25t

SE.

; Rapports de Recherche

ARET2

.

|

N° 649

LI

R,

B

FROM REGULAR EXPRESSIONS
TO DETERMINISTIC AUTOMATA

-

R

R
>

S IRENGR

SIS

A Py

TS

LRSS

R T

Gérard BERRY
Ravi SETHI

oy

ST AT RN

R N e, o N

Mars 1987

FROM REGULAR EXPRESSIONS TO DETERMINISTIC
AUTOMATA

SUR LA TRADUCTION DES EXPRESSIONS REGULIERES EN
. AUTOMATES DETERMINISTES

Gérard BERRY * Ravi SETHI**

* Ecole Nationale Supérieure des Mines de Paris
Centre de Mathématiques Appliquées
Valbonne, FRANCE

** BELL Laboratories
Murray Hill, US.A.

N D PAPIER RECUPERE ET RECYCLE -

From Regular Expressions to Deterministic Automata

GERARD BERRY

Ecole des Mines de Paris / INRIA
Sophia-Antipolis
06560 Valbonne FRANCE

RAvVI SETHI

AT&T Bell Laboratories
Murray Hill, New Jersey 07974 USA

Résumé

Notre résultat principal établit une relation entre deux algorithmes de transformation des expressions
réguliéres en automates finis. Le premier, élégant, utilise les “dérivées” d’expressions réguliéres. Le second,
efficace, est fondé sur un “marquage” des expressions.

Les dérivées correspondent directement aux transitions d’états des automates. Quand un automate
effectue une transition en lisant une lettre a, cet a est enlevé du mot d’entrée. De méme, si le mot d’entrée
est engendré par une expression E, alors la dérivée de E par a engendre le suffixe de a du mot d’entrée.
L’élégant algorithme de Brzozowski utilise les dérivées pour construire un automate fini: 1’état correspondant
a une expression E a une transition étiquetée a vers I'expression dérivée de E par a. Cette approche s’applique

A des expressions réguliéres étendues, par exemple par intersection et négation. Cependant le calcul explicite
des dérivées peut étre coliteux en pratique.

Le marquage d’expressions, introduit par McNaughton et Yamada, produit des expressions ayant des
lettres distinctes. Pour cela on attache des étiquettes aux lettres, transformant par exemple (ab + b) * ba
en (a1by + b3) * bsas. L’algorithme efficace construit d’abord un automate déterministe pour I’expression
marquée, puis déterminise Pautomate non-déterministe obtenu en effagant les marques. Cette approche
ne s’applique cependant pas aux opérateurs comme l'intersection et le complémentaire, pour lesquels le
marquage ne préserve pas les langages engendrés.

Abstract

The main theorem allows an elegant algorithm to be refined into an efficient one. The elegant algorithm
for constructing a finite automaton from a regular expression is based on “derivatives of® regular expressions;
the efficient algorithm is based on “marking of” regular expressions.

Derivatives of regular expressions correspond to state transitions in finite automata. When a finite
automaton makes a transition under input symbol a, a leading @ is stripped from the remaining input.
Correspondingly, if the input string is generated by a regular expression E, then the derivative of E by a
generates the remaining input after a leading a is stripped. Brzozowski used derivatives to construct finite
automata; the state for expression E has a transition under a to the state for the derivative of E by a.
This approach extends to regular expressions with new operators, including intersection and complement;
however, explicit computation of derivatives can be expensive.

Marking of regular expressions yields an expression with distinct input symbols. Following McNaughton
and Yamada, we attach subscripts to each input symbol in an expression; (ab-+b)*ba becomes (a;b2+b3)*bsas.
Conceptually, the efficient algorithm constructs an automaton for the marked expression. The marks on the
transitions are then erased, resulting in a nondeterministic automaton for the original unmarked expression.
This approach works for the usual operations of union, concatenation, and iteration; however, intersection
and complement cannot be handled because marking and unmarking do not preserve the languages generated
by regular expressions with these operators.

