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Quick guide to probability theory

I P(X) means probability that X is true
I P(baby is a girl) = 0.5

percentage of total number of babies that are girls
I P(baby girl is named Kiki) = 0.001

percentage of total number of babies that are named Kiki

Kiki

Baby girls
Babies
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Joint probability

I P(X,Y) means probability that X and Y are both true
I P(baby girl, blue eyes) percentage of total number of babies

that are girls and have blue eyes

Blue eyesKiki

Baby girls
Babies
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Conditional probability

I P(X | Y) means probability that X is true when we already
know that Y is true

I P(baby is named Kiki | baby is a girl) = 0.002
I P(baby is a girl | baby is named Kiki) = 1

Kiki

Baby girls
Babies
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Conditional probability

I Conditional and joint probabilities are related:

P(X | Y ) =
P(X , Y )

P(Y )

I P(baby is named Kiki | baby is a girl) =
P(baby is a girl,baby is named Kiki)

P(baby is a girl) = 0.001
0.5 = 0.002

Kiki

Baby girls
Babies
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Bayes rule

I Conditional probability re-written as likelihood times prior:

P(X | Y ) =
P(Y | X )× P(X )

P(Y )

I P(named Kiki | girl) = P(girl|named Kiki)×P(named Kiki)
P(girl) =

1.0×0.001
0.5 = 0.002

Kiki

Baby girls
Babies
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Bayes Rule

P(X | Y ) =
P(X , Y )

P(Y )
(1)

P(Y | X ) =
P(Y , X )

P(X )
(2)

P(X , Y ) = P(Y , X ) (3)

P(X | Y )× P(Y ) = P(Y | X )× P(X ) (4)

P(X | Y ) =
P(Y | X )× P(X )

P(Y )
(5)

P(X | Y ) = P(Y | X )× P(X ) (6)
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Basic Terms

I P(e) – a priori probability or just prior

I P(f | e) – conditional probability. The chance of f given e

I P(e, f ) – joint probability. The chance of e and f both
happening.

I If e and f are independent then we can write
P(e, f ) = P(e)× P(f )

I If e and f are not independent then we can write
P(e, f ) = P(e)× P(f | e)
P(e, f ) = P(f )× ?

9 / 37



Basic Terms
I Addition of integers:

n∑
i=1

i = 1 + 2 + 3 + . . . + n

I Product of integers:

n∏
i=1

i = 1× 2× 3× . . .× n

I Factoring:

n∑
i=1

i × k = k + 2k + 3k + . . . + nk = k
n∑

i=1

i

I Product with constant:
n∏

i=1

i × k = 1k × 2k . . .× nk = kn ×
n∏

i=1

i

10 / 37



Probability: Axioms

I P measures total probability of a set of events

I P(∅) = 0

I P(all events) = 1

I P(X ) ≤ P(Y ) for any X ⊆ Y

I P(X ) + P(Y ) = P(X ∪ Y ) provided that X ∩ Y = ∅
I P(GC drives drunk & GC is in Hawaii) + P(GC drives drunk

& GC is not in Hawaii) = P(GC drives drunk)
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Probability Axioms

I All events sum to 1: ∑
e

P(e) = 1

I Marginal probability P(f ):

P(f ) =
∑

e

P(e, f )

I Conditional probability:∑
e

P(e | f ) =
∑

e

P(e, f )

P(f )
=

1

P(f )

∑
e

P(e, f ) = 1

I Computing P(f ) from axioms:

P(f ) =
∑

e

P(e)× P(f | e)
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Probability: Bias and Variance

I P(GC drives drunk | GC is in Hawaii, GC is alone, GC is low in
polls, . . .)

I As we add more material to the right of | :
I probability could increase or decrease
I probability usually gets more relevant (less bias)
I probability usually gets less reliable (more variance)
I removing items from the right of | makes it easier to get an

estimate (more bias but less variance)
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Probability: The Chain Rule

I P(GC is in Hawaii,GC is alone,GC is low in polls | GC drives
drunk)

I We cannot remove items from the left of |
(verify that it violates the definitions we have given based on
sets)

I In this case we can use the chain rule of probability to rescue
us

I P(GC in Hawaii,GC alone,GC low in polls | GC drives drunk) =
P(GC in Hawaii | GC alone,GC low in polls,GC drives drunk) ×
P(GC alone | GC low in polls, GC drives drunk) ×
P(GC low in polls | GC drives drunk)
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Probability: The Chain Rule

I P(GC in Hawaii,GC alone,GC low in polls | GC drives drunk) =
P(GC in Hawaii | GC alone,GC low in polls,GC drives drunk) ×
P(GC alone | GC low in polls, GC drives drunk) ×
P(GC low in polls | GC drives drunk )

I Remember: P(X | Y ) = P(X ,Y )
P(Y )

I HALD
D = HALD

ALD ×
ALD
LD ×

LD
D

(simply cancel out the matching terms)
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Probability: The Chain Rule

I P(e1, e2, . . . , en) = P(e1)× P(e2 | e1)× P(e3 | e1, e2) . . .

