
CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/∼anoop

February 28, 2008

1 / 30

Probabilistic CFG (PCFG)

S → NP VP 1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1
NP → NP PP 0.25
NP → Calvin 0.25
NP → monsters 0.25
NP → school 0.25
V → imagined 1
P → in 1

P(input) =
∑

tree P(tree | input)

P(Calvin imagined monsters in school) =?

Notice that P(VP → V NP) + P(VP → VP PP) = 1.0

2 / 30

Probabilistic CFG (PCFG)

P(Calvin imagined monsters in school) =?

(S (NP Calvin)

(VP (V imagined)

(NP (NP monsters)

(PP (P in)

(NP school)))))

(S (NP Calvin)

(VP (VP (V imagined)

(NP monsters))

(PP (P in)

(NP school))))

3 / 30

Probabilistic CFG (PCFG)

(S (NP Calvin)

(VP (V imagined)

(NP (NP monsters)

(PP (P in)

(NP school)))))

P(tree1) = P(S → NP VP) × P(NP → Calvin) × P(VP → V NP) ×

P(V → imagined) × P(NP → NP PP) × P(NP → monsters) ×

P(PP → P NP) × P(P → in) × P(NP → school)

= 1 × 0.25 × 0.9 × 1 × 0.25 × 0.25 × 1 × 1 × 0.25 = .003515625

4 / 30

Probabilistic CFG (PCFG)

(S (NP Calvin)

(VP (VP (V imagined)

(NP monsters))

(PP (P in)

(NP school))))

P(tree2) = P(S → NP VP) × P(NP → Calvin) × P(VP → VP PP) ×

P(VP → V NP) × P(V → imagined) × P(NP → monsters) ×

P(PP → P NP) × P(P → in) × P(NP → school)

= 1 × 0.25 × 0.1 × 0.9 × 1 × 0.25 × 1 × 1 × 0.25 = .00140625

5 / 30

Probabilistic CFG (PCFG)

P(Calvin imagined monsters in school) = P(tree1) + P(tree2)

= .003515625 + .00140625

= .004921875

Most likely tree is tree1 =
arg max

tree
P(tree | input)

(S (NP Calvin)

(VP (V imagined)

(NP (NP monsters)

(PP (P in)

(NP school)))))

(S (NP Calvin)

(VP (VP (V imagined)

(NP monsters))

(PP (P in)

(NP school))))
6 / 30

PCFG

I Central condition:
∑
α P(A → α) = 1

I Called a proper PCFG if this condition holds

I Note that this means P(A → α) = P(α | A) =
f(A ,α)
f(A)

I P(T | S) =
P(T ,S)
P(S)

= P(T ,S) =
∏

i P(RHSi | LHSi)

7 / 30

PCFG

I What is the PCFG that can be extracted from this single tree:

(S (NP (Det the) (NP man))
(VP (VP (V played)

(NP (Det a) (NP game)))
(PP (P with)

(NP (Det the) (NP dog)))))
I How many different rhs α exist for A → α where A can be S,

NP, VP, PP, Det, N, V, P

8 / 30

PCFG

S → NP VP c = 1 p = 1/1 = 1.0
NP → Det NP c = 3 p = 3/6 = 0.5
NP → man c = 1 p = 1/6 = 0.1667
NP → game c = 1 p = 1/6 = 0.1667
NP → dog c = 1 p = 1/6 = 0.1667
VP → VP PP c = 1 p = 1/2 = 0.5
VP → V NP c = 1 p = 1/2 = 0.5
PP → P NP c = 1 p = 1/1 = 1.0
Det → the c = 2 p = 2/3 = 0.67
Det → a c = 1 p = 1/3 = 0.33
V → played c = 1 p = 1/1 = 1.0
P → with c = 1 p = 1/1 = 1.0

I We can do this with multiple trees. Simply count occurrences
of CFG rules over all the trees.

I A repository of such trees labelled by a human is called a
TreeBank.

9 / 30

Ambiguity

I Part of Speech ambiguity
saw→ noun
saw→ verb

I Structural ambiguity: Prepositional Phrases
I saw (the man) with the telescope

I saw (the man with the telescope)

I Structural ambiguity: Coordination
a program to promote safety in ((trucks) and

(minivans))

a program to promote ((safety in trucks) and

(minivans))

((a program to promote safety in trucks) and

(minivans))

10 / 30

Ambiguity← attachment choice in alternative parses

NP

NP

a program

VP

to VP

promote NP

NP

safety

PP

in NP

trucks and minivans

NP

NP

a program

VP

to VP

promote NP

NP

safety PP

in trucks

and NP

minivans

11 / 30

Parsing as a machine learning problem

I S = a sentence
T = a parse tree
A statistical parsing model defines P(T | S)

I Find best parse: arg max
T P(T | S)

I P(T | S) =
P(T ,S)
P(S)

= P(T ,S)

I Best parse: arg max
T P(T ,S)

I e.g. for PCFGs: P(T ,S) =
∏

i=1...n P(RHSi | LHSi)

12 / 30

Prepositional Phrases

I noun attach: I bought the shirt with pockets
I verb attach: I washed the shirt with soap
I As in the case of other attachment decisions in parsing: it

depends on the meaning of the entire sentence – needs world
knowledge, etc.