From Regular Expressions to Deterministic Automata

GERARD BERRY

Ecole Nationale Supérieure des Mines de Paris
Centre de Mathématiques Appliquées
Sophia-Antipolis, 06560 Valbonne FRANCE

RaAv1 SETHI

AT&T Bell Laboratories
Murray Hill, New Jersey 07974 USA

The main theorem allows an elegant algorithm to be refined into an efficient one. The
elegant algorithm for constructing a finite automaton from a regular expression is based on
“derivatives of” regular expressions; the efficient .algorithm is based on “‘marking of’' regu-
lar expressions.

Derivatives of regular expressions correspond to state transitions in finite automata.
When a finite automaton makes a transition under input symbol a, a leading a is stripped
from the remaining input. Correspondingly, if the input string is generated by a regular
expression E, then the derivative of E by a generates the remaining input after a leading a is
stripped. Brzozowski used derivatives to construct finite automata; the state for expression
E has a transition under a to the state for the derivative of E by a. This approach extends
to regular expressions with new operators, including intersection and complement; however,
explicit computation of derivatives can be expensive.

Marking of regular expressions yields an expression with distinct input symbols. Fol-
lowing McNaughton and Yamada, we attach subscripts to each input symbol in an expres-
sion; (ab+ b)*ba becomes (a,b,+ b3)*bsas. Conceptually, the efficient algorithm con-
structs an automaton for the marked expression. The marks on the transitions are then
erased, resulting in a nondeterministic automaton for the original unmarked expression.
This approach works for the usual operations of union, concatenation, and iteration; how-
ever, intersection and complement cannot be handled because marking and unmarking do
not preserve the languages generated by regular expressions with these operators.

1 INTRODUCTION

We study two well-known algorithms for constructing a finite automaton from a regular expres-
sion. An elegant algorithm due to Brzozowski [6] will be developed into an efficient algorithm
based on McNaughton and Yamada [11]. Brzozowski’s algorithm is easily seen to be correct, it
accommodates additional operators like intersection and complement, and it has recently served as
a starting point for compiling communicating processes in the Esterel programming language [3]
into automata [4]). The efficient algorithm is used in fast pattern matchers like egrep, distributed
as part of the UNIXt operating system. A brief account of grep [14] and its cousins, including
egrep, appears in [1]. A version of egrep’s algorithm is described in Section 3.9 of [2].
The syntax of regular expressions over a set X of input symbols is (a is a typical symbol):

E 2= O0ll1talE+ EIE-EI|E*

L (E) denotes the language generated by a regular expression E. L (0) is the empty set and L (1) is
the set consisting of the empty string €. Note that O and 1 are not input symbols; they represent
the sets of strings @ and {e}. L(E+ F) is the union of L(E) and L(F). L(E-F) consists of strings
formed by concatenating a string in L (E) with a string in L(F). L(E*) consists of strings formed
by concatenating zero or more strings from L (E); L (E*) includes the empty string €.

We write E= F if L(E)= L(F). The following properties of regular expressions will be used

+ UNIX is a registered trademark of AT&T.

2 GERARD BERRY AND RAVI SETHI

without fanfare:

~of
ty Iy oy

+ 0
-0
-1

mom
momom

M

Using Brzozowski’s notation, 8(E) stands for 1 if L(E) contains the empty string; otherwise, &(E)
stands for 0. It can be computed from the structure of E:

5(0)
8(1)
8(a)
S(E+ F)
8(E-F)
S(E*)

Thus, 8(E) ‘F equals F if the empty string is in L(E); otherwise, 8(E) - F equals 0. Furthermore,
E+ 8(E) = E, because E+ 0= E and, when e is in L(E), E+ 1 = E.

