tha t the g rammar G is be ing used, we will wri te ~ o .

Note By thin definition we have immediately restricted our attention to mghtmost, or
canonical derivations

Definition. The set of (canonzeal) sentential forms for a CFG, G = (V , Z , P , S) ,
is denoted b y CSF(G) and is defined as CSF(G) = {xE V * I S ~ * x } . The language
generated by G is denoted b y L (G) and is defined as L (G) = 2;*NCSF(G).

Definztion. L e t G = (V , ~ , P , S) b e a C F G and let x , E V*, (0 < i < r) . If x,
x,+x b y apply ing the product ion lr, E P , then we say t h a t x, d~rectly derwes x~+l via lr, .
If x0 ~ x, ~ . . . ~ x, where x, directly derives x,+l via 7r, (0 _< i < r) , t hen we say

r--1 r--1
(Tr,),-o is a t ha t xo (eanomcally) derwes x, via (~r,),_o and tha t (canonical) derivation of

x, from xo .
Defimtion. A C F G G is said to be unambiguous if and only if every x E L (G) has

exactly one canonical derivat ion. A C F G which is no t unambiguous is said to be am-
biguous.

Definition. Let G = (V , X , P , S) (N - ~ V - ~) b e a C F G and let u E V*, A E N,
w E 2;* such t h a t u A w E CSF(G) . Let 7r = A ~ v in P. T h e n uvw E C S F (G) is said
to have 3 handle (Tr, [uvI). By convent ion , S E C S F (G) has handle 4 (A, 1).

Definition. Let k be a nonnega t ive integer. A C F G , G = (V , Z , P , S) , is said to be
7r t L R (k) if and only if 5 for all x E V*; y, y' E 2~*; 7r, E PA if x y E C S F (G) has

handle (Tr, Ix[) and xy' E CSF(G) has handle (7r ' ,3) and Ck)y = ~k~y, then 6 (Tr, Ix]) =
(7r', 3). Otherwise G is said to be n o n - L R (k) , and in t ha t case any rule, 7r, which violates
the above condit ions is said to be n o n - L R (k) . I t is well known tha t an L R (k) g r am m ar
is unambiguous .

Definition. A CFG, G = (V , ~ , P , S) (N = V - - Z) , is said to be
(a) A-free i f P C N × V +,
(b) A-isolated if either (i) G is A-free, or (ii) P C (N X (V - I S}) + U { S--,A},
(c) reduced if for each A E V - {S}, (i) there exist x , y E V* for which

g a y E C S F (G) , (ii) there exists z E 2~* for which A ~ * z.

2 From [11]. The operation is a compos~tzon of relatmns which is defined as follows, if p ~ X X Y
and a ~ Y X Z, define pa = [(x,z) [(x,y) E p and (y,z) E ~ for some yE Y}. Observe that pa ~ X, X Z.
3 Let x = alas . • • a,~ E V* for some n > 0 (where each a, E V and where, if n = 0, x = A). The length
of xls denoted by Ix[and is defined as Ix] = n Forz < n , ~'~x = a i . . . a, andx(') = a~_,+~ .. a~.
F o r ~ ~ n~ (~)x ~ x (~) ~ x

• h is also used to denote the null production
If X is a set, then X~ = X U {A}.

• Notice that as a result of our conventmn that S E CSF(G) has handle (A, 1), we avoid the "am-
biguous LR(0) grammar" anomaly cited by Harrison [12] Our definition is equivalent to that of the
"Augmented LR(k)" grammars of Geller and Harrison [7]. Thus, for example, the grammar with
productmns S --~ Sa [a is not LR(O) by our definition since S E CSF(G) has handle (A, 1), Sa E
CSF(G) has handle (S--~Sa,2), and the handles are not the same

Transforming LR(k) Grammars 515

There are some addit ional useful relations which we shall employ.
Defimtion. Let G = (V,X,P,S) (N = V - X) be a CFG, and let X, Y E V.
(a) XhY (X left-derives Y) if and only if there exists u E V* for which X--~Yu is in P.
(b) XpY (X right-derives Y) if and only if there exists u E V* for which X---~uY

is in P.
(c) XvY (X left-derives terminal Y) if and only if Xh*Y and Y E 2L
(Thus Xk*Y is an abbreviat ion for " (the re exists uE V*) [X~*Yu]" and Xp*Y for

" (there exists uE V*) [X~*uY]." We will often be presented with a set H ~ V and
will wish to identify an element, A, of {XE V] (there exist YEH,uE V*) [X~*uY]}.
Using the relation p, we will constrain such an element by simply specifying Ap*H.)

2. Preliminary Remarks

The main idea behind conversion from LR(k) to LR(1) can be i l lustrated as follows:
Suppose a rule, A --~ w, part icipates in an LR(2) (non-LR(1)) portion of a grammar.
The decision of whether to apply the reduction A --~ w can be made on the basis of two
symbols of look-ahead. If A --~ w is indeed the correct reduction for a sentential form
• - . u w t v . - - then the next input symbol, t, must eventual ly fit into the parse, perhaps
via a structure like

/ \ / \
. . . u w t v . . ,

The conversion scheme must alter the offending rule A ~ w so tha t the decision to apply
i t is not forced until after the symbol t has been scanned. The technique we use is to
"ext rac t" the right-context first:

. . u w t v . . .

and then to merge the extracted branch with its left neighbor so as to force a prema-
ture scanning of the extracted symbol

[C t] [t / O]

. . . u w t v . . .

The algorithm tha t we will develop performs such extraction upon all r ight-contexts for
the symbol A of the offending rule A ~ w and performs a premature scan merger on all
such right-contexts for all C for which Cp*A. We consider a few more examples.

The LR (2) grammar

S ~ Abb] Bbc
A --~aAia
B --~aBla

516 M . D . M I C K U N A S , R. L . L A N C A S T E R , A N D V. B. S C H N E I D E R

with offending rules A --~ a and B --~ a requires no right-context extraction, and is con-
verted via premature scanning to the LR(1) grammar

S ~ [Ab]bl [Bb]c
[Ab] -~ a[Ab] l ab
[Bb] --~ a[Bb] l ab

The LR(2) grammar

S ~ Abb I Bbc
A ---~Aala
B --~ a

with offending rules A --~ a and B --, a requires no right-context extraction, and is con-
verted via premature scanning to the LR(1) grammar

S ~ [Ab]bt[Bb]c
[Aa] ~ [Aa]a I aa
[Ab] ~ [Aa]b l ab
[Bb] ~ ab

Finally, the LR(2) grammar

S ~ b S S [a taac

has the offending rule S --, a, whose right contexts are generated by the second S in the
right-part of S ~ bSS; those right-contexts are a and b;

I A \
a b S S

and

and

S

b/!\s
I I
o o

I/1\
a 0 0 C

The grammar is converted first (under right-context extraction) to

S ~ bSa[a/S] t bSb[b/S] 1 a laac
[a/S] ~ h I ac
[b/S] ~ Sa[a/S] l Sb[b/S].

The right-contexts (whether a or b) for S ~ u have thus been extracted in all situations:

Transforming LR(k) Grammars 517

(x = a or b) and

and

Moreover,
extracted.
grammar

S

o o A

0 0 o C

the new rule, [a/S] --~ A, which is also non-LR(1), has had its right-contexts
Finally, the grammar is converted (under premature scanning) to the LR(1)

S
[Sa]
[Sb]

[a/S]
[[a/ S]a]
[[a/S]b]

[b/S]
[[b/S]a]
[[b/S]b]

b[Sa][a/S] l b[Sb][b/S] I a I aac
b[Sa][[a/S]a] I b[Sb][[b/S]a] I aa I aaca
b[Sa][[a/S]b]] b[Sb][[b/S]b] Iab I aacb

-----~ A l ac
a I aca

----~ b I acb
[Sa][a/S] I [Sb][b/S]
[Sa][[a/S]a] l [Sb][[b/S]a]
[Sa][[a/S]b] I [Sb][[b/S]b]

This transformation can be optimized to prematurely scan only the conflicting right-
contexts for the offending rule. In this case, although both a and b have been extracted,
only a is a conflicting right-context. Thus, after right-context extraction, we can obtain
instead the following LR(1) grammar:

S ~ b[Sa][a/S] I bSb[S/S] I a I aac
[Sa] --~ b[Sa][[a/S]a] l bSb[[b/S]a] I aa [aaca

[a/S] ~ A lac
[[a/S]a] ~ a I aca

[b/S] -~ [Sa][a/S] l Sb[b/S]
[[b/S]a] ~ [Sa][[a/S]a] l Sb[[b/S]a]

This grammar contains 16 rules. So far as we can tell, every LR(1) grammar for this
language must contain at least 12 rules. Thus, Mthough the size of the grammar has
increased dramatically, the increase is due to the language involved, and is not ascrib-
able to any wholesale inefficiencies in the transformations.