I Maybe there is a simpler solution: we can attempt to solve it
using heuristics or associations between words

13 / 30

Structure Based Ambiguity Resolution

I Right association: a constituent (NP or PP) tends to attach to
another constituent immediately to its right (Kimball 1973)

I Minimal attachment: a constituent tends to attach to an
existing non-terminal using the fewest additional syntactic
nodes (Frazier 1978)

I These two principles make opposite predictions for
prepositional phrase attachment

I Consider the grammar:

VP → V NP PP (1)

NP → NP PP (2)

for input: I [VP saw [NP the man . . . [PP with the telescope],
RA predicts that the PP attaches to the NP, i.e. use rule (2),
and MA predicts V attachment, i.e. use rule (1)

14 / 30

Structure Based Ambiguity Resolution

I Garden-paths look structural:
The emergency crews hate most is domestic violence

I Neither MA or RA account for more than 55% of the cases in
real text

I Psycholinguistic experiments using eyetracking show that
humans resolve ambiguities as soon as possible in the left to
right sequence using the words to disambiguate

I Garden-paths are caused by a combination of lexical and
structural effects:
The flowers delivered for the patient arrived

15 / 30

Ambiguity Resolution: Prepositional Phrases in English

I Learning Prepositional Phrase Attachment: Annotated Data
v n1 p n2 Attachment

join board as director V
is chairman of N.V. N

using crocidolite in filters V
bring attention to problem V

is asbestos in products N
making paper for filters N

including three with cancer N
...

...
...

...
...

16 / 30

Prepositional Phrase Attachment

Method Accuracy
Always noun attachment 59.0
Most likely for each preposition 72.2
Average Human (4 head words only) 88.2
Average Human (whole sentence) 93.2

17 / 30

Back-off Smoothing

I Let 1 represent noun attachment.
I We want to compute probability of noun attachment:

p(1 | v , n1, p, n2).
I Probability of verb attachment is 1 − p(1 | v , n1, p, n2).

18 / 30

Back-off Smoothing
1. If f(v , n1, p, n2) > 0 and p̂ , 0.5

p̂(1 | v , n1, p, n2) =
f(1, v , n1, p, n2)

f(v , n1, p, n2)

2. Else if f(v , n1, p) + f(v , p, n2) + f(n1, p, n2) > 0
and p̂ , 0.5

p̂(1 | v , n1, p, n2) =
f(1, v , n1, p) + f(1, v , p, n2) + f(1, n1, p, n2)

f(v , n1, p) + f(v , p, n2) + f(n1, p, n2)

3. Else if f(v , p) + f(n1, p) + f(p, n2) > 0

p̂(1 | v , n1, p, n2) =
f(1, v , p) + f(1, n1, p) + f(1, p, n2)

f(v , p) + f(n1, p) + f(p, n2)

4. Else if f(p) > 0

p̂(1 | v , n1, p, n2) =
f(1, p)

f(p)

5. Else p̂(1 | v , n1, p, n2) = 1.0
19 / 30

Prepositional Phrase Attachment: (Collins and Brooks 1995)

I Results: 84.5% accuracy
with the use of some limited word classes for dates, numbers,
etc.

I Using complex word classes taken from WordNet (which we
shall be looking at later in this course) increases accuracy to
88% (Stetina and Nagao 1998)

I We can improve on parsing performance with Probabilistic
CFGs by using the insights taken from PP attachment.

I Modify the PCFG model to be sensitive to words and other
context-sensitive features of the input.

I And generalizing to other kinds of attachment problems, like
coordination or deciding which constituent is an argument of a
verb.

20 / 30

Some other studies

I Toutanova, Manning, and Ng, 2004:
use sophisticated smoothing model for PP attachment
86.18% with words & stems; with word classes: 87.54%

I Merlo, Crocker and Berthouzoz, 1997:
test on multiple PPs, generalize disambiguation of 1 PP to 2-3
PPs
14 structures possible for 3PPs assuming a single verb: all 14
are attested in the Treebank
same model as CB95; but generalized to dealing with upto
3PPs
1PP: 84.3% 2PP: 69.6% 3PP: 43.6%
Note that this is still not the real problem faced in parsing
natural language

21 / 30

Adding Lexical Information to PCFG

..

indicated

VB{indicated}

difference

NP{difference}

in

P

..

