
CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/∼anoop

February 28, 2008

1 / 36

Why are parsing algorithms important?

I A linguistic theory is implemented in a formal system to
generate the set of grammatical strings and rule out
ungrammatical strings.

I Such a formal system has computational properties.

I One such property is a simple decision problem: given a
string, can it be generated by the formal system (recognition).

I If it is generated, what were the steps taken to recognize the
string (parsing).

2 / 36

Why are parsing algorithms important?

I Consider the recognition problem: find algorithms for this
problem for a particular formal system.

I The algorithm must be decidable.

I Preferably the algorithm should be polynomial: enables
computational implementations of linguistic theories.

I Elegant, polynomial-time algorithms exist for formalisms like
CFG

3 / 36

Top-down, depth-first, left to right parsing

S → NP VP

NP → Det N

NP → Det N PP

VP → V

VP → V NP

VP → V NP PP

PP → P NP

NP → I

Det → a | the

V → saw

N → park | dog | man | telescope

P → in | with

4 / 36

Top-down, depth-first, left to right parsing

I Consider the input string: the dog saw a man in the park

I S . . . (S (NP VP)) . . . (S (NP Det N) VP) . . . (S (NP (Det
the) N) VP) . . . (S (NP (Det the) (N dog)) VP) . . .

I (S (NP (Det the) (N dog)) VP) . . . (S (NP (Det the) (N
dog)) (VP V NP PP)) . . . (S (NP (Det the) (N dog)) (VP (V
saw) NP PP)) . . .

I (S (NP (Det the) (N dog)) (VP (V saw) (NP Det N) PP)) . . .

I (S (NP (Det the) (N dog)) (VP (V saw) (NP (Det a) (N
man)) (PP (P in) (NP (Det the) (N park)))))

5 / 36

Number of derivations

CFG rules { S → S S , S → a }
n : an number of parses

1 1
2 1
3 2
4 5
5 14
6 42
7 132
8 429
9 1430

10 4862
11 16796

6 / 36

Number of derivations grows exponentially

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

lo
g(

D
er

iv
at

io
ns

)

Length

’logplot’

L(G) = a+ using CFG rules { S → S S , S → a }

7 / 36

Syntactic Ambiguity: (Church and Patil 1982)

I Algebraic character of parse derivations

I Power Series for grammar for coordination type of grammars
(more general than PPs):
N → natural | language | processing | course
N → N N

I We write an equation for algebraic expansion starting from N

I The equation represents generation of each string in the
language as the terms, and the number of different ways of
generating the string as the coefficients:

N = nat. + lang. + proc. + course +
+ nat. lang. + nat. proc. + ...
+ 2(nat. lang. proc.) + 2(lang. proc. course) + ...
+ 5(nat. lang. proc. course) + ...
+ 14 ...

8 / 36

CFG Ambiguity

I Coefficients in previous equation equal the number of parses
for each string derived from E

I These ambiguity coefficients are Catalan numbers:

Cat(n) =
1

n + 1

(
2n
n

)

I

(
a
b

)
is the binomial coefficient

(
a
b

)
=

a!

(b!(a− b)!)

9 / 36

Catalan numbers

I Why Catalan numbers? Cat(n) is the number of ways to
parenthesize an expression of length n with two conditions:

1. there must be equal numbers of open and close parens
2. they must be properly nested so that an open precedes a close

10 / 36

Catalan numbers

I For an expression of with n ways to form constituents there
are a total of 2n choose n parenthesis pairs, e.g. for n = 2,(

4
2

)
= 6:

a(bc), a)bc(,)a(bc, (ab)c,)ab(c, ab)c(

I But for each valid parenthesis pair, additional n pairs are
created that have the right parenthesis to the left of its
matching left parenthesis, from e.g. above: a)bc(,)a(bc,
)ab(c, ab)c(

I So we divide 2n choose n by n + 1:

Cat(n) =

(
2n
n

)
n + 1

11 / 36

Catalan numbers

n catalan(n)

1 1
2 2
3 5
4 14
5 42
6 132
7 429
8 1430
9 4862

10 16796 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7

12 / 36

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 2 4 6 8 10 12 14 16
 0

 1e+16

 2e+16

 3e+16

 4e+16

 5e+16

 6e+16

 0 5 10 15 20 25 30 35

 0

 5e+34

 1e+35

 1.5e+35

 2e+35

 2.5e+35

 3e+35

 3.5e+35

 4e+35

 0 10 20 30 40 50 60 70
 0

 2e+47

 4e+47

 6e+47

 8e+47

 1e+48

 1.2e+48

 0 10 20 30 40 50 60 70 80 90

13 / 36

Syntactic Ambiguity

I Cat(n) also provides exactly the number of parses for the
sentence: John saw the man on the hill with the telescope
(generated by the grammar given below, a different grammar will

have different number of parses)

S → NP VP

NP → John | Det N

N → man | hill | telescope

VP → V NP

Det → the

VP → VP PP

NP → NP PP

PP → P NP

V → saw

P → on | with

number of parse trees = Cat(2 + 1) = 5.
With 8 PPs: Cat(9) = 4862 parse trees

14 / 36

Syntactic Ambiguity

I For grammar on previous page,
number of parse trees = Cat(2 + 1) = 5.