(E) + 8(F)
(E) - &(F)

[I 1 T T A

0
1
0
5
o
1

2 DERIVATIVES OF REGULAR EXPRESSIONS

Brzozowski’s algorithm [6) relies on the notion of a “‘derivative” of a regular expression E with
respect to an input symbol a, written a~ 'E. Informally, if leading a’s are stripped from strings in
L(E) that start with a, we get the strings generated by a~!E. The derivative of aba+ bb by a is
ba.

DerNITioN 1. Given a regular expression E and a symbol a, the derivative of E by a, written a™ 'E,
is defined by:

a 1= 0
a'l0= 0
ala=1
alb=0 forb# a

a Y (E+F)= a'E+ a'F
a(E-Fy= aE-F+ 8§E)-a"'F
a—l(Et) = a-lE.E*

Within expressions, a™! is treated as a prefix operator with higher precedence than +, -, and *. O

REMARK. Additional operators like intersection and complement can be handled by adding rules of
the form:

al(EnF) = a'Ena'F
a(E-F)= a E- a”'F

Informally, it does not matter if leading a’s are stripped before or after the operations are per-
formed. For example,

1
b*-1

(@™ '(ab*)) N (a”'a)
(@™ '(ab*)) ~ (a”'a) B

a~!(ab*na)
a” (ab*~ a)

o
{1/}

States in the constructed automaton correspond to regular expressions. There is a transition
under a from the state for E to the state for a~'E. The transition under a from the state for
aba+ bb is to the state for ba; the subsequent transition under b is to the state for a. It is easier 10
talk about sequences of transitions if the notion of derivatives is generalized from symbols to
strings. It is easier to write (ab)”!E than b~!(a”'E). More significantly, the next definition
allows us to write w™!E, where the string w is any member of a set of strings.

From Regular Expressions to Deterministic Automata 3

DeFINITION 2. The extension from symbols to the derivative of E by a string is defined by:

e'E= E
(wa)"'E = a~'(w'E)

Within expressions, w™! is treated as a prefix operator with higher precedence than +, -, and *. D

Automata will be constructed by explicitly comptiting derivatives, then derivatives of deriva-
tives, and so on, as needed. Convergence is guaranteed by the following result from [6)].

ProrosITION 3. The set of derivatives of a regular expression is finite, modulo associativity, commuia-
tivity, and idempotence of + ; that is, the set {F | w. F= w™'E} has a finite number of equivalence
classes. D

Without associativity, commutativity, and idempotence of +, duplicate subexpressions would
cause successive derivatives of E = a*(aa)* by a, aa, - - - 1o be distinct. These propertics allow
a sum of expressions to be treated as a set of expressions, thereby removing duplicates.

ArcormraM 1. ([6]) Construction of a deterministic automaton D accepting L (E).

1. The states of D are the distinct derivatives w™'E, for all strings w. Proposition 3 ensures
convergence of this step.

2. Construct a transition under a from state p to state ¢ if and only if p is for derivative w™'E,
for some w, and q is for (wa)™!E.

3. The state for E is the start state. A state is an accepting state if and only if it is for a deriva-
tive w™'E, for some w, and 8(w™'E) = 1; that is, the empty string is in L (w™'E). o

Algorithm 1 constructs the automaton in Fig. 1. Each state of the automaton is for a deriva:
tive of E = (ab+ b)*ba; the state for w™'E has a transition under a to the state for (wa)™'E.

o>

(ab+ b)*ba
(ab+ b)*ba+ a

Fig. 1. Automaton accepting (ab+ b)*ba.

start

b(ab+ b)*ba+ 1

3 REGULAR EXPRESSIONS WITH DISTINCT SYMBOLS

Following McNaughton and Yamada [11], we mark all input symbols in a regular expression to
make them distinct. The marks are written as subscripts; a marked version of (ab+ b)*ba is
(ayby+ b3)*bsas, where a; and as are treated as different symbols. :

The construction of a deterministic automaton D from a regular expression E is outlined in
Fig. 2. E’ is formed by marking all symbols in E to make them distinct. Suppose that an automa-
ton M” accepts L(E’). We show that unmarking the symbols labeling the transitions of M’ yields a
nondeterministic automaton M. D can be obtained from M by applying the standard subset con-
struction [13, 2].

