CMPT 413
Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

2/29/08

Context-free Grammars

e Set of rules by which valid sentences can be
constructed.
e Example:
Sentence — Noun Verb Object
Noun — trees | parsers
Verb — are | grow
Object — on Noun | Adjective
Adjective — slowly | interesting

e What strings can Sentence derive?

e Syntax only — no semantic checking
2/29/08

Derivations of a CFG

* parsers grow on trees
 parsers grow on Noun
 parsers grow Object

» parsers Verb Object
e Noun Verb Object

* Sentence

2/29/08

Derivations and parse trees

Sentence
Noun Verb Object

Noun

parsers grow on trees

2/29/08

Arithmetic Expressions

E—E+E
E—E*E
E—(E)
E—-E
E—id

2/29/08 5

Leftmost derivations for
id +id * id
e E=E+E

=id+E /T\

=id+E *E E

+ E
—id+id*E | N
E * E

—id+id*ia ™

id id

2/29/08 6

Leftmost derivations for

id + id *id
e E=E*E E
—=E+E*E /’\
=id+E *E E *
—id+id *E g
+

—id+id*id | |

id id

2/29/08 7

Rightmost derivation for

id +id *id
E=E+E E
==E+E*E /]\

E + E
= FE+E *id

E E
= id +id *id | \
id

2/29/08 8

Rightmost derivation for

id +1id * id
—E+E*id E -

~E+id*id E/[\E \
—id+id*id | |

2/29/08 9

Parsing - Roadmap

 Parser is a decision procedure: builds a
parse tree

e Top-down vs. bottom-up

* Recursive-descent with backtracking
e Bottom-up parsing (CKY)

e Shift-reduce parsing

e Combining top-down and bottom-up:
Earley parsing

2/29/08 10

Top-Down vs. Bottom Up

Grammar: S — AB Input String: ccbca
A—cle
B — cbBlca
Top-Down/leftmost Bottom-Up/rightmost
S = AB S—=AB [ccbca< Acbca |A—c
= cB A—c <= AcbB |B—ca
= ccbB |B—cbB <= AB B—cbB
= ccbca |B—=ca =S S—AB

2/29/08

11

Top-Down: Backtracking

S—AB
A—cleg
B —cbBlca

True/False
S =* cbca?

2/29/08

N
N

S
AB
cB
B
eB
cbB
bB
B
cbB
bB
ca
a

cbca
cbca
cbca
bca
cbca
cbca
bca
ca
ca

a

ca

a

try S—AB

try A—c

match ¢

dead-end, try A—¢
try B—cbB

match ¢

match b

try B—cbB

match ¢

dead-end, try B—ca
match ¢

match a, Done!

Transition Diagram

S—=cAa s O—O202>0
A—cBIB A ()20

B
b c B
Bownle o QO OO
€
2/29/08 13

Bottom-up parsing overview

* Start from terminal symbols, search for a path to the start
symbol
* Apply shift and reduce actions: postpone decisions
* LR parsing:
— L: left to right parsing
— R: rightmost derivation (in reverse or bottom-up)

* Useful for deterministic parsing (e.g. in compilers for
programming languages)

2/29/08 14

Rightmost derivation for

id +1id *id

E=E*E

= E *id

= E+E *id

= E +id *id reduce with E — id

= id +1id *id shift

2/29/08 15

Ambiguity

e Grammar is ambiguous if more than one
parse tree is possible for some sentences
» Examples in English:

— Two sisters reunited after 18 years in checkout
counter

* It is undecidable to check using an
algorithm whether a grammar is ambiguous

2/29/08 16

Parsing CFGs

Consider the problem of parsing with
arbitrary CFGs

For any input string, the parser has to
produce a parse tree

The simpler problem: print yes if the input
string is generated by the grammar, print no
otherwise

This problem is called recognition

2/29/08 17

CKY Recognition Algorithm

The Cocke-Kasami-Younger algorithm

As we shall see it runs in time that is
polynomial in the size of the input

It takes space polynomial in the size of the
input
Remarkable fact: it can find all possible

parse trees (exponentially many) in
polynomial time

2/29/08 18

Chomsky Normal Form

e Before we can see how CKY works, we need to
convert the input CFG into Chomsky Normal
Form

e CNF is one of many grammar transformations that
preserve the language

e CNF means that the input CFG G is converted to a
new CFG G’ in which all rules are of the form:
A—=BC
A—a

2/29/08 19

Epsilon Removal

* First step, remove epsilon rules
A—BC
C—e¢lCDla
D—=b B—b

e After e-removal:
A—BIBCDIBalBC
C—DICDDIaDICDIa
D—b B—b

2/29/08 20

Removal of Chain Rules

e Second step, remove chain rules
A—-BCICDC
C—=Dla
D—-d B—b

e After removal of chain rules:
A—BalBDlaDalaDDIDDalDDD
D—-d B—b

2/29/08 21

Eliminate terminals from RHS

 Third step, remove terminals from the rhs of
rules
A—=BaCd

e After removal of terminals from the rhs:
A—BN,CN,
N, —a
N, —>d

2/29/08 22

Binarize RHS with Nonterminals

* Fourth step, convert the rhs of each rule to have

two non-terminals

A—=BN,CN,
N, —a
N, —=d
e After converting to binary form:
A— BN, N, —a
N,—-N/N, N,—d
N, = CN,
2/29/08
CKY algorithm