I Why Cat(2 + 1)?
I For 2 PPs, there are 4 things involved: VP, NP, PP-1, PP-2
I We want the items over which the grammar imposes all

possible parentheses
I The grammar is structured in such a way that each

combination with a VP or an NP reduces the set of items over
which we obtain all possible parentheses to 3

I This can be viewed schematically as VP * NP * PP-1 * PP-2

1. (VP (NP (PP-1 PP-2)))
2. (VP ((NP PP-1) PP-2))
3. ((VP NP) (PP-1 PP-2))
4. ((VP (NP PP-1)) PP-2)
5. (((VP NP) PP-1) PP-2)

I Note that combining PP-1 and PP-2 is valid because PP-1 has
an NP inside it.

15 / 36

Syntactic Ambiguity

I Other sub-grammars are simpler. For chains of adjectives:
cross-eyed pot-bellied ugly hairy professor We can write the
following grammar, and compute the power series:

ADJP → adj ADJP | ε

ADJP = 1 + adj + adj2 + adj3 + . . .

16 / 36

Syntactic Ambiguity

I Now consider power series of combinations of sub-grammars:
S = NP · VP
(The number of products over sales ...)
(is near the number of sales ...)

I Both the NP subgrammar and the VP subgrammar power
series have Catalan coefficients

17 / 36

Syntactic Ambiguity

I The power series for the S → NP VP grammar is the
multiplication:

(N
∑

i

Cati (P N)i) · (is
∑

j

Catj(P N)j)

I In a parser for this grammar, this leads to a cross-product:

L × R = {(l , r) | l ∈ L & r ∈ R }

18 / 36

Syntactic Ambiguity

I A simple change:

Is (The number of products over sales ...)
(near the number of sales ...)

= Is N
∑

i

Cati (P N)i) · (
∑

j

Catj(P N)j)

= Is N
∑

i

∑
j

Cati Catj(P N)i+j

= Is N
∑
i+j

Cati+j+1 (P N)i+j

19 / 36

Dealing with Ambiguity

I A CFG for natural language can end up providing
exponentially many analyses, approx n!, for an input sentence
of length n

I Much worse than the worst case in the part of speech tagging
case, which was nm for m distinct part of speech tags

I If we actually have to process all the analyses, then our parser
might as well be exponential

I Typically, we can directly use the compact description (in the
case of CKY, the chart or 2D array, also called a forest)

20 / 36

Dealing with Ambiguity

I Solutions to this problem:
I CKY algorithm: computes all parses in O(n3) time. Problem is

that worst-case and average-case time is the same.
I Earley algorithm: computes all parses in O(n3) time for

arbitrary CFGs,
O(n2) for unambiguous CFGs, and O(n) for so-called
bounded-state CFGs (e.g. S → aSa | bSb | aa | bb which
generates palindromes over the alphabet a, b).
Also, average case performance of Earley is better than CKY.

I Deterministic parsing: only report one parse. Two options:
top-down (LL parsing) or bottom-up (LR or shift-reduce)
parsing

21 / 36

Shift-Reduce Parsing

I Every CFG has an equivalent pushdown automata: a finite
state machine which has additional memory in the form of a
stack

I Consider the grammar: NP → Det N, Det → the, N → dogs

I Consider the input: the dogs

I shift the first word the into the stack, check if the top n
symbols in the stack matches the right hand side of a rule in
which case you can reduce that rule, or optionally you can
shift another word into the stack

22 / 36

Shift-Reduce Parsing

I reduce using the rule Det → the, and push Det onto the stack

I shift dogs, and then reduce using N → dogs and push N onto
the stack

I the stack now contains Det, N which matches the rhs of the
rule NP → Det N which means we can reduce using this rule,
pushing NP onto the stack

I If NP is the start symbol and since there is no more input left
to shift, we can accept the string

I Can this grammar get stuck (that is, there is no shift or
reduce possible at some stage while parsing) on a valid string?

I What happens if we add the rule NP → dogs to the grammar?

23 / 36

Shift-Reduce Parsing

I Sometimes humans can be “led down the garden-path” when
processing a sentence (from left to right)

I Such garden-path sentences lead to a situation where one is
forced to backtrack because of a commitment to only one out
of many possible derivations

I Consider the sentence:
The emergency crews hate most is domestic violence.

I Consider the sentence:
The horse raced past the barn fell

24 / 36

Shift-Reduce Parsing

I Once you process the word fell you are forced to reanalyze the
previous word raced as being a verb inside a relative clause:
raced past the barn, meaning the horse that was raced past
the barn

I Notice however that other examples with the same structure
but different words do not behave the same way.