4 GERARD BERRY AND RAVI SETHI

—_— E' = M - M
E mark unmark subset
symbols symbols construction

Fig. 2. From a regular expression E to a deterministic finite automaton D.

REMARK 4. The approach of Fig. 2 does not extend to regular expressions with intersection and
complement operators. Although (ab*)na = a, we get (a,b2*)nas = 0 because a, and aj arc
distinct. Similarly, (ab*)- a = abb*, but (a1b2*)- a; = a;b,*. The unmarking homomorphism
does not commute with intersection and relative complementation of languages.

The approach of Fig. 2 works for union, concatenation, and iteration because unmarking
commutes with these operations on languages. (]

ProPOSITION S. Let E’ be the regular expression obtained from E by marking all symbols to make them
distinct. If M’ is an automaton accepting L(E’), then M, a nondeterministic automaton accepting
L(E), is obtained by unmarking all the symbols labeling the transitions in M’.

Proof. Let unmark map marked symbols to their original unmarked form. We write L(A) for the
language accepted by automaton A. '

A structural induction on E establishes that L(E) = unmark(L(E’)). For the basis, note that
marking has no effect on 0 and 1, and that unmarking recovers a symbol a from its marked coun-
terpart. The inductive step, consisting of cases for the operators +, -, and *, is not shown.

For each transition of M’ on a marked symbol, there is a corresponding nondeterministic
transition of M on the unmarked symbol, so M accepts a string w if M’ accepts a string w’ such
that w = unmark(w’). The converse holds as well, so L (M) = unmark(L(M’)).

By construction, L(E’) = L(M’). The result L(E) = L (M) follows by transitivity. 0

The main theorem in this section allows each symbol in a marked expression to be viewed as
a state of an automaton. Figure 3 contains a motivating example for the theorem. Each state of
thc automaton in Fig. 3 is labeled with a symbol representing a derivative of the expression
(aby+ b3)*bsas. Furthermore, as in automata constructed by Algorithm 1, the state for C has a
transition under a marked symbol to a state for the derivative of C by that symbol. By construc-
tion, all the transitions entering a state are labeled with the same symbol; see for example the tran-
sitions labeled b4 into the state for C3. All strings that drive the automaton from the start state
into C, must therefore be of the form wb,, for some w. By construction, if a string wbs drives the
automaton into a state for expression C3, then C; must equal the derivative by wh; of the starting
expression Cy. Theorem 7 shows that the equivalence between C; and (whb3)™ 1C,, for all w, is no
accident; it follows from the distinctness of all symbols in the expression Cy.

Co = (a,by+ by)*bsas
Cy = by(a byt by)*baas
Cy = (ayby+ b3)*byas
Cy = (a,by+ by)*bas
Ci= as

s= 1

Fig. 3. Automaton for (@;b,+ by)*b,as.

The proof of the main theorem uses the following lemma.

From Regular Expressions to Deterministic Automata 5

LEMMA 6. Given any symbol a, for all strings w, (wa)™'(E*) is equivalent to a sum of subterms
chosen from the set {(va)™'E-E* | wa= uva)}.