3. M a i n Results

We now turn to the development oi our primary result, a procedure for reducing look-
ahead. The procedure is presented as an iterative application of a succession of trans-
formations on grammars. Besides the Right-Context Extraction and Premature Scan-
ning transformations, we use three utility transformations which serve, for the most
part, to simplify operations. The first of these utility transformations is the Right-
Stratification Transformation, which simply breaks a single production rule, A ~ uv,
into two rules, A ~ u[v] and [v] --~ v.

Right-Stratification Transformation. Let G = (V , Z , P , S) be a CFG. To right-stratify
a rule A ---~ uv in P at the u, v interface, we define

P1 = {A.-mv}, P2 = P -- P I .

518 M.D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

We then define a new grammar, G," which differs from G in its nonterininal vocabulary
and its set of productions.

PI" = {A---nt[v] J A---~v is in PI}, P" = PI" 13 P~" IJ P3",
P2" = {[v]---*v [A--*uv is in P1}, V" = V U {[v]}.
P a n - ' P 2 ,

LEMMX 1. Let G" = (V",Z,P",8) (N" = V" - Z) be obtained from G ffi (V,Z,P,8)
(N = V - Z) by means of the Right-Stratification Transformation. Then

(a) L(G") -- L(G) ; and
(b) there is a surjectwn, 7 4~, from PA" onto PA such that zf lr E PA" is not LR(j) then

4J(Tr) E PA is not LR(j) .
PROOF. Right-stratification is a common transformation and is used by both McAfee

and Presser [18] and Graham [9]. McAfee and Presser present an informal proof that
L(G") = L(G). Graham gives a complete proof tha t L(G") = L(G) as wen as a proof
that the right-context bound is preserved. By defining 4) as the identity on P3" (thus
mapping P3'~ onto P2A) and as a function from the singleton set Pi" onto P~ and
from the singleton set P2" onto Pa , we obtain the desired surjection. Embedding this in
Graham's proof yields part (b) of the lemma. []

The Look-Ahead Reduction Procedure that we develop initially determines which
rules of a grammar require right-context extraction and subsequent premature scanning
of those right-contexts. This information is then transmitted in the set, H, of left-parts
of the selected rules. The transformation we are about to present accomplishes the right-
context extraction portion of the Look-Ahead Reduction Procedure.

I t is necessary for the Right-Context Extraction Transformation to extract terminal
symbols whenever they can occur as right contexts for one of the selected rules, i.e. if
C --~ v is a selected rule, and if some symbol, A, right-derives C, then whenever A ap-
pears in the right-part of a rule, it should either be rightmost or be followed by a terminal
symbol. We formalize that objective by the following.

Definition. Let G = (V,Z,P,S) (N = V - Z) be a CFG and let H ~ N. G is said
to be in H-right-context-extracted form if and only if for every nonterminal A in p*H and
for every rule B-+uAy in P , either (a) y -- A, or (b) y E ZV*. Notice that this defi-
nition reduces to that of an operator form grammar [5, 11] in case H = N and G is re-
duced.

Notation. Let ~r = C -+ v be a C-rule of P. If C is in H then zr is also called an H-rule
of P.

Right-Context Extraction Transformation. To extract the right-contexts for a reduced
A-isolated grammar G = (V,Z,P,8) (N = V - ~) (given H ~ N) we first (iteratively)
locate each rule

lr = B --~ uCvDEw (E E N; u,v,w E V*)

for which C, Dp*H, and right-stratify ~r at the v,D interface (to obtain B ~ uCv[DEw]
and [DEw] ~ DEw). Although we might present the Right-Context Extraction Trans-
formation without such stratification, the transformation would be not only more com-
plex, but also less efficient (in general). This is because the transformation, given such a
~r, will accomplish an extraction of the right-contexts for both C-rules and D-rules (since
C, Dp*H). These contexts will then appear in modifications of 7r. In the unstratified
case, the modifications must account for all possible pairs of such right-contexts, whereas
with stratification, combinations of right-contexts are handled in series. For example,
if v = Fx (whence ~r -- B--~ uCFxDEw) and a, b are in Fv, e, d, e are in E~', then lr

7 L e t X and Y be sets, and 4, a mapping of X into Y. If each element of Y is the image of at least one
element of X, then 4~ is a surjection from X onto Y.

Transforming LR(k) Grammars 519

would yield

lrl = B --~ uCa[a/F]xDc[c/E]w
~r~ = B ~ uCa[a/F]xDd[d/E]w
7r~ = B --~ uCa[a/F]xDe[e/E]w

However, by stratifying ~- as

• - = B ~ uCFx[DEw]

we obtain

lrt = B --~ uCa[a/F]x[DEw]
• "~ = B ~ uCb[b/F]x[DEw]

t
~r~ = [DEw] --~ Dc[c/E]w

~r4 = B ~ uCb[b/F]xDc[c/E]w
lr5 = B --~ uCb[b/F]xDd[d/E]w
• "6 = B ~ uCb[b/F]xDe[e/E]w

t
= [DEw] --~ D E w

!

lr2 = [DEw] --~ Dd[d/E]w
,

• "3 = [DEw] ~ De[e/E]w

for i E {2,3,4,5},

and for

P:" (C)

Pj'(c)
P4" (c)
P j ' (C)

and define

Pi" = UC~M' P(' (C)
P~" = Pe',

every CE M':

= {[a/D]--~[a/E]wb[b/G]xlE,GEN'; Era; G~b; D--~EwGx is in P~'(C) where
Ewwp*N'},

= {[a/D]---~[a/E]w I E E N ' ; El'a; D---~Ew is in P3'(C)},
= {[a/D]--~wEb[b/F]x I a E ~ , F E N ' ; Frb; D--~awEFx is in P4'(C) where Ep*H'},
= {[a/D]-~w I a E Z ; D--~aw is in P~'(C)},

Note that it is sometimes necessary to stratify a rule more than once. For example,

~" = B ~ xFuCvDEw (E E N) ,

where F, C, Dp*H, must be stratified as
Pt

~r = B ~ xFu[CvDEw] ~" = [DEw] --~ DEw
!

• " = [CvDEw] --~ Cv[DEw]

Upon performing right-stratification, we have a (reduced A-isolated) grammar, G' =
(V ' , Z , P ' , S) (N ' = V' -- Z) . We compute H' c N ' such tha t for qr in P ' , if ~b(~') in
P is an H-rule, then ~" is an H'-rule. (We can actually compute H ' more carefully to
yield a possibly smaller subset of N r, but the calculation given here will do.) To con-
tinue with the transformation, we then define

Pi' = {A---~uBCv in P' I C E N ' ; Bp*H'}

(Notice that as a result of stratification, C of such rules is uniquely determined.)
= * ' M ' L e t M ' { C E N ' l A - - ~ u B C v i s i n P l ' w h e r e B p H }. F o r e a c h C E define

O'(C) = {D--~Ew in P ' I E E N ' ; CX*D}, P j (C) = Q'(C) - P~'(C).
R' (C) = {D--~aw in P ' I a E ~ ; C~*D}, P4' (C) = R' (C) n Pi ' ,
P2'(C) = Q'(C) O Pt' Ps ' (C) = R ' (C) - P4'(C),

and define

P (= Uce~" P , ' (C) (f o r i E {2 ,3 ,4 ,51) ,
P6' = P - Pi'.

We then define a new grammar, G", which differs from G' in its nonterminal vocabulary
and its set of productions.

Pi" = {A---~uBa[a/C]v I CE N ' ; C~-a; A---~uBCv is in Pi ' where Bp*H'}

5 2 0 M . D . MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

P" ffi PI" 13 P~" O P~" O P4" 0 P~" 13 P~",
V" = V 13 W"; N " = V" - Z, where W" = {[a/A] I aEZ; A E N ' ; there is an

[a/A]-rule in P"}.

Also define H" = H' 13 {[a/A]E W" I AEH'} .
This transformation is quite similar to that presented by Gray and Harrison [11] for

obtaining an operator form grammar. I t should be noted that the transformation as
shown can operate in general on only A-isolated grammars.