P(e1, e2, . . . , en) =
n∏

i=1

P(ei | ei−1, ei−2, . . . , e1)
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Probability: Random Variables and Events

I What is y in P(y) ?

I Shorthand for value assigned to a random variable Y , e.g.
Y = y

I y is an element of some implicit event space: E
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Probability: Random Variables and Events

I The marginal probability P(y) can be computed from P(x , y)
as follows:

P(y) =
∑
x∈E

P(x , y)

I Finding the value that maximizes the probability value:

x̂ =
arg max
x ∈ E P(x)

18 / 37



Quick Guide to Probability Theory

Log Probability

Basics of Information Theory

19 / 37



Log Probability Arithmetic

I Practical problem with tiny P(e) numbers: underflow

I One solution is to use log probabilities:

log(P(e)) = log(p1 × p2 × . . .× pn)

= log(p1) + log(p2) + . . . + log(pn)

I Note that:
x = exp(log(x))

I Also more efficient: addition instead of multiplication
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Log Probability Arithmetic

p log(p)

0.0 −∞
0.1 −3.32
0.2 −2.32
0.3 −1.74
0.4 −1.32
0.5 −1.00
0.6 −0.74
0.7 −0.51
0.8 −0.32
0.9 −0.15
1.0 0.00
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Log Probability Arithmetic

I So: (0.5× 0.5× . . . 0.5) = (0.5)n might get too small but
(−1− 1− 1− 1) = −n is manageable

I Another useful fact when writing code
(log2 is log to the base 2):

log2(x) =
log10(x)

log10(2)
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Log Probability Arithmetic

I Adding probabilities is expensive to compute:
logadd(x , y) = log(exp(x) + exp(y))

I A more efficient soln, let big be a large constant e.g. 1030:

function logadd(x , y) : # returns log(exp(x) + exp(y))
if (y − x) > log(big) return y
elsif (x − y) > log(big) return x
else return

min(x , y) + log(exp(x −min(x , y)) + exp(y −min(x , y)))
endif

I There is a more efficient way of computing
log(exp(x −min(x , y)) + exp(y −min(x , y)))
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Log Probability Arithmetic

function logadd(x , y) :
if (y − x) > log(big) return y
elsif (x − y) > log(big) return x
elsif (x ≥ y) return x + log(1 + exp(y − x))

# note that max(x , y) = x and y − x ≤ 0

else return y + log(exp(x − y) + 1)
# note that max(x , y) = y and x − y ≤ 0

endif
Also, in ANSI C, log1p efficiently computes log(1 + x)

http://www.ling.ohio-state.edu/~jansche/src/logadd.c
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Information Theory

I Information theory is the use of probability theory to quantify
and measure “information”.

I Consider the task of efficiently sending a message. Sender
Alice wants to send several messages to Receiver Bob. Alice
wants to do this as efficiently as possible.

I Let’s say that Alice is sending a message where the entire
message is just one character a, e.g. aaaa. . .. In this case we
can save space by simply sending the length of the message
and the single character.
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Information Theory

I Now let’s say that Alice is sending a completely random signal
to Bob. If it is random then we cannot exploit anything in the
message to compress it any further.

I The upper bound on the number of bits it takes to transmit
some infinite set of messages is what is called entropy.

I This formulation of entropy by Claude Shannon was adapted
from thermodynamics, converting information into a quantity
that can be measured.

I Information theory is built around this notion of message
compression as a way to evaluate the amount of information.
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Entropy

I Consider a probability distribution p

I Entropy of p is:

H(p) = −
∑
x∈E

p(x) log2 p(x)

I Any base can be used for the log, but base 2 means that
entropy is measured in bits.

I Entropy answers the question: What is the upper bound on
the number of bits needed to transmit messages from event
space E , where p(x) defines the probability of observing x .
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Entropy

I Alice wants to bet on a horse race. She has to send a message
to her bookie Bob to tell him which horse to bet on.