Proof. By induction on the length of w. The basis, length zero, follows from the definition of
derivatives because ‘
‘ a '(E*)= a 'E-E*
For the inductive step, suppose w = xb. By definition,
(xba)”'(E*) = a™'((xb)"(E*))
From the inductive hypothesis, (xb)~!(E*) is equivalent to a sum of subterms chosen from
{(zb)"'E -E* | xb= yzb}. The operator a~' distributes across a sum:

a ' (X () 'E-E*)= I a Y((zb)"'E-E¥)
x= yz x=yz

Applying the rule for - in Definition 1, the right side yields
I (zba)y 'E-E*+ X 8((zb) 'E)-a”(E*) ¢))
x=yz x=yz

Each subterm of the form 8((zb)™'E) is either 0 or 1. Therefore, the second summation in (1)
equals a~ }(E*) = a'E-E*, if it does not equal 0. All terms in (1) are therefore of the form
(va)™ 'E - E*, where wa = uva = xba, so the lemma holds. u]

THEOREM 7 (Main Theorem). Let all symbols in E be distinct. Given any symbol a, for all strings w,
(wa)™'E is either O or unique modulo associativity, commutativity, and idempotence of + .

Proof. By structural induction on E. If E is either O or 1, then all derivatives are 0. Otherwise, if
it is a symbol, then the only possible values for its derivatives are 0 and 1. In the remaining cases,
we use the structure of E to expand (wa)™ 'E. :

Case: E = E |+ E,. It follows from the definition of derivatives that
(wa) Y E .+ Eg) = (wa) 'Ey + (wa)'E, 2

Since all symbols in E are distinct, if a is in E, then (wa)™'E, = 0; otherwise, a is in E, and
(wa)"'E; = 0. This case follows from the inductive hypothesis applied to the remaining term in

2.
Case: E = E,-E,. An auxiliary induction on the length of w establishes
(wa) '(E\E;) = (wa) 'Ey-E;+ I 8 'E,)-(va) 'E, (3)
wa= ua

If ais in E,, then only the first term on the right side of equality (3) survives and the inductive
hypothesis applies to it. Otherwise, a is in E, and terms of the form 8(u™'E,)- (va)~'E, are lefl.
Recall that 8(u~'E,) is either O or 1, for all 4, and from the inductive hypothesis, all subterms of
the form (va)™'E, are equivalent to either 0 or some fixed term F, so their sum is also either 0 or
equivalent to that fixed term F,

Case: E = E,*. From Lemma 6, (wa)™'(E*) is equivalent to a sum of terms chosen from
the set {(va)"'E - E* | wa= uva}; a complete characterization of (wa)~'(E*) is not needed. From
the inductive hypothesis, each nonzero subterm (va)~ 'E must therefore be equivalent to some fixed
term F, so any sum of subterms of the form (va)™'E - E* is equivalent to F -E*. This final case
holds because, being such a sum, (wa)™'(E*) is equivalent to F - E* if it is not 0.]

The automaton in Fig. 3 is constructed by a refinement of Algorithm 1. The new algorithm
works with a specific set of derivatives, corresponding to the distinct symbols in a marked exprcs-
sion. Since this set is fixed in advance, convergence of the new algorithm is immediate: correct-
ness carries over from Algorithm 1.

Dernrion 8. Let all symbols in E be distinct. For all symbols a in E, a continuation of a in E is

6 GERARD BERRY AND RAVI SETHI

any expression (wa)”'E # 0. By structural induction on E, such an expression must exist; by the
above theorem, all such expressions are equivalent. We therefore speak of “the’ continuation of a
in E to refer to some expression in the equivalence class. D

ALGoRITHM 2. Construction of a deterministic automaton M’ from a marked expression E’.
1. M’ has a state for the continuation of each marked symbol in E’,

2. Construct a transition under g from state p to the state for the continuation of a if and only if
p is for some continuation C and C can generate a string with a leading a.

3. The state for the entire expression E’ is the start state. A state is an accepting state if and
only if it is for a continuation C and 8(C) = 1.) m]

The states of the automaton in Fig. 3 are labeled with continuations of marked input symbols
in the expression (a,b2+ b3)*bsas. For all §, 1<i< 5, C; is the continuation of the symbol marked
i, and Cg represents the entire expression. Although the automata constructed by the new algo-
rithm can have more states — compare Fig. 3 and Fig. 1 — the new algorithm compensates by not
checking expressions for equivalence. The next section shows that the continuations in Fig. 3 need
not be computed explicitly either.