The following example illustrates the methods of the transformation. Consider the
LR(2) grammar with productions

7rt = S--~Ad
7r2 , 7r~ , lr4 = A--~aAB] b] bbc

m = B - - ~ A

The Look-Ahead Reduction Procedure will find that ~'a is not LR(1), and thus will
specify its left-part as H = {A}. No stratification is required, so G' = G and H' = H.
Thus Pi' is found to be

Pi' = {1r2 = A--~aAB}, and M' = {B f. (Right-contexts for A-rules are generated by

Q'(B) = { ~rs}

Rt (B) = l~':,~'*,~'+}

p 2 t ~

PJ = {~5}

P~' = {~'~t

~'1, which needs no extraction, and by Ir2.
Right-contexts for A-rules obtained through
~'~ must be ultimately extracted through the
symbol B.)
(In ~r~, right-contexts for A-rules are gene-
rated by the symbol B. lrs is a rule which
does not originate terminal fight-contexts,
but lr5 does generate them. Thus extraction
must proceed through 1r5 .)
(In 7r2, right-contexts for A-rules are gen-
erated by the symbol B, and since BX*A,
they are also generated by the symbol A.
The right-contexts which are generated by A
originate in the rules Ir~, xs, and ~r4.)

(~r~ is a rule in which the right-contexts for
A-rules are both generated and originated.)

P~' = { ~,~4}
P6' = { 7rl,~r3,m,m}.

Thus, the one-symbol right-contexts for A-rules originate in 7r~, lr3, ~r4 and are a and b.
The transformation yields:

Pi" = {A-mAa[a/B] , A--~aAb[b/B]} (ultimateextractionof right-contexts for A-rules),
P (' = ~ ,
P3" = { [a/B]-~[a/A], [b/B]--+[b/A]J (propagation of right-contexts through rules of P3'),
P4" = {[a/A]-+Aa[a/B], [a/A]-+Ab[b/B]} (origination of the right-context a and also

ultimate extraction of right-context for
A-rules),

Ps" = {[b/A]-~A, [b/A]-+bc} (origination of the right-context b),
P6" -- {S-~Ad, A-+b, A-+bbc, B--+A} (rules which do not receive ultimate extraction

of the right-contexts for A-rules).

Note that the rule B ~ A, although included in P", is useless. This poses no problem
for these formalizations, but a practical implementation of the Right-Context Extrac-
tion Transformation concludes by reducing G".

Transforming LR(k) Grammars 521

LEMM/~. 2. Let G = (V ,Z ,P ,S) (N = V - ~) be a reduced A-isolated L R (k) grammar,
and let H ~ N. Let G" = (V" ,Z ,P" ,S) (N" = V" - Z) and H" ~ N" be obtained from
G and H by means of the Right-Context Extraction Transformation. Then

(a) L(G") = / (G) ;
(b) there ,s a surjection, ¢~, from Pa" onto PA such that i f v E PA" ~s not L R (j) , then

4~(Ir) E PA is not L R (j) ; and
(c) G" is in H"-right-context-extracted form where for each 7r E P", i f 4~(lr) E P is an

H-rule then ~r is an H"-rule.
The relationship between G' of the transformation and G is given by Lemma 1. We

establish some claims relating G" to G'.
CLAIM 1. Let a E Z, A E N' , v E Z*. A ~*~' av if and only if A ~ . a , av. Moreover,

i f [a/A] is in N", then A ~ . o ' av i f and only i f [a/Al ~ , a . v.
PROOF. The proof is by induction on the length of the derivations.
Basis. Suppose A ~ ' av. This occurs if and only if ~r = A ~ av is in P ' . Thus, ~-

is in P~'. This occurs if and only if A ~ av is in P~", which occurs if and only if A ~ o , av.
Moreover, [a/A] is in N" if and only if ~- is in Pa' (~ Pt'). This occurs if and only if
[a/A] ~ v is in Pa", which occurs if and only if [a/A] ~ " v.

Inductwn step. Suppose that the claim holds for derivations of length k (1 < k _< n)
and consider a derivation of length n -4- 1. Thus A ~+o, av (n -t- 1 steps). This may
be written

A ~ ° ' u, u ~+o, av (n steps). (1)

(1) occurs if and only if r = A --~ u is in P ' and u contains a nonterminal symbol.
We have six cases to consider, depending on whether ~" is in P,', P,~, Psi, Par, P4', or P j .

Case 1. ~" is in P~'. Then there exist C E N ' ; B in p*H' for which ~r = A ~ wBCx.
Also, v = vlv2bv3v4 (b E Z,) where

w ~ .o , avl, (2)
B ~,o, v~, (3)
C ~.a , bvs, (4)
X ~ .o , v~. (5)

Such a lr is in PI ' if and only if A --~ wBb[b/C]x is in Pi". By the inductive assumption,
(3) and (4) hold if and only if B ~ . o . v2 and [b/C] ~*~' v3. Applying the inductive
assumption to the successive nonterminals of w and x, we find that (2) and (5) hold
if and only if w ~.a. avl and x ~ . o . v4 .] Combining these results, we have A ~ o -
wBb[b/C]x ~*G" avlv~bv3v4 = av. Moreover, [a/A] is in N" if and only if 7r is in P~ I.J P4'
(~ Pi ') , so one of cases 3 or 5 applies.

Case 2. ~" is in P6'. This occurs if and only if 7r = A --~ u is in P6 r'. Applying the
inductive assumption to the successive nonterminals of u, we find that (1) holds if and
only if u ~ . a . av. Thus we have A ~(~" u ~ . o - av. Moreover, [a/A] is in N" if and only
if 7r is in P3' (J P J (~ Ps') , so one of cases 4 or 6 applies.

Case 3. 7r is in P2'. Then there exist B, D E N ' ; w, x E V*; Bw (1) in p*H for which
v = A --~ BwDx. Also v may be written v = VlbV2v3 (b E Z) where

Bw ~ . w avx , (6)
D ~ .a , bv2, (7)

x ~ ' ° ' v 3 . (8)

Such a lr is in P2' if and only if [a/A] ~ [a/B]wb[b/D]x is in P2". As in case 1, we apply
the inductive assumption to (6), (7), and (8), and combine to obtain [a/A]
~ " [a/B]wb[b/D]x ~ . a . vlbv~v3 = v. Moreover, P2' ___ Pi ' , so ease 1 applies and A ~*~"
a v .

Case 4. ~r is in PJ . Then there exist B E N t for which 7r = A --* Bw. Also, v may
be written v -- vlv2 where B ~ .o , avl and w ~ .o , v2. Such a ~r is in P, ' if and only if

522 M. D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

[a/A] ~ [a/B]w is in P3". Again, as in case 1 we obtain [a/A] ~G, [a/B]w ~ . o , vlv2 = v.
Moreover, P3' _C P6', so case 2 applies and A ~ . a , av.

Case 5. ~ r i s i n P 4 ' . Then there exist a E ~; C E N ' ; B i n p*H' for which lr =
A ~ awBCx. Also, v may be written v = vlbv2v~ (b E Z) where wB 7 *°" vl , C ~*~' bye,
and x ~**' v,. Such a ~r is in P4' if and only if [a/A] ---~ wBb[b/C]x is in P4". Again, as
in case 1 we obtain [a/A] ~ o , wBb[b/C]x ~ . a , vlbv2v3 = v. Moreover, P4' c Pi', so
case 1 applies and A ~ . o , av.

Case 6. zr is in Ps'. Then 7r ~ A ~ ax, where x ~ .o , v. Such a ~r is in Ps' if and
only if [a/A] ~ x is in Ps". Again, as in case 1 we obtain [a/A] ~ a , x ~ . o , v. Moreover,
p j _c P6', so case 2 applies and A ~ . o , av.

These six cases complete the inductive extension, and Claim 1 is proved. O
CLAIM 2. Every x E CSF(G") can be uniquely written x = xlx2. . .xny (n ~_ 0, where

i f n = O, x = y) where z, E V'*{a[a/A] [a E Z ; A E N ' ; [a / A] E N '~} (for i E {1,2,...,n})
and where y E V ~*.

PROOF. By inspection of P" we see that every occurrence of [a/A] (a E Z; A E N ')
in the right-parts of productions is either preceded by an a or occurs as the leftmost
symbol in the right-part. In the latter case, the left-part of the production is of the form
[a/B] (B E N' ; same a E ~). Taking this observation into account, the claim is easily
proved by induction. We shall leave the details to the reader. []

Our next result requires the following. Let x E CSF(G") have the unique decomposi-
tion of Claim 2,

x = xlal[al/Allx2a~[a~/A~].., x,~a,,[a,/A,~]y (z, E V'* ;a, E ~ ;A, E N p ;[a,/A,] E N p'
for iE{1,2,-. ",nl;yE V'*).

Define a as

or(x) = a (xlal[al/ A1]x2a~[a~/ A~] . . . x,a~[a,/ A,]y)
= xlAxx~A~...xnAny.