NP

PP{in}

VP{indicated}

S

22 / 30

Adding Lexical Information to PCFG (Collins 99, Charniak 00)

VB{+H:indicated}

VP{indicated}

STOP .. VB{+H:indicated}

VP{indicated}

VB{+H:indicated} NP{difference}

VP{indicated}

VB{+H:indicated} .. PP{in}

VP{indicated}

VB{+H:indicated} .. STOP

VP{indicated}

Ph(VB | VP, indicated) × Pl(STOP | VP, VB, indicated)×
Pr(NP(difference) | VP, VB, indicated)×
Pr(PP(in) | VP, VB, indicated)×
Pr(STOP | VP, VB, indicated)

23 / 30

Evaluation of Parsing
I Consider a candidate parse to be evaluated against the truth

(or gold-standard parse):
candidate: (S (A (P this) (Q is)) (A (R a) (T test)))

gold: (S (A (P this)) (B (Q is) (A (R a) (T test))))

I In order to evaluate this, we list all the constituents
Candidate Gold
(0,4,S) (0,4,S)
(0,2,A) (0,1,A)
(2,4,A) (1,4,B)

(2,4,A)
I Skip spans of length 1 which would be equivalent to part of

speech tagging accuracy.
I Precision is defined as #correct

#proposed = 2
3 and recall as

#correct
#in gold = 2

4 .
I Another measure: crossing brackets,
candidate: [an [incredibly expensive] coat] (1 CB)

gold: [an [incredibly [expensive coat]]

24 / 30

Evaluation of Parsing

Bracketing recall R = num of correct constituents
num of constituents in the goldfile

Bracketing precision P = num of correct constituents
num of constituents in the parsed file

Complete match = % of sents where recall & precision are both 100%

Average crossing =
num of constituents crossing a goldfile constituent

num of sents

No crossing = % of sents which have 0 crossing brackets

2 or less crossing = % of sents which have ≤ 2 crossing brackets

25 / 30

Statistical Parsing Results

≤ 40wds ≤ 40wds ≤ 100wds ≤ 100wds
System P R P R
(Magerman 95) 84.9 84.6 84.3 84.0
(Collins 99) 88.5 88.7 88.1 88.3
(Charniak 97) 87.5 87.4 86.7 86.6
(Ratnaparkhi 97) 86.3 87.5
(Charniak 99) 90.1 90.1 89.6 89.5
(Collins 00) 90.1 90.4 89.6 89.9
Voting (HB99) 92.09 89.18

26 / 30

Practical Issues: Beam Thresholding and Priors

I Probability of nonterminal X spanning j . . . k : N[X , j, k]

I Beam Thresholding compares N[X , j, k] with every other Y
where N[Y , j, k]

I But what should be compared?

I Just the inside probability: P(X
∗
⇒ tj . . . tk)?

written as β(X , j, k)

I Perhaps β(FRAG, 0, 3) > β(NP, 0, 3), but NPs are much more
likely than FRAGs in general

27 / 30

Practical Issues: Beam Thresholding and Priors

I The correct estimate is the outside probability:

P(S
∗
⇒ t1 . . . tj−1 X tk+1 . . . tn)

written as α(X , j, k)

I Unfortunately, you can only compute α(X , j, k) efficiently after
you finish parsing and reach (S, 0, n)

28 / 30

Practical Issues: Beam Thresholding and Priors
I To make things easier we multiply the prior probability P(X)

with the inside probability
I In beam Thresholding we compare every new insertion of X

for span j, k as follows:
Compare P(X) · β(X , j, k) with the most probable Y
P(Y) · β(Y , j, k)

I Assume Y is the most probable entry in j, k , then we compare

beam · P(Y) · β(Y , j, k) (3)

P(X) · β(X , j, k) (4)

I If (4) < (3) then we prune X for this span j, k
I beam is set to a small value, say 0.001 or even 0.01.
I As the beam value increases, the parser speed increases

(since more entries are pruned).
I A simpler (but not as effective) alternative to using the beam is

to keep only the top K entries for each span j, k
29 / 30

Experiments with Beam Thresholding

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 20 25 30 35

pa
rs

in
g

tim
e(

se
cs

)

sentence length

sample.parser.out
sample.parser.out.pruning.beam_0.001

sample.parser.out.pruning.beam_0.01
sample.parser.out.pruning.prior.beam_0.001

30 / 30