4 A FAST ALGORITHM

Algorithm 2 can be improved. Since each continuation is uniquely determined by an input symbol,
a regular expression with n marked symbols will lead to an automaton with n+ 1 states — a start
state and a state for each symbol. Instead of complete continuations, the second step of the algo-
rithm needs only the set of leading symbols in strings generated by the continuations. These sets
are related to “follow sets” defined below.

DEFINITION 9. first(E

)
Jollowg(a)

{alavelL(E)}
{b | uabveL(E)} 8]

Expressions of the form E!, where ! is a new endmarker symbol, are used below to avoid
special cases in the computation of follow sets for the “last” symbols that can be generated by E.
If a is such a last symbol, then followg,(a) will contain !.

ProvostrioN 10. Let all symbols in E be distinct and for all a let C, be the continuation of a in E.
Then,

a. first(C,!) = followg,(a)

Proof. Brzozowski’s [6] observation that every regular expression E can be represented as an infin-
ite sum of terms of the form w - w™'E, formalizes the idea that the derivative of w™'E is formed
by stripping a prefix w from strings generated by E. Restating the result for the derivatives of E
by strings of the form wa

E = 3E)+ X wa(wa) 'E

From Theorem 7, (wa)™ !E is either 0 or C,, so
E' = &E)-!'+ b)) wa-C,-! (4

(wa) 'E w 0
For all a, symbol a appears just before C, in the right side of (4), so first(C,!) is a subset of
followg(a).
For the converse, suppose b is in followg(a). Then, for some u and v, uabv! € L(E!), and
from (4)

From Regular Expressions to Deterministic Automata 7

uabv! € L(ua-C,-!)
Hence, b must be in first(C,!). o

An algorithm for computing follow sets is given in Section 3.9 of [2]. A related algorithm is
illustrated in Fig. 4. The figure contains a syntax tree for the expression (ab2+ b3)*bsas!, where
! is an endmarker. For clarity, follow sets are written in terms of integer subscripts on the marked
symbols. The notion of follow sets is generalized from symbols to subexpressions represented by
nodes in the syntax tree. To the right of each node appears the set of symbols that can follow the
last symbol generated by the subexpression at the node. Alternatively, the set can be thought of as
an attribute inherited by the node. Proceeding top down from the root with &, the set at a node is
accumulated until the leaf for a symbol a is reached with followg,(a).

2
{ '}/ ~ |
N
* @} !
I 7N
+ {1,3,4} by {5} as {!}
P
. (13,4} by {1.3,4}

~

a; {2} b, {1,3,4} .
Fig. 4. Follow sets for subexpressions of (a,b,+ b3)*b,as!.
The rules used for computing the sets in Fig. 4 are summarized in the next proposition.

ProposrrioN 11. Let E be a regular expression with distinct symbols. F, defined by the rules below, is
such that F(E, {1}) yields a set of pairs of the form < a, followg(a)> . The rules are:
F(E,+ E,, §) = F(E|, §) U F(E,, §)
F(El ‘E2, S) = F(El. ﬁrst(E2u8(Eg)-S) V) F(Ez, S)
F(El‘, S) = F(El, ﬁrst(El)uS)
F(a, §) = <a, §>
F(1,8) = @
FO, = @ a

Clément and Kahn [8] have adapted the above rules to construct a Typol [7] implementation.
The Typol specification is built up of sequents of the form '
S «E, : < first, 8, F> |
where first = first(E,), 8 = 8(E,), and F = F(E, §). Their rule for E, - E, is

ﬁrSf(Ez)US(Ez)‘S «E, :<ﬂ"5(1, 81, F> S «E, : < first,, 82, Fy>
S &, -Ey: <ﬁrSIIU81 - first,, 81 '52, FyUF;>

Once first and follow sets are computed, algorithm 2 is improved into algorithm 3 below.