Clearly for x, y E CSF(G"), if x -~ y then a(x) = a(y) . We further define ~, a surjec-
tion from P Z onto P~', by

t i --~ a(u) if lr = A ~ u is in P1 ~ (J P ~ , P~"
¢h(~rEP~") = ---~a(au) i [r = [a / A] - - ~ u i s i n P ~ " U P a " t J kiPs" (a E ~) ,

otherwise.

(The fact that 4~ is a surjection follows easily by construction and the fact that G' is
reduced.)

CLAIM 3. Let u E V"*; y E 2~*; r E P~". I f uz E CSF(G") has handle (~r,iu])
then a(uz) E CSF(G') has handle (~b(zr),[a(u)I).

PROOF. The proof is by induction on the length of the G" derivation.
Basis. S E CSF(G") has handle (A,1) and a (S) = S E CSF(G') has handle (A,1)

= (4 , (A) , I ~ (S) I) .
Induction step. Suppose that the claim holds for G"-derivations of length k

(0 _< k < n) and consider a derivation of length n + 1. Then ~r = X --~ y with u = xy
and S ~ . o , xXz ~ " xyz with handle (r,[xyl). By the inductive assumption,

S ~.o, a(~X)z. (1)

We have two cases to consider.
Case 1; ~? = A ~ y is in P~" [J P~". Then 4~(~r) -- A ~ a(y) is in P~' [J Po' and

~r(xA) a (x)A . Thus by (1) S ~ .a , a (x) A z a, = ~ (, ~) a (x) a (y) z a n d ¢ (x) a (y) z =
a(zyz) E CSF(G') has handle (~(~r), la(zy)l) .

Case 2. ~r -- [a / A] ~ y i s i n P H UPa~' O P ~ [JPj~. Then ~(~') = A ~ a (a y)
is in P~ (J P~ (J P~' (J P~ and, by Claim 2, x X = x[a/A] -- wa[a/A]. Thus, a (x X) --
a(wa[a/A]) -- a (w) A and by (1) S ~ .o , a (w) A z ~(,,)o, a (w)a (ay) z and a(w)a (ay) z
-- a(way)z -- a(xyz) E CSF(G') has handle (~(~r),]a(xy)]). []

Transforming LR(k) Grammars 523

Pl'

and let M' =

Q'(B)
R ' (B)
P~' (B)

and define

PROOF OF LEMMA 2. Claim 1 establishes that L(G") = L(G') . By inspection of P"
we see that for ~', ~" E P"; ~" X ~ y, ~-'= X' ' lr' = ~ y , if lr ~ and ~b(~r) = q~(~-'),
then y(J~' D r~ y' (i.e. by symmetry, neither right-part is a suffix of the other). Suppose
that ~" E Pa" is not LR(j) . Then there exist x,x' E V"*; z,z' E Z*; lr' E P" for which

zz E CSF(G") has handle (~',[z[),
x'z' E CSF(G") has handle (It',Ix'l) , (1)
(lxI+~)XZ ~ (Izl+3)XtZt, and

By Claim 3, a(x)z E CSF(G') has handle (~b(Tr),ta(x)l), a(z ')z ' E CSF(G') has handle
(¢(~'),l~(x')l).

~P Case 1. Izl = Iz'l. Then by (1) z = whence a(z) = a(~'). Also U~z = °~z'.
Thus ct'¢~l+~¢(zz) = cl'¢~l+~¢(x'z'). Also by (1), Ir ~ ~-'. Now it cannot be that
¢(7r) = q~(lr') since then x ~ x' (by our observation that neither right-part is a suffix
of the other). So ¢(~') ¢ 4~(~r'). Consequently (~(~) , l~(x)l) ¢ (~ (~ ') , l~ (J) l) and
q~(~') E PA' is not LR(j) .

Case 2. Izl <]z'l. Then by (1) there exist z~ E Z+, z~ E ~* for which z ~- z~z~
and zz~ = z', whence ~(z)z~ = v(z') . Since Iz~l > 0 it follows that I~(x)l < I~(z')l.
Thus (~(~r),l~r(x)l) ¢ (~b(~-'),la(x')l). Also by (1) and the fact that ¢ preserves any
terminal suffix of z', ~l'¢~t+~a(zz) = ¢l'¢~t+%-(z'z'). Consequently q~(~r) E P~' is not
LR(j) .

Case 3. Iz I > Iz' I. As in case 2, we find that ~(~r) E P' is not LR(~).
By composition of the surjection obtained here and the one obtained in the Right-

Stratification Transformation (Lemma 1), we obtain a new surjection (which we now
rename ¢) from P Z onto Ps . Also, by the construction of P" we see that G" is in H"-
right-context-extracted form where, for ~- E P", if ~b(~r) E P is an H-rule, then ~" is an
H"-rule. This completes the proof of Lemma 2. []

Having obtained a grammar G" in H"-right-context-extracted form, we are now ready
to develop a transformation to effect the premature scanning of those extracted right-
contexts. That is, given some H"-rule (A~-~ z) and a "path" of p+H"-rules
(Ao ~ x~A ~,. . . ,A,_~ ~ z,A~) leading from an extracted right-context (a in A ~ zAoay),
we wish to "merge" that right-context (beginning with A ~ x[Aoa]y) with the p*H"-rules
(obtaining [A0a] --~ z~[A~a],... ,[A~_~a] ~ x~[A,a] and terminating with lama] --~ za).
However, in order to simplify the proof for that Premature Scanning Transformation, it
is convenient to perform a so-called "state-splitting" transformation, isolating the p*H"-
rules by distinguishing their left-parts. This is accomplished by the following.

Path Isolation Transformation. Let G = (V ,Z ,P ,S) (h r = V -- ~) be a reduced
A-isolated CFG and H ~ N. Apply the Right-Context Extraction Transformation Vo
G and H obtaining G' = (V' ,~ ,P ' ,S) (N' = V' - ~) in H'-right-context-extraeted form
where H' c N' and H'-rules map onto H'-rules. Define

= {A--~uBav is in P ' I aE2~;Bp*H'}

{BEN'] A---~uBav is in P~' where Bp*H'}. For each B E M' define

= {C.--rwD in P' I D E N ;Bp C}, Pa'(B) = Q'(B) - P~'(B),
= {C--~wb in P' I bE~;Bp*C}, P~'(B) =- R ' (B) 13 P,',
= Q'(B)13 P~', P~'(B) = R ' (B) - P~'(B),

P 6 ' = P ' - - P~'.

We then define a new grammar, G", which differs from G' in its nonterminal vocabulary
and its set of productions.

Pi" = { A--mB'av] aE~; A - m B a v is in PI' where Bp*H'}

524 M. D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

and for each B E M'

P2"(B) = { C'-~uE'cwD' [DEN'; e e l ; C--mEcwD is in P2'(B) where Ep*H'} ,
Pa" (B) = {C'--~wD' [DEN'; C--~wD is in P3'(B)},
P4"(B) = { C'--~uE'cwb l E E N'; c,bE Z ; C--~uEcwb is in P4'(B) where Ep*H'} ,
PJ' (B) = {C'--~wb [bEZ; C--ywb is in P6'(B)},

and define

P," = U P,"(B) (for i E [2,3,4,5}),
BEM"

P,"= P6',
P" = PI" U P2" U P3" U P4" U P~" U P6",
V ~' = V' U W" where W" = {A' [A E N ' and there exist an A'-rule in P"}.

Also define

H" = {A 'EW" I AEHI.

LEMMA 3. Let G = (V,X,P,S) (N = V - ~) be a reduced A-isolated LR(k) grammar
and let H ~ N. Let G" = (V",Z,P'r,S) (N" = V" - ~) and H" c N" be obtained from
G and H by means of the Path Isolation Transformation. Then

(a) L(G")= L (G) ;
(b) there is a surjection, ~, from P Z onto PA such that if 7r E P Z is not LR(j) then

¢~(~r) E PA is not LR(j) ; and
(c) G" is in H"-right-context-extracted from where for each ~r 6 P", if 4~(v) E P is

an H-rule then either 7r is an U"-rule or Ir is LR(1) with respect to all rules of G.
PROOF. Path isolation is a particular instance of the "factorization" transformation

of Graham [9]. Graham proves that such a transformation preserves both the language
and the right-context bound. A slight addition to Graham's proofs yield the needed
surjection from PA" onto PA' which, when composed with the surjection from PA' onto
P~t obtained in right-context extraction (Lemma 2), yields the desired surjection (which
we now rename ~b) from P Z onto PA. To prove part (c), suppose ~- = A ~ v in P"
is not an H"-rule, but that ~b(Tr) is an H-rule. Since by construction G" is in H"-right-
context-extracted form, it follows that ~r can occur only in derivations like S ~ .a , uA
~ " uv. Clearly, under such conditions, if lr is not LR(1), then lr, and by part (b),
~b(x), are not LR(k) for any integer k, which contradicts the hypothesis that
Gis LR(k). []

We now present the transformation which is the nucleus of the Look-Ahead Reduction
Procedure. Following the transformation, some examples are presented.