I There are 8 horses. One encoding scheme for the messages is
to use a number for each horse. So in bits this would be
001, 010, . . .
(lower bound on message length = 3 bits in this encoding
scheme)

I Can we do better?
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Entropy

Horse 1 1
2 Horse 5 1

64

Horse 2 1
4 Horse 6 1

64

Horse 3 1
8 Horse 7 1

64

Horse 4 1
16 Horse 8 1

64

I If we know how likely we are to bet on each horse, say based
on the horse’s probability of winning, then we can do better.

I Let p be the probability distribution given in the table above.
The entropy of p is H(p)
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Entropy

H(p) =

= −
8∑

i=1

p(i) log2 p(i)

= −
(

1

2
log2

1

2
+

1

4
log2

1

4
+

1

8
log2

1

8
+

1

16
log2

1

16
+ 4(

1

64
log2

1

64
)

)
= −

(
1

2
×−1 +

1

4
×−2 +

1

8
×−3 +

1

16
×−4 + 4(

1

64
×−6)

)
= −

(
−1

2
− 1

2
−3

8
− 1

4
− 3

8

)
= 2 bits

I What is the entropy when the horses are equally likely to win?

H(uniform distribution) = −8(
1

8
×−3) = 3 bits
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Entropy

I e.g., most likely horse gets code 0, next most likely gets 10,
and then 110, 1110, . . .
many possible coding schemes, this is a simple code to illustrate

number of bits needed for a large number of messages . . .

I Assume there are 320 messages (one for each race):
code 0 occurs 160 times, code 10 occurs 80 times, code 110
occurs 40 times, code 1110 occurs 20 times, code 11110
occurs 5 times.

I Total number of bits for all messages: 160*len(0) +
80*len(10) + 40*len(110) + 20*len(1110) + 5*len(11110)

I Number of bits: 160*1 + 80*2 + 40*3 + 20*4 + 5*5 = 545

I Total number of bits per message (per race): 545
320 ≈ 1.7 bits

(always less than 2 bits)
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Perplexity

I The value 2H(p) is called the perplexity of a distribution p

I Perplexity is the weighted average number of choices a
random variable has to make.

I Choosing between 8 equally likely horses (H=3) is 23 = 8.

I Choosing between the biased horses from before (H=2) is
22 = 4.
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Relative Entropy

I In real life, we cannot know for sure the exact winning
probability for each horse.

I Let’s say pt is the true probability and pe is our estimate of
the true probability
(say we got pe by observing previous races with these horses)

I We define the distance between pt and pe as the relative
entropy: written as D(pt‖pe)

D(pt‖pe) = −
∑
x∈E

pt(x) log2
pe(x)

pt(x)

I The relative entropy is also called the Kullback-Leibler
divergence.
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Cross Entropy and Relative Entropy

I The relative entropy can be written as the sum of two terms:

D(pt‖pe) = −
∑
x∈E

pt(x) log2
pe(x)

pt(x)

= −
∑
x

pt(x) log2 pe(x)−
∑
x

pt(x) log2 pt(x)

I We know that H(pt) = −
∑

x pt(x) log2 pt(x)

I Let us define Hpt (pe) = −
∑

x pe(x) log2 pt(x)

D(pt‖pe) = Hpt (pe) + H(pt)

I The term Hpt (pe) is called the cross entropy.
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Cross Entropy and Relative Entropy

I The relative entropy between pe and pt can be written as
the sum of two terms:

relative entropy(pt , pe)=cross entropy(pt , pe)+entropy(pt)
D(pt‖pe) =Hpt (pe) +H(pt)

I Hpt (pe) ≥ H(pt) always.

I D(pt‖pe) ≥ 0 always, and D(pt‖pe) = 0 iff pt = pe

I D(pt‖pe) is not a true distance:
I It is asymmetric: D(pt‖pe) 6= D(pe‖pt),
I It does not obey the triangle inequality:

D(p‖r) � D(p‖q) + D(q‖r)
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Conditional Entropy and Mutual Information

I Entropy of a random variable X :

H(X ) = −
∑
x∈E

p(x) log2 p(x)

I Conditional Entropy between two random variables X and Y :

H(X | Y ) = −
∑

x ,y∈E
p(x , y) log2 p(x | y)

I Mutual Information between two random variables X and Y :

I (X ; Y ) = D(p(x , y)‖p(x)p(y)) =
∑
x

∑
y

p(x , y) log2
p(x , y)

p(x)p(y)
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