* We will consider the working of the
algorithm on an example CFG and input
string

e Example CFG:

S—AXIYB
X—=ABIBA Y—=BA
A—a B—a

e Example input string: aaa

2/29/08

23

24

CKY Algorithm

0 1 2 3
A, B XY S
0 A—a X—=ABIBA S—>A(0,1)X(l,3)
B—a Y—-BA S—>Y(0’2) B(2,3)
1 A, B X, Y
A—a X—=ABIBA
B—a Y—-BA
A, B
2 A—a
B—a
d d d

2/29/08 25

Parse trees

S S S
Y B A X A X
T T T
A A B B
| / / /
a a a a a a a

2/29/08 26

CKY Algorithm

Input string input of size n
Create a 2D table chart of size n?
for i=0 to n-1

chart[i][i+1] = A if there is a rule A — a and input[i]=a
for j=2to N

for i=j-2 downto 0

for k=i+1 to j-1
chart[i][j] = A if there is a rule A — B C and
chart[i][k] = B and chart[k][j] =C

return yes if chart[0][n] has the start symbol

else return no
2/29/08 27

CKY algorithm summary

e Parsing arbitrary CFGs

e For the CKY algorithm, the time complexity is
O(IGP n’)

 The space requirement is O(n?)

e The CKY algorithm handles arbitrary ambiguous
CFGs

e All ambiguous choices are stored in the chart

e For compilers we consider parsing algorithms for
CFGs that do not handle ambiguous grammars

2/29/08 28

Parsing - Summary

e Parsing arbitrary CFGs: O(n’) time complexity
e Top-down vs. bottom-up

— Recursive-descent parsing

— Shift-reduce parsing
e Earley parsing

e Ambiguous grammars result in parser output with
multiple parse trees for a single input string

2/29/08 29

Parsing - Additional Results

* (O(n?) time complexity for linear grammars
— All rules are of the form S — aSbor S — a
— Reason for O(n?) bound is the linear grammar normal
form: A—aB,A—=Ba,A—=B,A—a
e Left corner parsers
— extension of top-down parsing to arbitrary CFGs
e Earley’s parsing algorithm
— O(n’) worst case time for arbitrary CFGs just like CKY
— O(n?) worst case time for unambiguous CFGs
— O(n) for specific unambiguous grammars
2nops (€.2.S —>aSalbSbleg) 0

Non-CF Languages

Ly = {wcw | w € (a|b)*}
Ly ={a™b™c"d™ |n>1,m > 1}

Lz = {a"b"c" | n > 0}

2/29/08 31

CF Languages

Ly = {wew® | w € (a|b)*}

S —aSa | bSb|c
Ls={a"™b"c™d" |n>1,m > 1}
S — aSd | aAd

A — bAc | be

2/29/08 32

Context-free languages and

Pushdown Automata
* Recall that for each regular language there
was an equivalent finite-state automaton

e The FSA was used as a recognizer of the
regular language

» For each context-free language there is also
an automaton that recognizes it: called a
pushdown automaton (pda)

2/29/08 33

Pushdown Automata

* PDA has e.g. PDA for language
¢ an alphabet (terminals) and L={0"1":n>=0}
* stack symbols (like non-terminals),

¢ a finite-state automaton, and ;;giﬁ;;ggls (l;/)p()p
e stack
0,e = A
~— push stack symbol A
1, A—c¢ 4\
pop stack symbol A
Aog e

2/29/08 check that stack is empty 34

Shift-reduce parser as a pda

Non-deterministic PDA that is a Reduce action 7

parser for grammar: S :=0S1 12
N~

L(S)={0"217:n>=0}
after reducer

and shift 1

OOU)»—*>~\

1
S
0

— implies a push/pop
of stack symbol(s)
2/29/08 35

check that stack is empty

Context-free languages and
Pushdown Automata

e Similar to FSAs there are non-deterministic pda
and deterministic pda

e Unlike in the case of FSAs we cannot always
convert a npda to a dpda

e The construction of a pda will provide us with the
algorithm for parsing (take in strings and provide
the parse tree)

2/29/08 36

CKY algorithm for PCFGs

* We will consider the working of the
algorithm on an example PCFG and input

string
e Example PCFG:

S— AX(0.3)1YB(0.7)

X—=AB(0.1)IBA(.9)

A—a (1.0) B—a(l.0)
e Example input string: aaa

2/29/08

Y —=BA(0)

37

Max(0.1, 0.9)
CKY Algorithm 0.3+09=027
Max(0.27, 0.7)
0 1 2 3
A10,B1.0 X09,Y10 S0.7
0 A—a,, ﬁ::io.l IBA, S — A(O,I)X(l,3)0.3
1.0
B—a,, S — Y2 Besyos
1 A10,B1.0 X09,Y1.0
A_>al40 X—=>AB;,IBA
B—>a|n Y—=BA,,
A10,B1.0
2 A—a,,
B—a,

2/29/08

a

38

Parse trees

PCEFG is consistent:
0.7+027+0.03=1.0

S S S
Y B A X A X
A A B B A
| / | / |
a a a a a a a a

2/29/08 39