Premature Scanning Transformatwn. Let G = (V,~,P,S) (N = V - ~) be a re-
duced A-isolated CFG and let H ~ N. Apply the Path Isolation Transformation to G
and H, obtaining G' = (V',2;,P',S) (N' = V' - 2;) in H'-right-context-extracted
form, where H' ~ N' with H'-rules mapping onto H-rules. Define T' = {A--~uBav in
P t l a E ~ ; Bp*H'} and let M' = {Ba in N'2~ I A--~uBav is in T' where Bp*H}. For each
B E N' for which there exists a E Z such that Ba is in M', define

Q'(B) = {C-+wD in P' I DEN'; Bp*C}, P~'(B) = Q'(B) - P~'(B),
R ' (B) = {C--~wb in P' I bEZ; Bp*C}, P4'(B) = R'(B) N T',

P2'(B) = Q'(B) N T', PJ (B) = R'(B) - P4'(B),

and define

P ; = U P, ' (B) (for i E {2, 3, 4, 5}),
BaE M'

P , ' = T ' - - (P, 'OP, ') ,
P6' = P' - (T ' U P 3 ' U P , '

Transforming LR(k) Grammars 525

(Note that P ; n P3' = $2~ for z ~ 3; i , j E 11, 2, 3, 4, 5, 6}). We then define a new gram-
mar G" which differs from G in its nonterminal vocabulary and its set of productions.
For each Ba E M' , define

P2" (Ba) = { [Ca]--~u[Ec]w[Da] I c E Z ; D E N ' ; C--~uEcwD is in P2' (B) where Ep*H'},
P3" (Ba) = {[Ca]--~w[Da] I D E N ' ; C---~wD is in PJ (B)} ,
P4"(Ba) = {[Ca]--~u[Ec]walcE~; E E N ' ; C-~uEcw is in P4'(B) where Ep*H'},
P j (Ba) = {[Ca]---~wa] C---~w is in P j (B) } ,

and define

P , " = U P ," (Ba) (f o r z E {2 ,3 ,4 ,5}) ,
BaE M'

PI" = {A---~u[Ba]v [a E ~; A ~ uBa~ is in Pi' where Bp*H'},
Pe " = Pe',
P" = Pi" U P2" U P j ' U P4" UPs" U Pe",
V" = V U W" whereW" = {[Aa] [A E N'; aE Z; thereexis tan [Aa]-rule inP"}.

Before embarking on proofs for the Premature Scanning Transformation, let us illustrate
the methods used by the transformation. Consider the LR(2) grammar with productions

lrl, 7r2 : S --~ Ab I aBbc ~'5 : B ~ C

7r3 , m : A -~ aAbA [b m , ~'~ : C ~ b [Cbd

The rules ~'4 and ~'e are not LR(1) . Tlius the Look-Ahead Reduction Procedure will
calculate H = {A, C}. Pa th isolation has no useful effect on this grammar, yielding
G' = G and H ' = H. The Premature Scanning Transformation yields

T' = { ~'1,7r2,~'3,~'~} (rules in which right-contexts for H'-rules originate)

with M ' = {Ab,Bb,Cb},

Q ' (A) = {~-3} Q'(B) = {~-~} Q'(C) = ~ (rules through which right-contexts for H ' -
rules must be propagated),

R ' (A) = {m} R ' (B) = {m,~'~} R ' (C) = {Tre, TrT} (rules a twhieh propagation of right-
contexts will terminate) ,

P2' = {~'3} (rules which both originate right-contexts for H'-rules and also through
which such contexts must be propagated),

Re' = { ~ } ,
P4' = {~7}

Then

(rules which both originate right-contexts for H'-rules and also which
will terminate propagation of such right-contexts),

Ps ' = {Ir4, rre},
Pi ' = { ~'x, ~'2},
Re' = ~.

P2" = P2"(Ab) = {[Ab]-~a[Ab][Ab]},
Pe" = P3" (Bb) = {[Bb]---~[Cb]},
P4" = P4" (Bb) = P4" (eb) = {[Cb]-,[eb]db},
P j (Ab) = {[Ab]---~bb}

The resulting grammar is LR(1) .

Pj" = PJ ' (Ab) U P j ' (Cb) ,
Pi" -- { S~[Ab], S--~a[Bblc},
Pe" = 2~.
Re" (Cb) = {[Cb]--~bb},

I t is illustrative to note the effect that path isolation has on the Premature Scanning
Transformation. I t is only as a result of path isolation tha t we can specify Pa r = P '

526 M. D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

-- (T ' U P a ' U P j) . Consequently the P, ' are pairwise disjoint. Without path isolation, we
would have to specify P6' P ' ' ' ' ' = - P~ , and P6 could then overlap P2' U P~ U P [U P5,
making the following proofs much more difficult. As an example, consider the LR(2)
grammar with productions

7rl , ~r2 : S --+ Bb { D lr~ , ~ro : A --+ a l ab
~r~ , ~r4 : B -+ A I D ~r~ : D -+ c

The rule m is not LR(1) ; thus H = {A}. The Right-Context Extraction Transformation
does not alter the grammar, but the Path Isolation Transformation yields

~r~ , ~r2 : S -+ B'b [D 7rs , ~r9 : B --+ A I D
~ra , r4 : B ' -+ A ' I D' ~rlo , ~rn : A --~ a l ab
m , m : A ' ~ a I ab 7r~2 : D - + c

~r7 : D v ~ c

and H' = {A'}. Proceeding with premature scanning,

T' = {Tr,},
M ' = { f ib} ,
P : ' = / ,

p:' = {~, ~41,
and then

p 2 H ~ J ~ ,

Ps" = {[B'b]~[A'b], [B'b]-->[D'b]},
p[' -- ;~,

The resulting grammar is now LR(1).

P j = {~rs, m , Ir71,
P [= { ~-~} ,
P~' = {~'2, ~'s , ~r9, ~'lo, l r n , 7r~},

Ps" = {[A'b]-~ab, [A'bl-+abb, [D'bl-+cb},
P , " = { S---~[B'b]},
P6" = { S-+D, B--+A, B-+D, A-+a, A-+ab, D--De}.

Now consider the alteration P6' = P ' - Pi ' and apply the altered Premature Scanning
Transformation to the original grammar (without applying the Path Isolation Trans-
formation) with H ' = H = {A}.

T' = {71"1}
M ' = {Bb},
P2'= ~,
P~'= { ~ . , ~r4},

(indeed P6' N P3' ~ ~ , P6' N P j

and then

P2" = ~ ,
P3" = {[Bb]-~[Ab], [Bb]-+[Db]},
P4" -- ~ ,

p 4 1 ~ ~ ,

P~' = {7r5, lr6, ~'7},
P [= { ~',},
P6' = {~'2, ~'a, m , r ~ , m , lr7}

~) ,

P j ' = {[Ab]-+ab, [Ab]-~abb, [Dbl---~cb},
P i " = { S--+[Bb]},
P6" = { S---,D, B--~A, B-+D, A-+a, A--+ab, D-+c}.

Except for renaming of nonterminals, this grammar is the same as that obtained by
performing path isolation followed by premature scanning. Thus, the Path Isolation
Transformation is merely a convenience, needed to simplify the following proofs. The
simplification lies in noticing that premature scanning causes a nonterminal symbol
to be bracketed in some rule of P" (in either the left-part or the right-part of the rule)
if and only if that symbol was primed by the Path Isolation Transformation. Moreover,
all instances of primed symbols in rules of P ' become bracketed in the corresponding
rules of P". Thus we know that for every A E N, a rule of P" can contain some bracketed
symbol, [Aa], only if no rule of P" contains the symbol A, and contrapositively, A can
appear only if no [Aa] appears.