I For example:
the flowers delivered to the patient arrived

25 / 36

Earley Parsing

I Earley Parsing is a more advanced form of CKY parsing with
two novel ideas:

I A dotted rule as a way to get around the explicit conversion of
a CFG to Chomsky Normal Form

I Do not explore every single element in the CKY parse chart.
Instead use goal-directed search

I Since natural language grammars are quite large, and are
often modified to be able to parse more data, avoiding the
explicit conversion to CNF is an advantage

I A dotted rule denotes that the right hand side of a CF rule
has been partially recognized/parsed

I By avoiding the explicit n3 loop of CKY, we can parse some
grammars more efficiently, in time n2 or n.

I Goal-directed search can be done in any order including left to
right (more psychologically plausible)

26 / 36

Earley Parsing

I S → •NP VP indicates that once we find an NP and a VP
we have recognized an S

I S → NP • VP indicates that we’ve recognized an NP and
we need a VP

I S → NP VP • indicates that we have a complete S

I Consider the dotted rule S → •NP VP and assume our CFG
contains a rule NP → John
Because we have such an NP rule we can predict a new
dotted rule NP → • John

27 / 36

Earley Parsing

I If we have the dotted rule: NP → • John and the next input
symbol on our input tape is the word John we can scan the
input and create a new dotted rule NP → John •

I Consider the dotted rule S → •NP VP and NP → John •
Since NP has been completely recognized we can complete
S → NP • VP

I These three steps: predictor, scanner and completer form the
Earley parsing algorithm and can be used to parse using any
CFG without conversion to CNF
Note that we have not accounted for ε in the scanner

28 / 36

Earley Parsing

I A state is a dotted rule plus a span over the input string, e.g.
(S → NP • VP, [4, 8]) implies that we have recognized an
NP

I We store all the states in a chart – in chart[j] we store all
states of the form: (A→ α • β, [i , j]), where α, β ∈ (N ∪T)∗

29 / 36

Earley Parsing

I Note that (S → NP • VP, [0, 8]) implies that in the chart
there are two states (NP → α •, [0, 8]) and
(S → • NP VP, [0, 0]) — this is the completer rule, the heart
of the Earley parser

I Also if we have state (S → • NP VP, [0, 0]) in the chart, then
we always predict the state (NP → • α, [0, 0]) for all rules
NP → α in the grammar

30 / 36

Earley Parsing

S → NP VP

NP → Det N | NP PP | John

Det → the

N → cookie | table

VP → VP PP | V NP | V

V → ate

PP → P NP

P → on

Consider the input: 0 John 1 ate 2 on 3 the 4 table 5
What can we predict from the state (S → • NP VP, [0, 0])?
What can we complete from the state (V → ate •, [1, 2])?

31 / 36

Earley Parsing

I enqueue(state, j):

input: state = (A→ α • β, [i , j])
input: j (insert state into chart[j])
if state not in chart[j] then

chart[j].add(state)
end if

I predictor(state):

input: state = (A→ B • C , [i , j])
for all rules C → α in the grammar do

newstate = (C → • α, [j , j])
enqueue(newstate, j)

end for

32 / 36

Earley Parsing

I scanner(state, tokens):

input: state = (A→ B • a C , [i , j])
input: tokens (list of input tokens to the parser)
if tokens[j] == a then

newstate = (A→ B a • C , [i , j + 1])
enqueue(newstate, j+1)

end if

I completer(state):

input: state = (A→ B C •, [j , k])
for all rules X → Y • A Z , [i , j] in chart[j] do

newstate = (X → Y A • Z , [i , k])
enqueue(newstate, k)

end for

33 / 36

Earley Parsing
I earley(tokens[0 . . . N], grammar):

for each rule S → α where S is the start symbol do
add (S → • α, [0, 0]) to chart[0]

end for
for 0 ≤ j ≤ N + 1 do

for state in chart[j] that has not been marked do
mark state
if state = (A→ α • B β, [i , j]) then

predictor(state)
else if state = (A→ α • b β, [i , j]), j < N + 1 then

scanner(state, tokens)
else

completer(state)
end if

end for
end for
return yes if chart[N + 1] has a final state

34 / 36

Earley Parsing

I isIncomplete(state):

if state is of type (A→ α •, [i , j]) then
return False

end if
return True

I nextCategory(state):

if state == (A→ B • ν C , [i , j]) then
return ν (ν can be terminal or non-terminal)

else
raise error

end if

35 / 36

Earley Parsing

I isFinal(state):

input: state = (A→ α •, [i , j])
cond1 = A is a start symbol
cond2 = isIncomplete(state) is False
cond3 = j is equal to length(tokens)
if cond1 and cond2 and cond3 then

return True
end if
return False

I isToken(category):

if category is terminal symbol then
return True

end if
return False

36 / 36