ALGORITHM 3. (Fast construction of a deterministic automaton M’ from a marked expression
E’).

1. M’ has a start state plus a state for each marked symbol g; in E'.

2. Construct a transition under ¢; from the start state to the state for a; if and only if a; €
first(E'); construct a transition under a; from the state for b; to the state for a; if and only
if a; € followg(b;).

3. The start state is an accepting state if and only if §(E’) = 1; the state for a; is an accepting
state if and only if ! € followg(a;). :

8 GERARD BERRY AND RAVI SETHI

5 DISCUSSION

We no longer need to choose between the simpler and more gener'al approach based on derivatives
of regular expressions and the efficient approach based on marking and fol_low sets. Theorem 7
and Proposition 10 relate the two approaches, so the derivative approach can be used as the start-
ing point for constructing automata. These results also verify the correctness of algorithms based
on marking and follow sets.

) Regular expressions with union, concatenation, and iteration operators suffice for specifying
patterns in strings [14, 1. Additional operators are used in applications like protocol validation [5,
9] and communication between processes [12, 3, 10]. The idea of marking and unmarking symbols
in regular expressions does not always extend to additional operators; see the examples involving

intersection and complement in Remark 4. The idea of follow sets can, however, be used even if
marking cannot.

ACKNOWLEDGMENTS

We thank Al Aho, Dominique Clément, and Gilles Kahn for helpful comments.

From Regular Expressions to Deterministic Automata 9

REFERENCES

1.

Ano, A. V. “Pattern matching in strings,” in R. V. Book, Formal Language Theory,
Academic Press, New York (1980) pp. 325-347.

Ano, A. V., R. Semui, anp J. D. UrLLMan “Compilers: Principles, Techniques, and Tools,”
Addison-Wesley, Reading, Mass. (1986).

Berry, G. AnD L. Cosserat “The Esterel synchronous programming language and its
mathematical semantics,” in S. D. Brookes, A. W. Roscoe, and G. Winskel, Seminar in Con-
currency, Lecture Notes in Computer Science 197, Springer-Verlag, Berlin (1985).

BERRY, G., P. CouroNNE, AND G. GonTHEER ‘““The ESTEREL v2.1 System Manuals,” Tech.
Report, Ecole des Minés/INRIA (1986).

BocHMANN, G. V. “‘Communication protocols and error recovery procedures,” ACM Operat-
ing Systems Review 9:3 (March 1975) 45-50.

6. Brzozowskl, J. A. “Derivatives of regular expressions,” J. ACM 11:4 (1964) 481-494,

7. CLeMENT, D., J. DespEYROUX, T. DESPEYROUX, L. HAscoeT, AND G. KaHN “Natural semantics

on the computer,” No. 416, INRIA, Sophia-Antipolis (1985).

8. CLEMENT, D. AND G. KaHN “Personal communication (February 1986).

9. HorzMmann, G. J. “A theory for protocol validation,” IEEE Trans. Computers C-31:8 (1982)

10.

11.

12.

13.

14.

730-738.

KaATzZENELSON, J. AND R. P. KURsHAN “‘S/R: A language for specifying protocols and other
coordinating processes,” 5th Phoenix Conference on Computer Communications (1986) 286-
292,

McNaucHTON, R. AND H. Yamapa “Regular expressions and state graphs for automata,’” JRE
Trans. on Electronic Computers EC-9:1 (1960) 38-47.

MNER, R. “A complete inference system for a class of regular behaviours,” J. Computer
and System Sciences 28 (1984) 439-466.

RasN, M. O. anp D. Scorr. “Finite automata and their decision problems,” IBM J.
Research and Development 3:2 (1959) 114-125,

TuompsoN, K. ‘‘Regular expression search algorithm,” Comm. ACM 11:6 (1968) 419-422.

Imprimé en France

1’ Institut National de Recherche en Informatique et en Automatique

L)

<«