LEMM• 4. Let G = (V,2~,P,S) (N = V - ~) be a reduced A-isolated L R (k) grammar
and'let H ~ N . Let G" = (V " , ~ , P " , S) (N " = V" - ~) be obtained from G and H by

Transforming LR(k) Grammars 527

means of the Premature Scanning Transformation. Then
(a) L(G") = L(G);
(b) there is a surjection, ~, from P Z onto PA such that i f ~- E PA" zs not L R (j) (3 > O)

then
(i) ¢h(Tr) E P is not L R (j + 1) i f ~r E P2" U Pj" U P4" O P j ' ,
(ii) ~(~r) E PA is not L R (j) otherwise; and
(c) for each lr E P", i f ¢(~") E P is an H-rule, then either ~r is in P(' O P j ' O P4" O Ps"

or Ir is LR(1) with respect to all rules of G.
The relationship between G' of the transformation and G is given by Lemma 3. We

first prove some claims relating G" to G r. Let a (mapping V" into V U V ~) be defined by

o'(XEV") = {~a otherwise,ifX = [Aa] is in W" ,

and extend a to a homomorphism from V"* to V* by

~r(xy) = ~ (x)a (y) for x, y E V"*, ¢(A) -- A

and let ~, a surjection from PA" onto PA, be defined by

~A--~ a(u) if a t= [Aa]--~uais in P4"O P j ' (aE2~),
)A --~ a (u) B if r = [Aa] ~ u[Ba] is in P " " ~b(~rEPA") = 2 0 P3 (aEZ),
]A ---~ a(u) if ~r = A --~ u is in P , " U P , ' ,
(A otherwise.

(The fact that ~b is a surjection follows easily by construction.)
CLXlM 4. L(G') _C L(G") .
PROOF. Consider the context-sensitive grammar obtained by deleting the brackets

from the rules of G". As a result, the equivalent of G' is obtained. O
CLAIM 5. Let u E V"*; zE Z*;~- E P". I f uz E CSF(G") has handle (r , lut) then

a (uz) E C SF (G') has handle (~ (v) , p) , where

~[o'(u)[-- 1 i f ~" E P(' U P," U P4 t' O PJ',
P = (la(u)] • otherwise.

PROOF. The proof is by induction on the length of the G"-derivation.
Basis. S E CSF(G") has handle (A, 1) and a(S) = S E CSF(G') has handle (A,1)

= (¢ (A) , I ~ (S) I) .
Induction step. Suppose that the claim holds for G"-derivations of length k (0 _<

k < n) and consider a derivation of length n + 1. Then ~r = X --, y with u = xy where
X E N"; x,y E V"*; and S ~ . o , xXz ~ xyz with handle (~,lxyl). By the inductive
assumption we have

S ~ . o , ¢ (x X z) = o'(xX)z. (1)

We have three cases to consider.
Casel . ~r = A --~ y is in P~" U P6". Then~b(~') = A --~ a(y) is in P (U P6'. Then

(1) yields S ~ , o ' a (z A) z a (x) A z o" ~ , (~) a (x)a (y) z = a(xy)z . Thus a(zyz) --
a (xy)z E CSF(G') has handle (cb(lr), la(xy)I).

Case 2. ~- = [Aa] ~ w[Ba] is in P~" 0 Pa" (a E Z). Then $(Ir) -- A --~ a (w) B is
in P (U P3'. Then (1) yields S ~ . o , a(x[Aa])z = a (x)Aaz ~,(,)o" a (x)* (w)Baz =
a(xw)Baz. Thus a(xyz) = a(xy)z = a(xw[Ba])z = a(xw)Baz E CSF(G') has handle
(¢(~-),Ia(xw)B]) = (¢ (~ -) , I a (x w) B a l - 1) = ($(~-) , la(xy)l -1) . '

Case 3. ~-= [A a] ~ w a i s i n P ~ " UPs" (aE Z). Then eh(~r) = A ~ a (w) is in
P~' U P~'. Then (1) yields S ~*° ' a(x[Aa])z -- a (x)Aaz o" a (x)a (w)az = a(xw)az. ~ (~)
Thus a(xyz) = a(xy)z = a(xwa)z -- ~(xw)az E CSF(G') has handle (¢h(r), la(xw)[)
= (¢ (~ ') , l ¢ (x w) a l - 1) = (~b(~r),lo'(xy)l-1).

528 M. D. MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

PROOF OF LEMM~. 4. By Claim 5 applied to elements of L(G") we have L(G")
L(G'), and with Claim 4 this yields L(G') = L(G"). To prove part (b) we use the re-
sults of Claim 5. Suppose that ~" E PA" is not LR(j). Then there exist x,x' E V"*;
z,z' E ~*; v' E P" for which

xz E CSF(G") has handle (~,1~1), (1)
x'z ~ E CSF(G ~) has handle (Ir',{x'I), (2)
(i~l+~)XZ ---- (i~l+~)XtZ~, (3)

(~,lxl) ~ (~',lx'l), (4)
As in the proof of Lemma 2, we see that for 7r, lr' E P"; ~" = X ~ y, ~" = X ' ~ y';
if 7r ~ 7r' and 6(~r) = ~(~"), then y(l~'D ~ y, (i.e. neither right-part is a suffix of the
other). The proof now breaks into cases.

Case 1. 7r, ~-' E Pi" Y Pc" U {A}. By Claim 5, a(xz) E CSF(G') has handle
(4~(Tr),l~(x)I) and a(x'z') E CSF(6') has handle (4,(Tr'),ict(x')I). Exactly as in the
proof of Lemma 2 we find that ~b(~r) E Pi' U P6' U {A} is not LR(j).

Case 2. ~', 7r' E P2" U P3" LI P4" UPs" . By Claim4 and (1), (2), a(xz) =
a(x)z E CSF(G') has handle (~(Tr),]a(x)]-l) and a(x'z') = a(x')z' E CSF(G') has
handle (~(Tr'),la(x')l- 1).

Case 2(a). Ixl = Ix't. Then by (3), x = x' whence ¢(x) -- a(x') and (~)z = (~)z'.
Thus ((l'¢~)l-~)+~+~)a(xz) = ((l~(~)H)+l+o)a(x'z'). By (4), 7r ~ 7P'. Now it cannot be that
¢(~r) = ¢(7r') since then x ¢ x' (by our observation that neither right-part is a suffix
of the other). So ~b(~r) ~ ~b(lr'). Consequently (6 (Tr) , la (x) i -1)~ (ch(l r ') , l a (x ')] - I)
and ¢(w) E P~' U P3' U P4' U P j is not LR(3+I) .

Case 2(b). Ixl ~]x't. Just as case 2(a) was handled very much like case 1 in the
proof of Lemma 2, so too, Case 2(b) is handled much like cases 2 and 3 in the proof of
Lemma 2, and we find that 4~(lr) E P2' O PJ U P4' UPs' is not L R (j + I) .

Case 3. ~'E P~" UPs" U{A}; ~r'E P2" U P J ' U P 4 " U P j . By Cla im5and (1)
and (2), a(xz) = a(x)z E CSF(G') has handle (~b(Tr),l~r(x)I) and a(x'z') =
a(x')z ' E CSF(G ~) has handle (~b(~r~),la(x')[-1). By (3) and the fact that a preserves
any terminal suffix of x', we have (l~c~)l+~)a(xz) = (l'(~)l+~)a(x'z'). Now it must be that
~b(Tr) ~ 6(7r'), since P~" U P~"-rules have unbraeketed left-parts, whereas P~" U Pa"
U P4" U Pjf-rules have bracketed left-parts. If it were that ~b(~r) = ~b(~r') then ~" would
be of the form A -~ y and 7r' of the form [Aa] --~ y'; but as a result of Path Isolation,
nonterminal symbols cannot be both bracketed and unbracketed in N". Thus ~b(Tr)
~(~") and (4~(~r),la(x)l) ~ (~b(~r'),la(x')I-1) and ~(~r) E Pi' U P~' U {A} is not
LR(2).

Case 4. ~- E P~" U P~"'U P4" U P j ' ; ~-' E P," U P~" U {A}. By Claim 5 and (1)
and (2), ¢(xz) = ¢(x)z E CSF(G') has handle (~b(~'),l¢(x)l-1) and ¢(x'z') --
a(x')z' E CSF(G') has handle (¢(~r'),lz(x')l). By (3) and the fact that ~ preserves
any terminal suffix of x', we have ((~(~)l-')+~+~)~(xz) = (('~(~)l-1)+~+~)(~(x'z'). As in case 3,
~b(Tr) ~ ~b(~r') whence (4,(~r),la(z)l--1) ~ (~(~'),1~(~')1) and ~b(~r) E P~' U P~' 0
P4' U P~' is not L R (j + I).

Part (c) of Lemma 4 follows by construction, part (e) of Lemma 3, and part (b) of
Lemma 4. This completes the proof of Lemma 4. []

Although we are now ready to describe an LR(k) to L R (k - 1) algorithm for reduced,
A-isolated grammars, we cannot yet describe the LR(k) to LR(1) algorithm. While
such-an algorithm is simply an iterative version of LR(k) to LR(k--1), it must also
account for the possibility that, between iterations, the Right-Context Extraction Trans-
formation may introduce new A-rules, destroying the A-isolation property. Thus, it is
necessary to perform yet another transformation, removing A-rules, to recover a A-iso-
lated grammar. The standard A-elimination algorithm for CFGs (cf. Hopcroft and Ull-
man [14, pp. 62, 63]) may be used. The transformation (which we call a "A-Isolation

Transforming LR (k) Grammars 529

Transformation") preserves both the language (modulo A) and the right-context bound
(ef. Graham [10, Cor. 4.4]).

Finally, we can present the procedure for reducing the right-context bound of an
LR(k) grammar. We have parameterized the algorithm by specifying that it should
hMt after having obtained an LR(p) grammar.

Look-Ahead Reduction Procedure. Given an LR(k) grammar, G = (V ,Z ,P ,S) ,

f o r i : = k - - l d o w n t o p
(1) Apply the A-Isolation Transformation to G, obtaining G ' = (V ' ,~ ,P ' ,S ')

(N ' = V' - Z).
(2) Compute H' = { A E N '] some A-rule of P ' is not LR(,)}.
(3) Apply the Premature Scanning Transformation to G' and H', obtaining a new

grammar, G = (V,~,P,S).
ha l t

THEOREM 1. Let G = (V ,Z ,P ,S) be a CFG. I f G is L R (k) for some k, then the Look-
Ahead Reduction Procedure halts for p >_ 1, yielding an L R (p) grammar G" for whwh
L(G") = L(G).

PROOF. The fact that L(G") = L(G) is clear from Lemma 4. Thus, to prove the
theorem, it is sufficient to show that the (k - j) - t h iteration of the Look-Ahead Reduction
Algorithm effectively converts an L R (j + I) grammar, G, to an LR(.7) grammar, G".
The (k -3) - th iteration certainly halts since the transformations each involve only finite
computations on finite grammars. Moreover, the A-Isolation Transformation preserves
the right-context bound. Suppose that after applying the Premature Scanning Trans-
formation, G" is not LR(j) (j > 1). Then there is some rule, ¢r E P t f , which is not
LR(3). Consider the partitioning of P", (Pi ~, P2", P3", P4", PJ' , P6 '~) accomplished by
premature scanning. I t cannot be that ~r = A since then (by Lemma 4), ¢(Ir) = A
is not LR(j) (j > 1) whence G' and G are not LR(k) for affy k, contradicting the hy-
pothesis that G is LR(k).

I t cannot be that 7r E P2" U P3" U P4" (J P J since then (by Lemma 4) ~b(~') E P '
is not L R (j + I) , contradicting the hypothesis that G and G' are L R (3 + I) .
Thus, 7r E Pi" I.J P6". But then (by Lemma 4), ~b(Ir) E P' is not LR(j) , and by step 2
of the Look-Ahead Reduction Procedure, 4~(~r) is an H'-rule. Then (by Lemma 4),
either 7r is LR(1) with respect to all rules of G" or ~r E P2" lJ P j ' U P j ' O PJ ' , each
of which again leads to a contradiction. Thus it must be that after the (k -3) - t h iteration,
each rule lr of P" is LR(j) with respect to all rules of G f []

I t is natural to ask under what conditions the Look-Ahead Reduction Procedure will
halt for p = 0, yielding an LR(0) grammar. Clearly this would follow if part (c) of
Lemma 4 were to read:

(c) for each ~r E P", i f oh(7r) E P is an H-rule, then either 7r is in P2" U P3" U P4" UPs"
or Ir is LR(0) with respect to all rules of G.

This in turn would follow if part (c) of Lemma 3 were to read:
(c) G" is in H"-right-context-extracted form where for each ~r E P", i f ¢(~r) E P ~s an

H-rule, then either ~r is an H"-rule or ~r is LR(0) with respect to all rules of G.
There is a quite simple language constraint which is sufficient to yield these strengthened
conclusions.

THEOREM 2. Let G = (V ,Z ,P ,S) be a CFG. I f G ~s L R (k) for some I~ and L(G) ~s
prefix-free, s then the Look-Ahead Reduction Procedure halts for p ~_ O, y,eldmg an L R (p)
grammar, G", for which L(G") = L(G).

PROOF. In view of the proofs of Lemma 4 and Theorem 1, it is necessary to show that
the prefix-free condition on L(G) is sufficient to yield the cited modification to Lemma 3.

s A language, L CZ*, is said to be prefix-free [13] if and only if x E L and xy E L implies y = A.

530 M . D . MICKUNAS, R. L. LANCASTER, AND V. B. SCHNEIDER

Suppose (within the hypotheses of Lemma 3 and the prefix-free hypothesis) that ~r --
A --~ v in P" is not an//"-rule, but that ¢(7r) is an//-rule. As in the proof of Lemma 3,
since by construction G" is in H"-right-context-extracted form, it follows that ~r can
occur only in derivations like

S =**o. uA ~o . uv with handle (Tr,[uv[). (1)

Suppose that lr is not LR(0). Then there exist w E Z* and 7r' E P" for which

uvw E CSF(G") has handle (Tr', j) (2)

and

(~-,luvl) ¢ (Ir ' ,3). (3)

Since G" is reduced, it follows that there exists y E 2" for which uv ~ .a , Y. Then by
(1) and (2), y E L(G") and yw E L(G"). Since L(G) = L(G") is prefix-free it follows
that w = A. But then, by (1), (2), and (3), we find that ~- is not LR(k) for any k.
Thus, by part (b) of Lemma 3, we are led to the contradiction that ¢,(7r) is not LR(k)
for any k. []

4. Concluding Remarks

We have presented a number of the preceding transformations separately for the sake of
proving them correct. However, in practice, some economization is possible. We have
already remarked that the Path Isolation Transformation followed by the Premature
Scannnig Transformation can be combined into a single modification of the Premature
Scanning Transformation in which we define P~' = P ' - Pl ' instead of P~' = P ' --
(T' U P3' U P j) . However, it is more difficult to prove that the modified version works
correctly. Another simplification is possible in the Look-Ahead Reduction Procedure.
The modified procedure is:

Given an LR(k) grammar, G,

while G is not LR(p)
(1) Apply the A-Isolation Transformation to G, yielding G'= (V',~,P',S')

(N' = V ' - ~) .
(2) Compu te / / ' as some (arbitrary, but nonempty) subset of {AEN'] some A-rule

of P ' is not LR(p)}.
(3) Apply the Premature Scanning Transformation to G' and H' , yielding a new

grammar, G = (V,Z,P,S)
ha l t

I t is a very difficult task to prove that this modified Look-Ahead Reduction Procedure
halts (and we have not tried to do so). However, we think that this version is compu-
tationally more efficient than the original algorithm (if for no other reason than the
simplified need to detect only non-LR(p) (p = 0 or 1) instead cf non-LR(~) rules).
In our implementation [19-22, 24] we stop at the first encountered non-LR(p) rule,
A --~ u, and set H = [A].

In our preliminary remarks, we noted that it is not necessary to apply premature
scanning to all extracted right-contexts, but only to those which are involved in non-
LR(p) conflicts. The modification that is needed in the Premature Scanning Transfor-
mation is to change the definition of the set T' to

T' = {A--~uBav [a E ~; Bp*H'; and a is a conflicting right-context for some H'-rule}.

Theorem 2 asserts that if L(G) is prefix-free (and G is LR(k)) then the Look-Ahead
Reduction Procedure is capable of producing an equivalent LR(0) grammar. We remind
the reader that any language can be made prefix-free by the concatenation of an end-

Transforming L R (k) Grammars 531

marker to each sentence of the language. Formally, let G = (V , Z , P , S) be a CFG and
let S' and $ be symbols not in V. Then for G ' = (VU{S ' ,S} ,~U{$} ,PU{S ' - -~S$1 ,S ') ,
L (G ') is prefix-free. Geller and Harrison [7] call such a grammar, G', the "S-augmented
grammar of G." In practice, virtually all programming languages have such endmarkers
(e.g. "end-of-record mark").

An interesting side effect of the Look-Ahead Reduction Procedure is that it can be
modified to yield a grammar in DeRemer's "simple" LR(1) (SLR(1)) form [3, 4].
The modified procedure is:

Given an LR(k) grammar, G,

while G is not SLR(1)
(1) Apply the A-Isolation Transformation to G, yielding G ' = (V ' , X , P ' , S ')

(N ' = V ' - ~) .
(2) Compute H' as some (arbitrary, but nonempty) subset of {A EN' t some A-rule

of P' is not SLR(1)}.
(3) Apply the Premature Scanning Transformation to G' and H' , yielding a new

grammar, G = (V , Z , P , S) .
ha l t

Although this procedure will often halt for an arbitrary LR(k) grammar, G, halting is
guaranteed only if L (G) is prefix-free. That is, in some cases, an LR(0), hence SLR(0)
(see [3, 4]), hence SLR(1) grammar is the best that can be obtained. As an example of
conversion to SLR(1), consider the LR(1) grammar with the following productions.
This grammar is not SLR(k) for any integer, k.

• "1, ~r2, ~'~ : S - ~ a A a l a B b l b B a
Ir4 , ~'5 : A - - - ~ c l c A
~r6 ,1r~ : B --~ c I cB

Rules ~-4 and ~'6 are not SLR(1). Suppose that we compute H = {B}. No right-context
extraction is required. After premature scanning of the conflicting right-contexts (merely
the rightmost a of ~'3), we obtain the grammar with productions

!

• "1', Ir2; Ir3." S ~ aAa I aBb I b[Ba], 7r6, ~'7':, B ~ c IcB
m , ~r5 : A --~ c l c A ~'s , ~r9 : [Ba] ~ ca[c[Ba]

which is SLR(1).
In our implementation, we require a (1, 1) bounded right-context (BRC) grammar,

which is obtained from an LR(k) grammar by (1) transforming to SLR(1) via the above
algorithm, and then (2) transforming to (1, 1) BRC by a scheme that is much like the
one presented by Graham [9]. Consider once again the grammar with productions 7rl, • • • ,
lr7 above. Using Graham's original scheme [9], "state splitting" is used to obtain the
SLR(1) grammar with productions

S ~ aAa l aBb l bB'a B ~ c l cB
A ~ c l cA B ' --~ c I cB'

and subsequently, one obtains the (1, 1) BRC grammar with productions

S ~ aAa I aBb I bB'a B ' ~ c I CB'
A --~ c l c A C ---~ c
B - - ~ c [cB

In her more recent work [10], Graham shows how to directly obtain (1, 1) BRC from
LR(1), but to obtain a grammar of reasonable size requires considerable optimization of
the transformation.

With our implementation we first obtain the SLR(1) grammar with productions

532 M. D. MICKUNAS~ R. L. LANCASTER, AND V. B. S C H N E I D E R

• ",', . . . , ~rg' above, and subsequently the (1, 1) BRC grammar with productions

S --~ aAa I aBb I b[Ba] [Ba] --~ ca I C[Ba]
A -* c l c A C --~ c
B - - ~ c l c B

Our final observation concerns the relation of these transformations to the notion of
grammatical covers (originally due to Reynolds and Haskell [23]). Gray and Harrison
[11] present a definition of cover which is similar to the following.

Let G = (V ,Z ,P ,S) and G" = (V" ,Z ,P" ,S) be CFGs and let ~/, be a mapping from
P" to PA. Extend ~b to a homomorphism from P ' * to P* by requiring ~b(A) = A and
for x,y E P", ~b(xy) = ~b(x)~b(y). G" is said to completely cover G under ¢ if and only if

(a) L(G") = L(G) ; and

(b) for each x E L(G) , (i) if S ~ ,) ; , ~ x then there exist (Tr,'~)~_, in p~,m (m > n)
• * G w I ! m n * G # * o

forwhmhS ~ (' , ') 5 ~ x and ~b ((lr ,) , -1) = (~r,),-1, (it) if S ~(' , ')7-~ x then S ~((,, ,)~,_,) x.

Gray and H arrison actually present a more general notion within which a G'-deriva-
tion may induce (via ~) only a portion of the corresponding G-derivation. In their
terminology, "sparse" G-derivations are covered.

We note that, with the exception of A-Isolation, each transformation presented here
produces as output a grammar G" which completely covers the input grammar, G. In
each case, a simple modification of the associated surjection, ~, provides the cover
mapping, ~b from P" to PA. For the A-Isolation Transformation, a sparse covering is
accomplished. The only portions of input grammar derivations which are not covered
are subderivations which lead to A. We have found that, in practice, it is quite easy to
relocate any semantic actions that may have been associated with such neglected A-sub-
derivations.

REFERENCES

(Note. References [2, 8, 15] are not cited m the text)
1. AHO, A V , DENNING, P J., AND ULLMAN, J.D Weak and mixed strategy precedence parsing.

J ACM 19, 2 (April 1972), 225-243.
2 AHo, A.V , AND ULLMAN, J.D. The Theory of Parszng, Translatwn, and Comp~hng, Vol.

Prentice-Hall, Englewood Cliffs, N.J, 1973.
3 D~R~MER, F L. Practical translators for LR(k) languages Doctoral DiNs , M I T , Cambridge,

Mass, Sept. 1969
4 DEREM~R, F.L S:mple LR(k) grammars. Comm. ACM 14, 7 (July 1971), 453---460.
5. FLOYD, R W Syntactic analysis and operator precedence J. ACM 10, 3 (July 1963), 316-333
6. FLOYD, R.W. Bounded-context syntactic analysis Comm. ACM 7, 2 (Feb 1964), 62-67
7. GELLER, M.M, AND HARRISON, M A Characterizations of LR(0) languages (extended ab-

stract) Proc. of the 14th Ann Symp on Switching and Automata Theory, Iowa City, Ia ,
Oct. 1973, pp. 103-108 (sponsored by IEEE, New York)
GINSBURG, S , AND GREIBACH, S A. Deterministic context-free languages. Inform. and Contr.
9 (1966), 620-648.
GRAHAM, S.L. Precedence languages and bounded right context languages Doctoral DiNs ,
Stanford U, Stanford, Calif., July 1971
GRAHAM, S L. On bounded right context languages and grammars. SIAM J. Comput. ~ (1974),
224-254.
GRAY, J N , AND HARRISON, M.A On the covering and reduction problems for context-free
grammars, J. ACM 19, 4 (Oct. 1972), 675-698
HARRISON, M.A. On the parsing of deterministic languages. Inv:ted presentation, ACM
Comput. Sci. Conf, Columbus, Ohio, 1973 (oral presentatmn)
HARRISON, M.A, AND H~VEL, I.M. Strict determmmtlc grammars J Comput and Syst. Scls.
7 (1973), 237-277
HOPCROFT, J.E., AND ULLMAN, J D. Formal Languages and Their Relatzon to Automata Addi-
son-Wesley, Reading, Mass., 1969

8

9.

10.

11

12

13.

14.

Transforming LR(k) Grammars 533

15 ICHBIAH, J.D , AND MORSE, S P A technique for generating almost optimal Floyd-Evans
productions for precedence grammars. Comm ACM 13, 8 (Aug. 1970), 501-508.

16. KNUTH, D.E On the translation of languages from left to right. Inform. and Contr. 8 (1965),
607-639.

17. LA.LONDE, W R An efficmnt LALR parser generator Tech. Rep CSRG-2, U of Toronto,
Toronto, Ont , Canada, 1971

18. McAFEE, J. , AND PRESSER, L. An algorithm for the design of simple precedence grammars
J ACM 19, 3 (July 1972), 385-395.

19 MICKUNAS, M.D User's manual for the PUCSD parser generating system. Tech Rep , Purdue
U., West Lafayette, Ind., Aug. 1973.

20 MICKUNAS, M.D Techmques for compressing bounded-context aceeptors. Doctoral DiNs.,
Purdue U , West Lafayette, Ind , May 1973.

21. MICKUNAS, M D., AND SCHNEIDER, V.B. On the ability to cover LR(k) grammars with LR(1),
SLR(1), and (1, 1) bounded-context grammars Proc of the 14th Ann Symp. on Switching and
Automata Theory, Iowa City, I a , Oct 1973, pp. 109-121 (sponsored by IEEE, New York).

22. MICKUNAS, M D , XND SCHNEIDER, V.B. A parser-generating system for constructing com-
pressed compilers Comm ACM i6, 11 (Nov. 1973), 669-676

23 REYNOLDS, J.C., AND HASKELL, R. Grammatical coverings Unpublished manuscript, 1970
24 SCHNEIDER, V.B. A system for designing fast programminglanguage translators Proc.AFIPS

1969 SJCC, Vol. 34, AFIPS Press, Montvale, N J., pp. 777-792.
25 WIRTH, N , AND WEBER, H. EULER: a generalization of ALGOL and its formal defimtlon:

Parts I, II. Comm. ACM 9, 1, 2 (Jan , Feb. 1966), 13-23, 25, 89-99

RECEIVED MAY 1973; REVISED NOVEMBER 1975

Journal of the Asscemtlon for Computing Machinery, Vol 23, No 3, July 1976

